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Linked-cluster series have been obtained for the Blume-Capel model in an fcc lattice to the eighth
order. We show that the linked-cluster series aided by the standard extrapolation techniques pro-
vide an effective method in the study of models which display first-order phase transitions as well
as second-order phase transitions. The full phase diagram and the tricritical phenomena have been
studied. Results are compared with those of the Monte Carlo simulation and the high-temperature

and low-temperature series analysis.

I. INTRODUCTION

The Blume-Capel model'! which displays a tricritical
point in its phase diagram has attracted a lot of attention
from research workers. As first pointed out by Griffiths,
in a full three-dimensional thermodynamic space three
critical lines intersect at the tricritical point. The tricriti-
cal phenomena have been shown to be different from the
ordinary critical phenomena. In a renormalization-group
calculation, Riedel and Wegner3 showed that the tricritical
behavior of a three-dimensional Gaussian model is
described by the classical (mean-field) exponents with log-
arithmic corrections. Tricritical behavior in the metamag-
netic transitions of DAG (dysprosium aluminum garnet)
(Ref. 4) and FeCl, (Ref. 5), phase separations of the *He-
“He mixture, and the structural phase transition’ of
NH,CI have been extensively studied experimentally.

To calculate the detailed behavior near the tricritical
point, the Blume-Capel model is one of very few models
which are amenable to such studies. The series-expansion
method® has been one of the most powerful methods in
the study of phase transitions and critical phenomena. It
not only can provide accurate critical exponents as the
renormalization-group theory does, but also gives the ac-
curate phase diagram for the system. The method has
been applied to study the Blume-Capel model with much
success.” 10

Difficulties, however, have arisen in the determination
of the first-order branch of the phase boundary. While
the series-expansion method has provided the most accu-
rate estimates of the critical temperature utilizing the
strong divergent behavior of certain thermodynamic quan-
tities at the critical point,® the same method cannot be ap-
plied when the phase transition is of first order. Normally
it is then necessary to calculate the free energies of the two
phases and to locate the transition point where the free en-
ergies are equal. In the series method, Saul, Wortis, and
Stauffer'® (hereafter referred to as SWS) have used the
low-temperature and the high-temperature series to esti-
mate the free energies of the two phases, respectively. The
intersection of the free energies then determines the transi-
tion point. This method gives quite accurate results for
the first-order phase boundary when the discontinuity of
the order parameter is large but the accuracy is lost as the
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tricritical point is approached. As SWS pointed out, the
line of equal free energy has failed to merge, at the tricriti-
cal point and thereafter, with the second-order phase
boundary which can be found to a very high accuracy by
considering the divergence of the susceptibility function.
SWS (Ref. 10), however, have given the most careful and
detailed analysis within the limits of the method. Indeed,
it is this fine work which gave us the impetus for attempt-
ing a different approach.

In this paper we show that the first-order phase boun-
dary can be found accurately, and the tricritical behavior
can be explored fully using the linked-cluster series aided
by the standard extrapolation techniques. This restores
the full availability of the series method in the study of
phase transition and critical phenomena. The linked-
cluster series-expansion method has been used to generate
high-temperature series!! and to compute the thermo-
dynamic quantities in the “high-density approximation.”!?
Extensive reviews have been given by Wortis'! and Cal-
len.!? Our use of it in conjunction with the extrapolation
techniques!® enables us to obtain accurate results both in
the ordered and the disordered phases. This method has
been applied to the Ising model'* where its relations to the
other series found in arbitrary field or with constant mag-
netization'> have been discussed.

In the next section we briefly discuss the method ap-
plied to the Blume-Capel model. The results of the calcu-
lations are presented in Sec. III where comparisons with
the Monte Carlo results'® are also discussed. A conclusion
is given in Sec. IV.

II. BLUME-CAPEL MODEL
AND THE LINKED-CLUSTER SERIES EXPANSION

The Hamiltonian of the Blume-Capel model' is given as

H=—J 3 SiSi+AY (S/¥*—h 3 87, (1)
i,j) i i

where S =1 and the ferromagnetic pair interactions are re-
stricted to nearest-neighbor spin pairs only. The second
term gives rise to the zero-field splitting raising the energy
of the S*=+1 states above the S?=0 state by A. The last
term represents the Zeeman energy.

In the mean-field approximation the phase transition
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remains second order up to a tricritical point at
A/zJ=%1n2 (kgT/2zJ=+) and becomes first order there-
after, but for A/zJ > 3 no phase transition occurs. Here z
is the coordination number of the lattice. Two (first-
order) “wings” extend out symmetrically along the first-
order phase boundary and are bounded by second-order
critical lines!” in the three-dimensional A-T-A phase space.
Thus three critical lines meet at the tricritical point.

To analyze the model by the linked-cluster series
method we first divide the Hamiltonian into two parts.
The unperturbed part consists of all the single-ion poten-
tials including an effective-field term which is extracted
from the pair-interaction Hamiltonian and is character-
ized by an effective-field parameter. The rest of the Ham-
iltonian is treated as a perturbation. We write

H=H,+H,, (2)
where

Ho=AS (SPP?—(h +JzM) 3, Si+5sNzM?*,  (3)

Hi=—J 3 (Si—M)Si—M) . 4)

(ij)

In Hy and H,; M is a free parameter which can be chosen
to minimize the free energy. It can be shown'"!* that the
parameter M so chosen is equal to the self-consistently
determined magnetization or the order parameter of the
system. Thus, in essence, the perturbation Hamiltonian
describes correlations between spin fluctuations.

The free energy of the system per spin can be calculated
by the linked-cluster series-expansion method:!!

F:F0+AF ) (5)

_ﬁF():%lnTre —FHo , (6)
1 1 n

_BAF_Ngn’((—BHI) >c- (7)

In Eq. (7) the angular brackets denote the canonical
thermal average over the unperturbed Hamiltonian H,
and ¢ denotes the cumulant part of the average. Each
term in the expansion can be represented by a graph con-
sisting of semi-invariants linked together by the pair-
interaction lines. The graphs are the same as those of the
Ising model and the semi-invariants are evaluated similar-
ly.!"1* We shall refer the details to the review of
Wortis.!!

To proceed, we have chosen an fec lattice for the calcu-
lations because of the more rapid convergence of the
series. We have calculated terms up to the eighth order in
the perturbations. The free energy takes the form

_BF=—BFo+ 3 A,(x,)BI)" (8a)
n=2

with
—BFy=In[14e¢ e’ +e )] —+BJzM?, (8b)

where x=BA and y=B(h+12JM). In fact, the coeffi-
cients 4, are finite polynomials of b and c. We find

A, =% '”EJ’ZITa"mpc"‘bZP , 9)
where

b= lie?i(ye:—:’-e?y) ’ 1o

e Me?+e?) (11)

- 14+eXe?+e™?)

The coefficients ay,, are given in Table I up to n =8.

It should be recalled that the free energy found is a
function of # and T; M is simply a free parameter. The
magnetization can be found by taking derivatives of —BF
with respect to y (or Bh). This gives the same equation as
JF/OM=0; thus M is identified as the magnetization of
the system. The series is

M=b+ 2 B, (x,y)BJ)", (12)
n=2
where
mp 1!

The coefficients B;,, are shown in Table IL. The suscepti-
bility X is given by

X '=xgl-127, (14)

where kg TX, is the second-order derivative of —BF with
respect to y. The quadrupolar moment and quadrupolar
susceptibility can be similarly found by taking derivatives
of —BF with respect to x,

g={(8%?)=- X Ix : (15)
and
d 3% —BF)
o _9% 9 1—pPr)
kpTX*= 3 %2 . (16)

All the series found reduce to the exact high-
temperature series” ! in the disordered phase when M=0
(h=0). In the ordered phase the coefficients of the series
can be evaluated for given values of x and y. The analysis
of the series is presented in the next section.

III. PHASE DIAGRAMS AND TRICRITICAL
PHENOMENA

A. Phase diagrams

The phase diagrams in the mean-field approximation
are only qualitatively correct. In the series method the
second-order phase boundary can be easily and accurately
found using the susceptibility series in the disordered
phase at & =0; the series becomes divergent at the phase
transition. This has been found by Oitmaas’ and SWS.!°
The latter authors!® have used a longer (twelfth-order)
series and have found more accurate results. Our suscep-
tibility series reduces to the SWS high-temperature series
in the disordered phase (but of shorter length). It thus
provides no new information in this region.
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TABLE 1. (Continued.)

N M/P

8553323520

6125021280
—6558753600

852 692 400
—3083179 680

—20230560

—281300040

8736
887040
17 690400
22317120
13426 560

2295669 600

413683200
—197 429400

5
6
7
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—14417282 880

—62869201920
115338263040

—80030393 856
388987764 480
—356532019200

—32998017024

—1812117888
106512 344 064
—604271 549952

111847680
4411532160
—117433628928

2643744
—88611264
—2603 192256

367014 606 336
—902 342730240

87168
20248704
291162816
—6038 807040
—1392068 160

12

36792
5423796
165730320
1040397120

528401180160

955101 127 680
—362148433920

417309653376

—423206 864 640

48061 258 560
—96710271 840

66 848 302080

34152814080
27477636480

5
6
7
8

7205 345280
—5190998 400

839129760
787653720

To determine the first-order phase boundary, it is neces-
sary to find the free energies of the ordered and the disor-
dered phases. This can be done by using the linked-cluster
series for the free energy. The order parameter M in the
series is equal to zero in the disordered phase while in the
ordered phase it should be found self-consistently from
the series for the magnetization. This can be done by con-
sidering!*!® the divergence of the series S/(M —S) where
S is the series for the magnetization as shown in Eq. (12).
Writing M=y /(12f3J ), we can evaluate the coefficients of
the series at fixed values of x and y. The series diverges at
M =S as intended. As discussed in Refs. 14 and 15, this
series reduces to the susceptibility series as M approaches
zero. Thus M vanishes at and above the critical tempera-
ture determined by the susceptibility series when the phase
transition is of second order. We have determined the
magnetization by the standard ratio method.® The Neville
tables® 18 have been constructed to aid the estimates. With
the eighth-order series it appears that the best estimate is
given by the average of the last two second Neville extra-
polants, I3 and /%, where

m= L[ — ) ! (17)
m

and
1°=c,/C,_, (18)

C, are the coefficients of the series. This is substantiated
to some extent by the analysis of the disordered-phase sus-
ceptibility; the phase-transition temperature so obtained
differs from the values of the twelfth-order series results
of SWS (Ref. 10) by only one part in a thousand. The
spread in the values of the selected Neville table elements
are taken to estimate the uncertainties of the results. We
have also performed the Padé analysis'® (with fixed values
of x and y) on the logarithmic derivative of the series
M —S. From these analyses we believe that for M >0.5,
T /T, is reliable to within 1%. The accuracy tends to im-
prove as the tricritical value of x is approached (see dis-
cussion on tricritical behavior of magnetization).

To locate the first-order phase boundary we make esti-
mates of the differences in the free energies of the ordered
and disordered phases using the Padé approximants
method.!”” The phase transitions are then located where
the approximants vanish. It should be noted that in the
calculation of ordered-phase free energy the term +JzM >
in Eq. (3) should be rewritten as y2/(2B%Jz) because the
value y instead of M is fixed in the analysis. We therefore
have multiplied the series for the free-energy difference by
B%Jz. This yields a series of ninth order in B/J for the Padé
analysis. Table III shows data of the phase boundary
given by the [4/4], [4/5], and [5/4] Padé approximants
(using the notation of Ref. 19). The uncertainties in the
estimate of the phase boundary have been evaluated by
considering (1) the uncertainty in the estimate of the mag-
netization and its effects to the phase-boundary data, and
(2) the consistency of the phase-boundary data as shown
in Table III.

The first-order phase boundary is traced in Fig. 1 in a
dashed curve with error bars on some representative
points. The tricritical point is estimated at kpT/12J
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TABLE 11 (Continued.)

0

N M/P

134014 124160

72893913120

—60013 548 000

7166985 840
—16413077520

44442720
—517149 360
787449 600

—488844 720

10762113 600

6
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995507089920 230676526080

—1960750471 680

1349352490752
—6650073 803 520

696994 776 567
—6802210856448

121009 287 168
—2497134366 720

12578 164 945920
—20978 133 442 560

374044 6080
—280244 926080

—99 186240
—4092242112

186272122176
—1427871670848

87168

50810880
438048 576
—36023811264
221517535680
—333864 538 560

2%

284 688
62082216
1389282048
—6663 882960
—3152610720
14838012000
—16683226 560

6606183951360

17081169477 120
—11147599 572480

3043496 744064
— 10282786738 560

9629 793 008 640

12207119 178240
—3632518794240

3448304165376
—2681750695 680

4
5
6
7
8

126313447 680

42631505280
156 629 531520

TABLE III. Phase-boundary data. A series representing the
free-energy difference of the ordered and disordered phases has
been analyzed by the Padé-approximant method. The transition
temperatures are obtained when the approximants vanish. The
results from the three Padé approximants [4/4], [4/5], and [5/4]
are listed (see text for the determination of magnetization in the
ordered phase). An asterisk shows no satisfactory result found
in the analysis.

[4/4] [4/5] [5/4]
A/(12J) kT /(12J) kT /(12J) kT /(12J)
0.468 0.2764 0.2764 0.2764
0.469 0.2721 0.2721 0.2721
0.470 0.2670 0.2670 *
0.471 * * *
0.472 0.2501 0.2538 0.2565
0.4725 0.2517 0.2530 0.2518
0.473 0.2496 0.2496 0.2495
0.4735 0.2476 0.2473 0.2471
0.474 0.2456 0.2450 0.2446
0.475 0.2408 0.2400 0.2400
0.476 0.2350 0.2355 0.2355
0.477 0.2295 0.2313 0.2312
0.478 0.2251 0.2272 0.2269
0.480 0.2173 0.2186 0.2183
0.4825 0.2075 0.2079 0.2078
0.485 0.1973 0.1973 0.1973
0.491 0.1700 0.1700 0.1700
0.35 T T T
\-\ Saul et al.
. Free-Energy Slope Equal
0.30+ . ]
\.
\n
\-
N
Saul et.ai.
| Free-Energy .
@O'ZS Intersection —>\i
~
5 -y
= Present Calculation *)
Free-Energy Equal )\
0.20F N .
\
\
\
\
\
1 ! \
015547 046 048 050

A/12d

FIG. 1. Phase diagram in the A-T plane near the tricritical
point. The first-order phase boundary found in the present cal-
culation is drawn in dashed lines with the apparent extrapola-
tion uncertainties shown. The free-energy intersections and
free-energy slope-equal points, obtained by SWS using the high-
temperature and the low-temperature series, are shown in
dashed-dotted lines. In addition, the second-order phase boun-
dary is shown in solid lines. The tricritical point is indicated by
TCP. The projection of the wing boundary is drawn in solid
lines with the label wing.
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=0.259+0.008 and A/12J=0.4711+0.001 where the
first-order phase boundary ends and meets the second-
order phase boundary. As expected at the tricritical point
and thereafter the line of equal free energy coincides with
the second-order phase boundary determined independent-
ly by the divergence of the susceptibility. We note that
the “dip” in the first-order phase boundary below the tri-
critical point is much less pronounced than that shown in
the mean-field approximation.

An alternative and perhaps more accurate method of lo-
cating the tricritical point is to examine the behavior of
the magnetization near the phase transition. This is be-
cause there is only one source of errors (i.e., from the esti-
mate of the magnetization) that would contribute to the
uncertainty in the result. It is typical that the magnetiza-
tion becomes a multiple-valued function at temperatures
close to the transition for a system which undergoes a
first-order phase transition. Indeed, this happens as soon
as A exceeds its tricritical value. The bulging of the mag-
netization curve is very evident for A only slightly greater
than the tricritical value. We found the tricritical point
at kpT/12J=0.258+0.002 and A/12J=0.4713+0.001.
These values lie between the values found by SWS using
the high-temperature series!® (kz7T=0.2615+0.007, A/
12J=0.47161£0.001) and by Jain and Landau
(kpT=0.256+0.002, A/12J=0.471£0.004) in the Monte
Carlo method.!®

In the full three-dimensional A-T-h space two wings
which are first-order surfaces extend out symmetrically
along the first-order line (in the A-T plane) and are bound-
ed by second-order lines. For a fixed value of x=pBA
greater than the tricritical value, the magnetization be-
comes a single-valued function of T only when the value
of Bh becomes equal to or greater than its value on the
wing boundary. This of course reflects the fact that the
wing surfaces are of first order. To locate the wing boun-
dary, we fix a value of x (greater than its tricritical value)
and for each value of y we find values of T and Bk at
which the susceptibility diverges (using the Neville-ratio
method). Since the susceptibility will not diverge when Bh
exceeds its value on the wing boundary, the wing boun-
dary is located where T and Bk attain their maximum
values. To state it in another way, the method finds the
minimum value of Bh (at fixed x) such that the suscepti-
bility would always remain finite. The results are collect-
ed in Table IV and drawn in Fig. 1 with a solid line la-
beled wing.

The quadrupole moment variable X =1—((S?)?) is the
“nonordering” parameter. It is of interest because it is the
spin analog of the fractional concentration of *He in the
He-*He mixtures.!” We have estimated the value of X in
both the ordered and the disordered phases using the Padé
approximants method.!* The phase diagram in the (T,X)
space is shown in Fig. 2 where the high-temperature and
low-temperature series estimates'® and the Monte Carlo re-
sults'® are also shown for comparison. It is clear that the
low-temperature estimates'® of SWS are in disagreement
with the other calculations. Our results, however, are con-
sistent with the conjecture of SWS.!° While our results
agree quite well with the Monte Carlo values in general,
they depart from each other near the tricritical point. The

YUNG-LI WANG AND FELIX LEE 29

TABLE IV. Wing critical end points. Employing the suscep-
tibility and magnetization series in a finite field the boundaries
of the wings in the A—h —T space are found. See text for the
details.

BA T/(12J) A/(12J) +h /(12J) +M
1.85 0.255 0.472 5.1 x10~3 0.18
1.88 0.2516 0.473 3.47x10* 0.24
1.9 0.250 0.474 6.8 x10~* 0.27
2.0 0.241 0.481 3.8 x1073 0.33
2.1 0.233 0.490 9.2 X103 0.37
2.2 0.227 0.500 1.66 10~ 0.40
2.4 0.219 0.526 3.7 X102 0.43
2.8 0.211 0.590 9.5 X102 0.47
3.2 0.207 0.662 1.65x 1072 0.49
4.5 0.204 0.920 42 %102 0.50

discrepancies could have come partly from the somewhat
slow convergence of the series for X and perhaps partly
from the size effects of the Monte Carlo simulation.

B. Tricritical phenomena

The tricritical behavior has been investigated extensive-
ly by SWS (Ref. 10) and Jain and Landau.!® The former
authors have also examined the crossover phenomena
from the critical region to the tricritical region using the
high-temperature series. As mentioned, our series reduce
to the high-temperature series in the disordered phase but
can be used to explore the ordered phase as well. We shall
concentrate on the latter aspect of the series in its applica-
tion to examine the tricritical phenomena, especially those
not yet obtained in the conventional high-temperature and
low-temperature series treatments.

We first show the tricritical behavior of the order pa-
rameter M. Taking a tricritical path BA=1.826 we calcu-
late M using the magnetization series by the ratio method

0.4 T T T T
__. present
] * calculation
o
Z e Saul et al.
b O3 o Jain and y
= Landau ™
o rod g
L ]
o
02k &7 e
1 1 1 1 1 1 1
0.2 04 06 0.8

X=1- (52D

FIG. 2. Phase diagram in the X-T plane near the tricritical
point. The first-order and second-order phase boundaries are
drawn in dashed and solid lines with some error bars shown.
The closed circles represent results of SWS calculation using the
high-temperature series and the low-temperature series. The
open circles show data of Monte Carlo simulation. The results
of present calculations agree quite well with the Monte Carlo
simulation but they depart from each other in the vicinity of the
tricritical point.
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as discussed above. The results are shown in Fig. 3 in cir-
cles. The uncertainties are believed to be smaller than the
size of the circles shown unless they are indicated by error
bars. The prediction of the renormalization-group
analysis,> M =4 |tInt |/* (t=1—T/T,, T, as the tricrit-
ical temperature), is drawn in a solid line, while the classi-
cal behavior, M « t!/4, is shown in a dashed line. The log-
arithmic correction’ to the classical behavior has mani-
fested itself evidently in this calculation. We find
A,’_:;= 1.1940.02. A similar conclusion has also been
reached in the Monte Carlo simulation'® but our series
method allows the temperature to approach more closely
to the tricritical point without loss of accuracy. The
mean-field results are also shown for comparison.

At the tricritical temperature, the field dependence of
M is given by a power law,

Bh=AM" . (19)

Following Gaunt and Baker!> we have estimated the
values of 8}, defined as In(Bh)/In(M) at the tricritical tem-
perature. The extrapolation of &) to Bh=0 for
0.6 <M <0.9 finds §,=5.2+0.4, A§=0.42+0.02 in agree-
ment with results obtained by the low-temperature series'’
and the Monte Carlo simulation.

The discontinuity in the order parameter across the
first-order phase boundary as the tricritical point is ap-
proached should behave as>?°

AM =A™ . (20)

The low-temperature series'® gave B8, =0.2 which is at
variance with the predicted values 0.5. Our series results
are shown in Fig. 4 where the log-log plot of AM vs ¢ is
made. The slope of the plot gives the value of 8, and it is
seen that the slope starts with the value ~0.25 away from
the tricritical point but becomes consistent with the value
0.5 as the tricritical point is approached. This is in good
agreement with the results of Monte Carlo simulation.'®
The value of 4 which we found is 1.9+0.2. For compar-
ison the Monte Carlo method'® yields 4 =2.2+0.2.

The discontinuity of the quadrupole moments on X
across the first-order phase-transition boundary behaves
similarly as the tricritical point is approached:

AX=A%"" . @1
T T
e series data
O —Ti9ftint |7 _ 7]
---1.8t4 .
= --- MFA
0.3 -
o.l

| |

1o 102 1072 10"

FIG. 3. Tricritical behavior of the ordering parameter M in
temperature along a tricritical path SA=1.826. To show the
logarithmic correction to the classical behavior, a solid line
~ |tInt |/* and a dashed line ~¢!/* are drawn. The mean-
field results are also included (in dashed-dotted line) for compar-
ison.
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FIG. 4. Log-log plot of AM vs t. The discontinuity of the or-
dering parameter M across the first-order phase boundary near
the tricritical point is plotted against the reduced temperature
1—-T/T, where T, is the tricritical temperature. The slope
which gives the value of B, is seen changing from ~0.25 to 0.5
as T, is approached.

As discussed earlier X has been estimated by the Padé-
approximants'® method. We show the log-log plot of AX
vs t in Fig. 5. It is evident that w, is consistent with the
value 1.0 as predicted.’> This is in agreement with the
Monte Carlo'® finding. 4% is found as 3.6+0.3 which
agrees with the Monte Carlo value 3.9+0.3 within the un-
certainties.

Finally, the shape of the wing critical line as it ap-
proaches the tricritical point is expected, according to the
scaling theory,?! as

kp(T,—T,)/12J =A(h,/12J)P . (22)

The log-log plot of (T, —T,) vs h, is shown in Fig. 6. In
the figure a wide range (107°—107") of h, is included. p
is equal to + to a very high accuracy. We find
p=0.40+0.02. The Monte Carlo simulation!® has given
similar results but with less accuracy. The value of a is
found as 0.16+0.02.

IV. CONCLUSIONS

We have shown that the linked-cluster series-expansion
method is a very valuable tool in the theoretical study of a

T T T I T
1.0
AX
0.3
0.1 1 ' !
0.04 O.1 0.2
t

FIG. 5. Log-log plot of AX vs ¢t. The discontinuity of the
nonordering parameter X=1—{(S?)?) is plotted against the re-
duced temperature t =1—T7/T,. The slope w, [Eq. (21)] is con-
sistent with the value 1.0 as predicted.
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FIG. 6. Log-log plot of (T;—T,) vs h,. The shape of the
wing boundary given by Eq. (22) is confirmed in this plot with
the exponent p= % to a very high accuracy over a wide range of

he.

model which displays complicated phase-transition
behavior. Successive applications of the method to the
study of the Blume-Capel model have been reported in
this paper. The use of the method to study the Blume-
Emery-Griffiths model will be reported elsewhere.

The linked-cluster series-expansion method treats the
single-ion potentials exactly. It is the most effective tech-
nique to generate the high-temperature series for systems
with single-ion anisotropy of arbitrary strength which are
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essential for high-precision analysis of real (physical) mag-
netic systems. Its application in the ordered phase is one
of very few methods which allow the physical quantities
in the ordered phase to be estimated with high accuracy.

The linked-cluster series-expansion method can be ap-
plied to quantum spin systems with single-ion anisotropy.
While the computation is complicated by the noncommu-
tivity of the operators and the integrals of the ordered
products, the introduction of standard basis operators has
made the calculations feasible.”>* Much effort is needed
to develop the method for higher-order calculations and
for more complicated physical systems.

ACKNOWLEDGMENTS

We would like to acknowledge the invaluable discussion
with Dr. B. Westwanski, whose work on the Ising model
has inspired the present calculation. Helpful discussions
with Dr. D. P. Landau, Dr. M. Wortis, and Dr. M. Ferer
are also gratefully acknowledged. This work is supported
in part by the National Science Foundation. One of us
(F.L.) was supported in part by the National Research
Council (Republic of China). The Florida State Universi-
ty Computing Center has provided the computing time
necessary for this work.

*On leave of absence from National Tsing Hua University,
Hsinchu, Taiwan, Republic of China.

IM. Blume, Phys. Rev. 141, 517 (1966); H. W. Capel, Physica
(Utrecht) 32, 966 (1966); 33, 295 (1967); 37, 423 (1967).

2R. B. Griffiths, Phys. Rev. Lett. 24, 715 (1970).

3E. K. Riedel and F. J. Wegner, Phys. Rev. Lett. 29, 349 (1972);
F. J. Wegner and E. K. Riedel, Phys. Rev. B 7, 248 (1973).

4D. P. Landau, B. E. Keen, B. Schneider, and W. P. Wolf, Phys.
Rev. B 3, 2130 (1971); W. P. Wolf, B. Schneider, D. P. Lan-
dau, and B. E. Keen, ibid. 5, 4472 (1972); N. Giordano and
W. P. Wolf, Phys. Rev. Lett. 35, 799 (1975).

51. S. Jacobs and P. E. Lawrence, Phys. Rev. 164, 866 (1967); R.
J. Birgeneau, in Magnetism and Magnetic Materials—1974,
Proceedings of the 20th Annual Conference on Magnetism and
Magnetic Materials, edited by C. D. Graham, Jr., G. H.
Lander, and J. J. Rhyne (AIP, New York, 1974), p. 258.

SE. G. Graff, D. M. Lee, and J. D. Reppy, Phys. Rev. Lett. 19,
417 (1967); G. Goellner and H. Meyer, ibid. 25, 1534 (1971);
G. Ahlers and D. S. Greywall, Phys. Rev. Lett. 29, 849
(1972).

7C. W. Garland and D. B. Weiner, Phys. Rev. B 3, 1634 (1971).

8Phase Transitions and Critical Phenomena, edited by C. Domb
and M. S. Green (Academic, New York, 1974), Vol. 3.

9J. Oitmaas, J. Phys. C 4, 2466 (1971); 5, 435 (1972).

10D, M. Saul, M. Wortis, and D. Stauffer, Phys. Rev. B 9, 4964
(1974).

11M. Wortis, in Phase Transitions and Critical Phenomena, Ref.
8, p. 114.

12H. B. Callen, in Physics of Many-Particle Systems, edited by E.
Meeron (Gordon and Breach, New York, 1966), Chap. 3.

13D, S. Gaunt and A. J. Guttman, in Phase Transitions and Crit-
ical Phenomena, Ref. 8.

14B. Westwanski, Y. L. Wang, and F. Lee (unpublished).

15D, S. Gaunt and G. A Baker, Jr., Phys. Rev. B 1, 1184 (1970).

16A. K. Jain and D. P. Landau, Phys. Rev. B 22, 445 (1980).

7M. Blume, V. J. Emery, and R. B. Griffiths, Phys. Rev. A 4,
1071 (1974).

18D, Jasnow and M. Wortis, Phys. Rev. 176, 739 (1968).

19G. A. Baker, Jr. and P. Graves-Morris, in Encyclopedia of
Mathematics, edited by Gian-Carlo Rota (Addison-Wesley,
London, 1981), Vols. 13 and 14.

20R. B. Griffiths, Phys. Rev. B 7, 545 (1973).

2IN. Giordano and W. P. Wolf, Phys. Rev. Lett. 39, 342 (1977).

22Y. L. Wang, Proceedings of the International Conference on
Crystalline Electric Field and Structural Effects in f-Electron
Systems, 1979, edited by E. Crow, R. P. Guertin, and T. W.
Mihalisin (Plenum, New York, 1980).

23J. W. Johnson and Y. L. Wang, Phys. Rev. B 24, 5204 (1981).




