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The nonequilibrium response of a two-dimensional, paramagnetic system to a rapid and arbitrari-
ly large change (quench) in a symmetry-breaking field is investigated. The complete time depen-
dence of the conjugate order parameter is calculated with a real-space renormalization-group (RG)
method. The nonlinear relaxation “rate” is found to be time dependent. Its approach to the corre-
sponding prediction of linear-response theory is characterized. The nonlinear response is found to
go over to linear response via an early, exponential regime followed by a crossover to an asymptotic,
algebraic approach to linear response at long times. The initial transient decay is quench-strength
dependent in contrast with the final behavior, which is largely “universal” and quench insensitive.
We study a nearest-neighbor Ising model in a magnetic field in the paramagnetic, “disordered”
phase. The dynamics are controlled by a kinetic Ising model with simultaneous spin-flip
(adsorption-desorption) and spin-exchange (diffusion) kinetics. The model is applicable to non-
equilibrium ““dosing” experiments on adsorbed systems. Diffusion is shown not to affect the growth
rate of the total order parameter (magnetization or coverage). General recursion relations for the
temperature and magnetic field are derived for the entire thermodynamic plane. The RG analysis
reproduces linear-response theory for arbitrary magnetic field and is consistent with known scaling
laws concerning nonlinear relaxation. The time-dependent magnetization in the critical region has a
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power-law regime before crossing over into its final exponential decay.

I. INTRODUCTION

The relaxation of condensed-matter systems disturbed
slightly away from equilibrium are well described by
linear-response (LR) theory.? Systems subject to strong
perturbations, however, do not fall within this statistical-
mechanical prescription and correspondingly little is
known about nonlinear relaxation. At long times, one
would expect that as the system approaches equilibrium
the relaxation rate coincides with that predicted by LR
theory. In this paper, the nonequilibrium response of a
two-dimensional, paramagneticlike system to a rapid and
large change (“quench”) in a symmetry-breaking field is
studied. In particular, this crossover in system response
from its initial nonlinear behavior to LR at long times is
investigated. The response rate is initially strongly depen-
dent on quench strength and decays exponentially in time.
There is then a crossover in time to algebraic decay which
is largely quench insensitive and which characterizes the
asymptotic approach to the LR relaxation rate. This
work is shown to have relevance to “dosing” experiments
wherein adsorbed systems are suddenly exposed to adsor-
bate vapor.

The response of a system to an infinitesimal external in-
fluence is characterized by the fluctuation-dissipation
theorem.? In this prescription, system responses to linear
order in the driving force are related to equilibrium-
averaged, time-dependent correlations of fluctuations in
the quiescent system. No distinction is drawn between
“before” and “after” as the system remains in quasiequili-
brium throughout the interaction process. For finite dis-
turbances our theoretical understanding is much less clear.
A large driving force will induce a system to evolve to
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some new configuration not linearly related to the initial
state.

The evolution of systems subject to sudden changes in
external parameters (e.g., temperature or magnetic field)
has aroused much interest in recent years.> Examples are
nucleation and phase separation. Strongly nonequilibrium
problems have been suitably investigated with numerical
Monte Carlo methods.* However, this method has its own
drawbacks, e.g., finite-size errors and problems associated
with metastability. An analytic theory is desirable. From
the theoretical point of view, treatment of quench prob-
lems requires the ability to handle systematically length
and time scales associated with the initial and final states
(and also with the intervening temporal evolution).® This
suggests a renormalization-group (RG) approach, since
RG methods were developed to handle such problems
with many scales.® In this paper, a rather straightfor-
ward, but nontrivial, example of a strongly nonequilibri-
um problem is investigated using a real-space RG (RSRG)
method.

We analyze this problem within the specific context of
a system of particles adsorbed on a substrate subject to a
sudden change in chemical potential. The model to
describe the equilibrium and nonequilibrium properties of
this system is discussed in Sec. II. Briefly, we employ a
nearest-neighbor Ising Hamiltonian with attractive cou-
plings to govern the equilibrium correlations with kinetics
controlled by a stochastic dynamics with “spin-flip”’ pro-
cesses governing adsorption-desorption and particle-hole
exchange® to describe diffusion. Given the well-known
analogy between lattice-gas and Ising systems,”!® our
analysis is equally well suited for describing the response
of a two-dimensional spin-3 Ising magnet to a sudden
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change in external field. In the approach developed here,
two space dimensions do not play a special role in the
theory, and the extension to higher dimensions should be
straightforward.

Aspects of this and related problems of the same
universality class have been studied with field-theoretic
techniques,'!? numerical Monte Carlo simulations,!3~¢
high-temperature series-expansion methods,'”!® mean-
field theories,'*~?! and scaling-theory approaches.?!~%’
Most of these works have concentrated on the nonlinear
critical slowing down associated with the problem. We
are interested in characterizing the complete time history
of the order parameter, i.e., the surface coverage (or mag-
netization), from the initial moment following the quench
to the final equilibrium. Critical slowing down is then a
special case of our investigation. Recently,’*=2® RSRG
methods have been applied to the problem of temperature
quenches in Ising magnets in zero field both above and
below the critical temperature. In these studies, the focus
was on the nonequilibrium time dependence of the struc-
ture factor. Our work constitutes the first application of
RSRG techniques to quenches in symmetry-breaking
fields, and, therefore, we will restrict ourselves in this pa-
per to the evolution of the order parameter. We will also
restrict ourselves to quenches above the critical tempera-
ture. Field quenches below the critical temperature are in-
teresting and deserve study as they can be used to investi-
gate metastability and spinodal decomposition. This will
be the object of future work.

An experimental realization of the quenching process
would be the sudden injection of particles into the adsor-
bate gas phase initially in equilibrium with the adsorbed
system such that the gas density remains constant (con-
stant pressure) at its new value. This changes the chemi-
cal potential of the particle “source” in contact with the
system of interest, and induces the adsorbates to respond
by adjusting their coverage to match the new chemical po-
tential. It is precisely this nonequilibrium evolution which
is studied in this paper. During adsorption experiments,
impurities are continuously “out gassing” and contaminat-
ing the system.?® Therefore, it may be of experimental in-
terest to know roughly how long after a “dose” one must
wait before the system is effectively in equilibrium and the
familiar equations of LR theory may be employed. If the
system is near a second-order phase transition, as we shall
see, this time may be considerable.

In LR theory, the decay of the order parameter has a
simple exponential time dependence, which, within the
“conventional” approximation,*® is characterized by one
decay rate.!* This picture is expected to hold true except
possibly quite near a critical point.3'~33 Precisely at the
critical point, the order parameter decays algebraically in
time.!"?? In our study of the nonequilibrium order-
parameter response, we generalize this relaxational time
dependence by introducing so-called nonequilibrium relax-
ation functions.’* In this guise, deviations from LR are
easily characterized. Outside of the critical region, where
“exponential” relaxation holds, we find that the “relaxa-
tion” of the order-parameter relaxation rate is time depen-
dent and goes over to the LR decay rate in roughly two
stages. To study this we introduce an analogous non-
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equilibrium relaxation function for the relaxation rate.
For short times, the nonequilibrium decay rate relaxes to-
ward the LR value exponentially, where its decay rate is
strongly quench dependent. We find a crossover from ex-
ponential decay of this “metaresponse” rate to an algebra-
ic decay which characterizes the approach to LR. The
power-law exponent is found to be largely quench insensi-
tive. In the vicinity of the critical point the order parame-
ter relaxes at first with a nonequilibrium response, then
crosses over into a power-law decay, followed by a second
crossover into an exponential regime. This effect has been
conjectured previously,'*?? and is observed here explicitly
for the first time to the best of our knowledge.

II. MODEL STUDIED

A. Equilibrium properties

Consider a set of N “spin”-3 variables defined on a
square lattice. The basic property of these variables is
their two-valued character. They can refer to adsorbed
particles with no relevant internal structure (empty or oc-
cupied) or refer equally well to Ising spins (up or down).
The transformation between these two pictures is well
known and will not be reproduced here. (See Ref. 10 for a
careful discussion.) For reasons of mathematical conveni-
ence, we work in the Ising representation. Hence, at every
adsorption site, we introduce variables o;=+1. The use
of spin—% language implies a hard-core repulsion, i.e., no
double occupancies. The Hamiltonian governing the
equilibrium properties of this system is

K

H[U]= 2 20i0'5+6a+BM[U], (2.1)
where
M[o]= 3 o; (2.2)

is the total “magnetization.” {8,} denotes the set of basis
vectors connecting a given site with its four-nearest neigh-
bors. A factor of —B= —(kpT)~! has been absorbed into
the definition of the Hamiltonian. Thus K is the (dimen-
sionless) attractive (ferromagnetic) coupling between spins,
and B is a dimensionless, uniform magnetic field. In the
lattice-gas picture, 4K is the interparticle coupling and B
is a combination of K, the adsorbate-substrate binding en-
ergy, and the (uniform) adsorbate chemical potential (see
Ref. 10).

The phase diagram predicted by Eq. (2.1) is well known.
Briefly, there is a liquid-gas—type critical point at
u.=tanhK,=v2—1 and for B=0 (half-coverage,
©.=7). The associated coexistence curve is particle-hole
symmetric.’* Phase diagrams of adsorbed systems are
usually more complicated than this simple picture.'®3¢-38
However, many adsorbed systems39 contain Ising-like por-
tions in their phase diagrams.’**’ Thus Eq. (2.1) should
provide a good first approximation.
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The equilibrium probability distribution is then

Plo]=eHle] / S eHlol (2.3)

The equilibrium magnetization per site (order parameter)
is

m =(1/N){M[a]),

where the brackets denote the usual equilibrium thermal
average over P[o]. The relationship between the order
parameter in the Ising picture and that in the lattice-gas
picture, the surface coverage ©, is simply'°

0=1(1—m).

(2.4)

(2.5)

This relationship extends to the nonequilibrium case as
well.

B. Nonequilibrium

The time evolution of Ising models*! is generated by a
stochastic, pseudo-Liouville operator D, such that the
time-dependent probability distribution satisfies a Marko-
vian master equation,

Pt _p plo]. (2.6)
dt
The (formal) solution of this initial-value problem is
P[o,t]=exp(D,t)P;[0] , 2.7)

where P;[o] is the probability distribution of the initial
(prequench) equilibrium state, i.e., P;[c]=P[o,t =0]. D,
is constructed such that the probability distribution of the
final equilibrium state is invariant under time translations.
This is guaranteed by the stationarity condition,

D,Pr[o]=0, (2.8)

where

Prlo]= lim Plo,] .

Another constraint to be satisfied by D, is the detailed
balance symmetry.*> We will discuss the specifics of D,
for our model below. In the kinetic-Ising-model approach
to nonequilibrium problems, all time dependence is gen-
erated by an operator characterized by the final equilibri-
um. (Thus D, “drives” the nonequilibrium system to this
state.) This is consistent with the notion of an infinite
quench rate and is also in keeping with Monte Carlo stud-
ies.* There have been relatively few studies with the more
realistic feature of finite quench rates.*

Our problem of interest, then, is the computation of the
nonequilibrium magnetization following a sudden change
of the couplings from their initial values, {K;,B;}, to a
new set characterizing the system in the infinite future,
{KF rBF } ’

m(t)=(1/N) 3 M[c]P[o,t] . 2.9)
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In Sec. IV we describe our method for solving this prob-
lem.

The time dependence of adsorbed systems, both in and
out of equilibrium, is governed simultaneously by two ki-
netic processes: adsorption-desorption,**** whereby parti-
cles arrive at or leave the surface, and surface diffusion
(hopping “migration”), the mode of transport for strongly
bound particles.*® Representing these mechanisms, we
consider the total dynamical operator D, to be the sum of
two independent*’ operators,

D,=DX4+DE . (2.10)

As independent processes, each must satisfy stationarity
separately,

DRpilo]1=0, (2.11a)

DEp.[o]=0. (2.11b)

DR is a relaxational operator governing adsorption and
desorption, represented by a single spin-flip operator.*®
Stochastic master equations result from coarse-graining
the complete microscopic system of lattice and spins over
rapidly varying degrees of freedom not germane to the
study of the spin system.*! Thus every flipped spin corre-
sponds to a change in an adsorbate’s “state.” The matrix
elements of DX are®

Do |o'l= =% S AW Wiloloor , 2.12)
i

where AE,’;],,: sets o’ =0, except at site i, WX[o]V;[o] is the
spin-flip probability, and «a is the microscopic rate which
represents the effects of the coarse-grained degrees of free-
dom and sets the overall time scale. a is the flip rate in
the zero-coupling (high-temperature) limit (see discussion
below). Correlations among adsorbates (via “lateral” in-
teractions) enter the transition rate through the function
WR[o], constructed to satisfy stationarity with the exact
Hamiltonian, Eq. (2.1). WX[o]is discussed in the Appen-
dix. It should be mentioned at this point that the transi-
tion probabilities we employ in this paper are “sym-
metrized.”*® The Hamiltonian, Eq. (2.1), is particle-hole
symmetric. It seems natural to preserve this symmetry in
the dynamics. Thus WX[o] places adsorbate and “desor-
bate” on equal footing, which implies that the adsorption
rate is dependent upon the local environment at each site.
As sticking coefficients are known to be coverage depen-
dent,’!">? this appears to be a reasonable supposition. It is
possible to break particle-hole symmetry at the dynamical
level through a suitable choice of the function V;[o]
above.>%! However, this leads to transport coefficients
which do not reflect the symmetry of the underlying
phase diagram.** In our model, we choose V;[o]=1.

The parameter a in the dynamical operator is identified
as the basic desorption rate in the absence of lateral in-
teractions. It is generally believed the rate of first-order
desorption can be represented, at least over limited tem-
perature  ranges,”® by an activated expression
a=apexp(—BE) where a is a frequency associated with
the adsorbate-substrate interaction and E is an energy re-
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lated to the heat of adsorption. This result (the Frenkel
law) can be derived from simple thermodynamic and ki-
netic theory ideas™ and also from transition-rate
theory.’®>’ Despite recent efforts to calculate a; (the
“preexponential” factor) microscopically,’® experimental
results show a wide discrepancy with what would be ex-
pected on theoretical grounds.’®>® Recent experiments®®
have reported effects of lateral interactions and even phase
transitions upon a; and other local quantities associated
with desorption. Furthermore, it is thought that weakly
bound precursor states can also affect the desorption
rate.’ In this paper, we ignore all such temperature and
coverage effects on a and treat it as a given parameter
characterizing the high-temperature state. All “slowing-
down” effects on the system response will be associated
strictly with adsorbate correlations which enter the opera-
tor via the transition probability and also with critical
fluctuations.

Diffusion is governed by the spin-exchange operator
DE, which conserves the total number of particles via a
stochastic interchange of particles and-holes. Kinetic Is-
ing models have recently been applied to the study of sur-
face diffusion.'~% The basic structure of DZ is given by

p¥o|o1==F > ALIWE o' (0, — )0} —))

(2.13)

where the sum is over exchanging pairs. W,f[a] is briefly
discussed in the Appendix. It is shown below that dif-
fusion does not affect the growth of the total order pa-
rameter, and, therefore, we will not require a detailed
knowledge of DE. We note here that DE Jeads to a
particle-hole—symmetric diffusion coefficient.

B, the high-temperature hopping rate, can also be writ-
ten in an activated form.®> Since a is the pertinent time
scale, we consider the ratio Rg=B/a. For a given sur-
face, Beeby’ has suggested a value for this ratio based on
transition-rate theory. It can be shown,%” however, that
Rg is an “irrelevant” parameter in the RG sense in that it
rescales to zero under iteration.

At this point, the model is completely specified. Given
an initial state, {K;,B;}, P;[o] is specified, and, given the
final state, {Kp,Br}, the dynamical operator is deter-
mined. Thus we have a well-defined, explicit means of
calculating nonequilibrium averages via Eq. (2.7). First,
however, we examine the structure of the theory in the
limit of small quenches, i.e., LR theory.

III. LR THEORY

The response of the magnetization to a small variation
in an inhomogeneous field is, to first order in the driving
force,'48 given by the relation

8m,(1)=8B, X,(1)+O((8B,)*) , 3.1
where 8m,(t) is the Fourier transform of m (t)—mp, and
where mp is the final magnetization, 8B, is the transform
of 8B=B;— By, and the response is given by the time-
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dependent susceptibility

X (t)=(80_480,(1)) . (3.2)

Averages here are over the final probability distribution.
80, is the Fourier transform of the spin fluctuation
80;=0;—(0;). The time development of the mode 8o,
is via the “propagator”

s0,(t)=e""50, . (3.3)

D, is the adjoint operator to D,(D[o|c’]=D[o’|0o])

which governs the equation of motion for observables,

e.g.,
dM|o,t]

D t~ D t~R
" —e’"'D M[o]=e "D M[o],

(3.4)

since

DaM[a]=0. 3.5

Equation (3.5) is the statement of the conservation law im-
plied by the exchange dynamics.®

Equation (3.2) describes the time-dependent autocorre-
lation of fluctuations in equilibrium, the structure of
whiczh is readily seen in the memory-function representa-
tion,

X(g.2=X,[z +i¢(g,2)] 7",

where X,=X,(t=0) and where X(g,z) is the Laplace
transform of X,(z),

X(g,2)=—i f(:° e"X (0t .

(3.6)

(3.7)

The memory function ¢(q,z), the generalized space- and
time-dependent decay rate of equilibrium fluctuations can
be shown*? to be the sum of two pieces,

#(g,2)=¢"(q)+¢'¥(q,2) . (3.8)

$'/(q), the “static” part, is the infinite-frequency limit,
and sets the initial response. It is easily shown®? that

) =x;'T,, (3.9)
where the “kinetic coefficient” in our model is

,=—(80_,D,80,) . (3.10)
In the long-wavelength (hydrodynamical) limit,®

T,=alr+¢’BTe+0(gY , (3.11)
with

Tr=(W{la]), (3.12a)

Tg={(W¥o]) . (3.12b)

The structure of ¢'?(q,z), the “dynamic” component, is
rather complicated. It contains the effects of the non-
linearities in the equation of motion upon the system
response.>? It is known, for the long-wavelength and low-
frequency response,*?*! that

$%0) > ¢'9(0,0) , (3.13)
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the equality possibly occurring at the critical point. In
this paper, we approximate the memory function by ignor-
ing the dynamic part and retaining the static part, which
is tantamount to the “conventional” approximation of
critical dynamics.’*® In a high-temperature-series evalua-
tion,> ¢‘¥ does not begin until order (u)*, whereas ¢
starts at order 1. Furthermore, there is experimental’® and
Monte Carlo® evidence that the dynamic contribution to
the system response is negligible in relation to the static
contribution, except possibly in a narrow asymptotic
dynamical critical region.!®3?

Neglecting the dynamic memory function, the LR to a
disturbance is then simply

Xg(1)=Xge~#"P" |

The order parameter in our problem is the total magnet-
ization which singles out the ¢ =0 component. Thus
from Eq. (3.11), the diffusive aspect of the problem does
not contribute to the LR decay rate, nor is diffusion ex-
pected to play a significant role in the nonlinear relaxa-
tion. Initial correlations will decay faster via the
adsorption-desorption process than they will via particle
hopping. Thus diffusion would be expected to matter, if
at all, only at the early stages of the magnetization relaxa-
tion. A Monte Carlo study of the one-dimensional Ising
chain with simultaneous spin-flip and spin-exchange
dynamics could detect no dependence upon diffusion of
thezgnagnetization relaxation within the numerical accura-
cy.
Thus the magnetization decays within our LR theory
according to the simple relationship

&m (1)=6m (0)e —*"" ,

(3.14)

(3.15)

where ¢¥=¢'"(q =0), i.e., there is one decay rate in the
LR limit. The same result is obtained in our RG analysis,
to which we now turn.

IV. RG ANALYSIS

We will solve our nonequilibrium problem via an itera-
tive, RSRG technique. There are two main reasons for
approaching the problem in this way.?® One is that we
will be concerned with the effects of the critical point
upon the system response (critical slowing down). The
RG is a very successful paradigm in which to study criti-
cal phenomena.”! As we are interested in nonequilibrium
dynamics, the limiting cases of the static equilibrium of
the system and the dynamics of fluctuations in equilibri-
um must be treated in a systematic way, especially in the
critical region. The RSRG is a method for handling these
limits globally over the entire phase diagram, and is not
restricted to the vicinity of critical points.*> The second
reason concerns the “size” of quenches. The sine qua non
of the RG is its applicability to problems involving many
scales.® In quench problems, one is faced with initial and
final states, which if widely separated in thermodynamic
properties, then one is confronted with systematically
building up the time and length scales associated with the
final state out of those of the initial state. Hence, in util-
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izing a RG approach to the study of nonequilibrium
dynamics, one is not limited to near-equilibrium quenches.
The aspect of competing scales becomes particularly ap-
parent below the transition temperature where, during
domain growth, large, self-similar structures are built up
out of smaller ones.?”-?8

A. Equilibrium

In the RG method,”! microscopic lengths of the system
(lattice spacing) are rescaled by a factor b, which in the
present instance equals 2. A Hamiltonian describing the
rescaled system is obtained by coarse-graining the degrees
of freedom of the original lattice which contribute to the
partition function on a scale smaller than the new, effec-
tive microscopic length. There are many ways of imple-
menting this transformation. In the coarse-graining tech-
nique employed in this paper, the renormalized Hamil-
tonian continues to be characterized by one coupling
strength K’ in a renormalized magnetic field B’ in the
same form as Eq. (2.1).7%7* We will not enter into the de-
tails of the coarse-graining procedure, but instead refer to
the literature where derivations can be found. We discuss
below, however, the recursion relations for the renormal-
ized coupling and field strengths, K'=K'(K,B) and
B'=B'(K,B).

Under such a RG transformation, a general relationship
between the order parameter on the original lattice and
that on the rescaled lattice is given by the recursion rela-
tion

m (K,B)=v(K,B)m'(K',B")+my(K,B) . 4.1)

% K,B) and my(K,B) are local functions of the underlying
degrees of freedom and, hence, represent a “clean” separa-
tion of length scales. ¥ reflects the degrees of freedom
which are projected onto the renormalized, “block™ spin
and 7y, the remaining, short-wavelength degrees of free-
dom. Such a recursion relation has been derived by the
authors of Ref. 74, and their notation has been adopted.”

Under iteration, K’ and B’ “flow” via their recursion re-
lations to their fixed-point values (see below). This flow
in coupling space in turn drives the magnetization via Eq.
(4.1) to a fixed-point value, trivially evaluated exactly. In
this way the magnetization of the original lattice is “built
up” out of the progressively coarser scales. Thus the re-
cursion relations for the couplings are an indispensible ele-
ment in our analysis. The inclusion of a field into the RG
is somewhat novel, and we must digress in this subsection
to derive these recursion relations. We show below that
an iterative solution of Eq. (4.1), in conjunction with our
recursion relations for the couplings, compares well with
the known properties of the Ising model in a magnetic
field.

The “inhomogeneous™ piece in the magnetization recur-
sion relation is itself composed of other local quantities,

mio(K,B)=m(K,B)—W(K,B)Q (K,B) . (4.2)

These functions are specified in Ref. 74. The function Q
plays an important role in our analysis. From Q, we ob-



29 NONLINEAR-RESPONSE THEORY OF ISING-LIKE SYSTEMS

tain the renormalized magnetic field,
tanhB’'=Q(K,B) .

Equation (4.3) results from a locality condition imposed
on the RG transformation.”* It is shown below that this
magnetic recursion relation reproduces well the exact
magnetic eigenvalue associated with the flows in the criti-
cal region.

The thermal recursion relation is derived from a con-
sideration of the exact recursion relation for the true
correlation length &,7!

&'(K',B’')=(1/b)§(K,B) . 4.4)

Given B'=B’'(K,B), Eq. (4.3), K'=K'(K,B) can, in princi-
ple, be inferred.

In zero field, the “true” correlation length’®”” is known
exactly, both above and below the critical temperature.’
From the exact £(K), we obtain the exact thermal recur-
sion relation (in zero field) in the “scaling field” form

¢'(K')=¢*K) ,
where ¢(K)=-exp(2K)tanh(K). This recursion relation lo-
cates the nontrivial fixed point exactly and gives the exact
thermal critical index v=1. Thus Eq. (4.5) is a strong
constraint on the more general recursion relation which
includes the magnetic field.

At finite field, the correlation length is not known ex-
actly. High- and low-temperature approximations exist;’’
however, not many terms are available in a form suitable
for our analysis. Instead, we approximate Eq. (4.4) as fol-
lows. We obtain the renormalized coupling K’ from a re-
normalization condition on static, two-point correlation
functions along a line,

€(4R,0) _ €(2R,0)
€(2R,0) = €(R,0) ’

where €(i,j)=(80;80;). This condition occurs naturally
in a RG analysis of correlation functions.*”’®" 1In the
limit of large R, where correlation functions decay ex-
ponentially, Eq. (4.6a) is equivalent to Eq. (4.4). However,
series expansions for the correlation functions €(i,j) are
easily derivable for short-range correlations. Therefore,
we determine K’ from the local version of Eq. (4.6a),

(4.3)

(4.5)

(4.6a)

€(4,0)  €(2,0)
€2.0) ~ €(10) ° (4.6b)
In zero field, this condition leads to the exact thermal re-
cursion relation in one dimension,” and approximately
reproduces Eq. (4.5) in two dimensions.”®

In a low-temperature, high-field, “density”-type expan-
sion,®* Eq. (4.6b) yields, to leading order, the recursion re-
lation

[yx(1—x))=[px(1—x)]?, 4.7

where y =exp(—2B) and x =exp(—4K) are the usual ex-
pansion variables. This equation is valid whenever x or y
is small. This recursion relation has the same desired
“scaling” form as Eq. (4.5), to which it reduces in the
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low-temperature, zero-field limit. At lowest order in the
couplings, Eq. (4.7) yields

K'+B'/2=B+2K . (4.8)

Equation (4.8) is what would be obtained from a direct
analysis of Eq. (4.4) with existing low-temperature ap-
proximations of the correlation length. However, this
would “miss” the more general recursion relation, Eq.
4.7).

At low temperatures, Eq. (4.3) can be shown to reduce
to

B'=4B[1+0(xY)], 4.9)

consistent with the Nienhuis and Nauenberg theorem?®!
concerning low-temperature fixed points. Thus, we find
the asymptotic low-temperature recursion relation

K'=2K—B. (4.10)

In high-temperature expansions, Eq. (4.6b) leads to the
recursion relation, also in the desired form,

[K(1—-H?)]'=[K(1-H?»)]?, 4.11)

for general field, B(H =tanhB). Equation (4.11), as it
stands, can also be obtained from the known approxima-
tions to £ at high temperature. It may be verified that the
high-field limit of Eq. (4.11) coincides with the high-
temperature limit of Eq. (4.7). Thus the scaling-field rep-
resentation of the recursion relation is seen to be valid in
all the various limiting cases of the couplings K,B. Below,
we assume this representation remains valid for general
K, B over the entire thermodynamic plane.
At high temperatures, Eq. (4.3) reduces to

Q=H/(4—3H*)\2 4.12)

Thus the high-temperature limit of the “pure” thermal re-
cursion relation is

K'=K1—-H*(1—-3H?). (4.13)

A function, which, together with Eq. (4.3), interpolates
between the limiting forms of the thermal recursion rela-
tion and preserves the zero-field form, is given by

¢(K,B)=exp(2K +B)tanh[Ke “B(1—H?)].  (4.14)
The obvious generalization of Eq. (4.5) is then
¢'(K',B"')=¢*K,B) . (4.15)

Supplemented with Eq. (4.3), Eq. (4.15) determines the
general recursion relation for the coupling K in an arbi-
trary field.

Corresponding to the relevant parameters at the fixed
point, we obtain the magnetic eigenvalue y;=1.814,
which approximates well the exact value’! y,=1.875,
and, as mentioned above, the exact thermal eigenvalue
yr=1. In Fig. 1 we present the flows defined by the re-
cursion relations. Immediately, it is seen there are two re-
gions in the K,B plane: one in which flows tend towards a
zero-temperature, high-field fixed point, and the other in
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FIG. 1. “Flows” defined by recursion relations for the two
couplings K, B.

which flows are attracted by a high-temperature, zero-
field fixed point. There are also two other fixed points
which are attracting only to the zero- and infinite-field
limits, as shown. We can ascribe no physical significance
to the separatrix in Fig. 1.

The magnetization obtained by iterating Eq. (4.1) is
plotted in Fig. 2. Plotted is the entire field dependence for
several temperatures. Also plotted is the same quantity
found from series-expansion methods.®> We plot the
series results only up to u =0.2, as they seem unreliable
for lower temperatures at large field values. (The series
seem to lose “concavity.”) The agreement between the
two sets of curves is rather good, considering the simplici-
ty of our assumptions.

Another static quantity of interest is the susceptibility,
the recursion relation for which is found by differentiating

FIG. 2. Static magnetization vs magnetic field at various
temperatures. Solid lines are iterated results. Dashed lines are
high-temperature-series—expansion results. At high tempera-
tures the two become indistinguishable.
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Eq. (4.1) with respect to the field and has the same general
structure as Eq. (4.1),

0B’

X=X()+V aB

X' . (4.16)

Xo is obtained via a straightforward exercise in the chain
rule.

In Fig. 3 we plot the zero-field susceptibility against
temperature and compare with Padé approximants both
above® and below’® T,. It is seen that the amplitude is
inaccurate but the critical behavior is handled correctly.
We obtain the susceptibility exponent y=1.717, within
2% of the exact y=1.75. In Fig. 4 the critical isotherm
susceptibility is plotted against the field. Again the am-
plitude is not well represented (too small), while the diver-
gence is. Along the critical isotherm, the susceptibility
diverges, as

X=AB™*, T=T, @.17)

where Tarko and Fisher’ give the amplitude 4 =0.071,
and from scaling arguments, x =1+ =0.933. We obtain
the exponent x =0.946 (within 2%) and amplitude
A =0.048 (within 30%).

Thus we see that our simple recursion relations do a
good job in calculating static quantities. They reproduce
the asymptotic limits and are consistent with known prop-
erties of the Ising model. They form the foundation of
our nonequilibrium analysis, which we now discuss.

10° T T T T T 3
0%t E
0% 3
X F ]
10 — =
10 F E
5 / 5

1 | | | It |

0 0l 02 03 04| 0.5

u
FIG. 3. Zero-field susceptibility vs temperature. Dashed

lines are approximants constructed from series expansions.
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FIG. 4. Field-dependent susceptibility along critical isotherm.
Dashed lines are results of Fisher and Tarko.

B. Nonequilibrium

The recursion relation for the nonequilibrium magneti-
zation has the same structure as the corresponding quanti-
ty in equilibrium, but now generalized to include time
dependence,?® 3

m(t)=v(t)m'(¢t')+my(t) . (4.18)

m'(¢’) is the nonequilibrium time dependence of the
coarse-grained block spin induced by a renormalized
quench ({Kj,B;}—{Kp,Br}). t'is just the time ¢ mea-
sured in the time units associated with the rescaled lattice
(see below). The function ,(t) is the straightforward
generalization of Eq. (4.2),

mo(t)=my(t)—¥()Q(2) . (4.19)

Each of the functions in Eq. (4.19) are assumed to relax to
equilibrium via a simple time dependence, denoted collec-
tively by

x (t)=xp+(x; —xpexp[ — %I, F)t] , (4.20)

and where each decays at the same rate,®> I'°. Note that
the initial and final states are correctly preserved under
iteration. The function TI'® sets the nonequilibrium
response “felt” at the local level. As the system response
is maximally sensitive to nonequilibrium effects in its ini-
tial stages of relaxation, I'° will be determined by demand-
ing that the short-time behavior of Eq. (4.18) match the
known initial slope of the time-dependent magnetization.
In the next section we discuss how the long-time proper-
ties of the relaxation are incorporated by the recursion re-
lation.
We denote the nonequilibrium initial slope by

om (1)

Fnez at

(4.21)

t=0
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The evaluation of this quantity is discussed below. From
the adjoint property of the operator and the conservation
law [Eq. (3.5)], it can be shown that

~R
Tpe=(D,0;);r, (4.22)

where I denotes an average over the initial probability dis-
tribution. As the operator is associated with the final
state, ', depends on both initial and final states. It will
be seen [see Eq. (4.27)] that the final state contributes to
the initial slope only weakly. Equation (4.22) is another
instance where diffusion does not enter the analysis.

We require the initial slope of Eq. (4.18) to reproduce
Eq. (4.22). Differentiating Eq. (4.18) and inverting im-
poses the following condition on I'%:

I%I,F) =(v;AT,—T,)D~\(I,F) , 4.23)
where
DILF)=m§—m§+ @ —vp)m; —Qp)—v,(Q; —QF) ,
(4.24)

and A is the time rescaling factor, t'=At¢. T'?is seen to be
a hybrid mixture of local and global quantities. It assures
us that the iterated time-dependent magnetization will
have the correct initial nonequilibrium decay. Implemen-
tation of this result requires, however, an independent
means of obtaining ..

The first step in an evaluation of T, is the “equation of
motion” defined by D %,

DRoy=—aWqolo; . (4.25)
By substituting into Eq. (4.22),
Th=—alo;Wha]); . (4.26)

In equilibrium, this expression would vanish [Eq. (A1)],
i.e., the equilibrium magnetization is constant in time.
With the help of identities listed in the Appendix, we find

o~ 'Tpe=(Hp—H;)[1+44,€(1,0)+447,(1,1)]
+4(A1 ——Ap)[mI _HF?I( 1,0)]

+4AF—APNE(3)—Hpg (1,1)],  (4.27)
where the notation has been explained in the Appendix,
except for

51(3)=<0',-0"-+£U'~+j;>[ . (428)

We will calculate the correlation functions appearing in
Eq. (4.27) with recursion-relation techniques. In other ap-
plications these could be evaluated via Monte Carlo
methods. The recursion relations for €(1,0) and €(1,1) are
listed in Ref. 74, and a recursion relation for €(3) may be
developed with the approach discussed in the Appendix to
Ref. 62. This analysis will not be reproduced here.

In Fig. S our results for T, are presented for the case of
an isothermal field quench when Hy=0, for several tem-
peratures, versus H;, the initial field value. This demon-
strates the “right” physics, in that the larger the quench,
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FIG. 5. Nonequilibrium initial slope corresponding to iso-
thermal quenches at zero final field. Plotted is initial slope vs
initial field value for several temperatures.

the larger the initial response. For lower temperatures,
however, the initial response is less owing to the interac-
tions among the spins. Note that I',. remains finite at 7.

The specification of the nonequilibrium recursion rela-
tion is not complete until the time rescaling factor A is
determined, both because it contributes to I'° [Eq. (4.23)]
and because without it implementation of the recursion re-
lation is impossible. In contrast to I'%, which specifies the
short-time response, A is characteristic of the long-time
aspects, and is associated with the decay rate of fluctua-
tions in equilibrium. This requires us to examine the
structure of the recursion relation in the near-equilibrium
regime.

C. LR limit

The response to an infinitesimal disturbance may be ex-
amined within our RG formalism by varying Eq. (4.18)
with respect to the initial state, and taking the limit of
small separation between initial and final states. We will
refer to the initial state approaching the final state as the
LR limit. Henceforth, we shall be interested only in iso-
thermal field quenches, which correspond most closely
with what would be done in a dosing experiment. Howev-
er, owing to the differences in the parameter flows be-
tween the initial and final states, the isothermal property
of a quench is lost after one iteration. Thus the theory
must be able to incorporate the general situation.

We define the LR function,

X(t)= lim —2—m (1) . (4.29)

I—F 0By

From Eq. (4.18), in the LR limit, the recursion relation for
this response function is

X(t)=e‘f’X0+V % X'(t') . (4.30)

JAMES H. LUSCOMBE 29

Note that Eq. (4.30) reduces to Eq. (4.16) at zero time. T
is the LR limit of T'°,
T'=1lim I'%LF). 4.31)
I—»F
To evaluate this limit requires a few steps. It will be seen
that I' and A must be determined simultaneously.
First, we require the limits, both of which vanish in
LR, but whose ratio does not. It can be shown that

}erlFD (I,F)=6B X, , (4.32a)
lim I',e=—8BTza , (4.32b)
where X appears in Eq. (4.16), and from Eq. (A7),
Cr=(1—H>{W;[o]) . (4.33)
Then from Eq. (4.23) we find, in the LR limit,
a—W,F=Tg —7 %—IZ ATY . (4.34)

Next, to obtain the long-time structure of Eq. (4.30), we
Laplace-transform [Eq. (3.7)] and obtain

Xo _(3B’'/9B) 2
z+il A
where z’=2z/A is the renormalized frequency. Inserting

the memory-function representation of X(2), Eq. (3.6),
at zero frequency, we find
X Xo

__Xo _(38B'/0B) X'
49 T TVTTA g
Equations (4.34) and (4.36) form two equations in two un-
knowns which are readily solved to yield

f\ =¢(s) ,
A :¢(s)/¢’(s) .

These two results guarantee that the iterated solution of
Eq. (4.18) will decay at long times with the LR decay
rate. This holds true for arbitrary initial and final states.
In the next section we show that the short-time response
in the LR limit also reduces to LR theory. With Egs.
(4.37), Eq. (4.30), when iterated, yields the LR function
which describes the time decay of fluctuations in equilibri-
um,

(z"), (4.35)

(4.36)

(4.37a)
(4.37b)

xX(t)=xe ", (4.38)

in agreement with Eq. (3.14).

D. Critical limits

Before examining the iterated solutions to Eq. (4.18), we
briefly consider the critical properties which can be in-
ferred directly from scaling arguments and the recursion
relations at their fixed points.

The dynamic critical index z is related to the time-
rescaling factor via (the asterisk denotes fixed-point
values)
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b i=A*. (4.39)
From Eq. (4.37b) and scaling,
A*=(X'/X)*=b"7"". (4.40)
Thus z =y /v, the conventional result.3?
The nonlinear relaxation time may be defined as®2*
o= Jy L 4.41)

As we are concerned with quenches beyond the scope of
LR theory, we require an initial state such that
m(0)>>£~P/". For simplicity, we set m(0)=1. From
Eq. (4.18),

t

A (4.42)

m'(t)dt .

Toe= fow o()dt + % fow v

The dominant contribution to the second integral comes
from the final contribution to ¥(¢). By defining 7, to
diverge as &% where z'#z,** from scaling and Eq. (4.42),

b¥ =(w/A)* . (4.43)

From Eq. (4.16) at the fixed point and general scaling rela-
tions, !

(W*=b—P", (4.44)
Thus with Eq. (4.39) we find
Z'=z—B/v, (4.45)

the Racz scaling law.2"?> This result has recently been
confirmed numerically;'® we now verify it within a RSRG
approach. z’ reflects the missing “weight” under the in-
tegral from nonlinear decay (see Sec. V) induced by an ini-
tial state outside the LR regime.

Finally, if it is assumed that the magnetization at the
critical point decays at long times algebraically, i.e.,
m(t)~t~*, from Eq. (4.18) and dynamical scaling one ob-
tains

b~ Z=(v)*, (4.46)
and thus
x=B/zv. (4.47)

From general scaling arguments,”’~25 one expects the

time-dependent equation of state, at asymptotically long
times, to scale as

m () ~EPVF((EH)™), t>>[m(0)]"*F, (4.48)

with x given by Eq. (4.47). Thus the exact m(t) at the
critical point decays as ¢t ~!/%, a very slow decay. From
our approximate recursion relation, we obtain an exponent
close to this value, 1/17.7.

V. RESULTS AND DISCUSSION

A quantitative solution of the quench problem requires
repeated iteration of the nonequilibrium recursion relation
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until the initial and final couplings have reached their
respective fixed points, which define an exactly soluble,
limiting quench. (See Ref. 79 for a discussion of the itera-
tion procedure.) The iterated solution m(¢) depends on
the five-parameter set, {K;,B;,Kp,Bp,t}. Clearly, many
quenches may be investigated from within this set. We
will concentrate on those of primary physical interest as-
sociated with dosing experiments, namely, isothermal
quenches (Kp=Kj) to zero final field. There may be,
however, other cases of interest not contained within this
choice. Thus we will vary independently the two parame-
ters characterizing the initial conditions (K;,B;), and cal-
culate the ensuing time dependence. Restricting By to
zero places the final state along the line of constant criti-
cal coverage in the phase diagram, ©, = +. This allows us
to study the effects of the critical point upon the approach
to equilibrium. Zero initial coverage corresponds to infin-
ite initial field [see Eq. (2.5)].

Figure 6 is a semilogarithmic plot of the time-
dependent magnetization at several temperatures. It con-
tains much of the physics which we will subsequently ex-
amine in greater detail. The temperatures range from in-.
finite temperature (1 =0) to u =0.4, quite close to the
critical temperature (7 /T, =1.04). The initial field in all
cases was H;=0.95, corresponding to initial coverages of
2.5% at infinite temperature and to less than 1% at
u =0.4. Thus Fig. 6 depicts relaxations associated with
large quenches. There are several effects with which we
will be concerned here. The decay rate of the magnetiza-
tion approaches the constant LR result for long times (see
Sec. III). As a function of temperature, the final decay
rate is seen to become smaller for lower temperatures.
This is a manifestation of the interactions: It takes a pro-
gressively longer time for spins (ostensibly all in the “up”
state initially) to flip when increasingly stronger lateral

1 T } T ! I T l T B
u=0.40 7
u=0.35

O.l E
m(t) [ ]
u=0.3

0.01 = =
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u=0.1
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FIG. 6. Time-dependent magnetization vs time (on a semi-
logarithmic scale) for several temperatures following an iso-
thermal quench. Initial field in all cases is H;=0.95.
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couplings tend to oppose flips and to align spins with their
neighbors. As the critical temperature is approached from
above, due to an increased “temperature” effect, the sus-
ceptibility begins to build up weight (see Fig. 3), and sta-
tistical considerations become important. Spin fluctua-
tions become correlated over a large scale set by the corre-
lation length & which diverges in the critical region.
Overall, the final state here is one in which the order pa-
rameter is zero. However, owing to fluctuations of large
extent, it takes an ever increasing amount of time for
correlated “droplets” of spins to flip over. This is reflect-
ed in the basic structure of Eq. (3.9), where long-
wavelength fluctuations are progressively longer lived near
the critical point. Thus the dramatic slowing-down effect
is seen as the temperature is lowered towards its critical
value. The development of fluctuations following tem-
perature quenches has been investigated recently via the
time-dependent structure factor.’® In this regard it would
be interesting to monitor the structure factor following a
field quench.

Of course, the initial state does not “know” what the fi-
nal state will be, which brings us to another point, namely,
the ‘“curvature” at short times seen in the lower-
temperature quenches in Fig. 6. This is the signature of
nonlinear response. In the early stages of relaxation, the
response is entirely dominated by the initial state. Sud-
denly, a highly correlated system has had its up-down
symmetry restored and the mechanism which suppresses
fluctuations removed. The initial response is controlled
primarily by temperature effects associated with the initial
couplings. The system eventually loses “memory” of the
initially prepared state as the fluctuations characteristic of
the final state have a chance to develop. It then crosses
over into the final, equilibrium decay rate. We will
characterize these developmental stages of the nonequili-
brium response below. First, however, we digress briefly
to discuss what is known about nonlinear relaxation above
T., and how this relates to our results presented so far.

Nonequilibrium time dependence in Ising systems has
received extensive investigation via Monte Carlo
methods.>»13-1® However, most of these studies have lim-
ited themselves to field and temperature quenches below
T.. These are complicated by the presence of the non-
equilibrium aspects of first-order phase transitions.> We
would welcome Monte Carlo comparisons in the quench
regimes we have considered. One study of which we are
aware focused on the pure nonlinear relaxational behavior
above T, in three and four dimensions.!® The same curva-
ture as in Fig. 6 was observed. As yet, there have been rel-
atively few experimental studies designed to explicitly
detect the growth of order in adsorbed systems.®® We are
aware of one experimental study of nonlinear relaxation in
a non-lattice-gas system.}” The order-parameter relaxa-
tion in a liquid-crystal system was observed to show quali-
tatively the same time dependence as some of the relaxa-
tions in Fig. 6.

Before further analyzing the nonequilibrium response
and its crossover behavior, we examine a quench for
which exact information exists. The general quench prob-
lem at infinite temperature can be solved exactly, and is a
simple exponential relaxation to equilibrium,
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m(t)=mp+(m1*‘mp)e—at , u=0 (5.1)

which is what would be expected of a system of nonin-
teracting particles. Equation (5.1) is the solution to a
first-order Langmuir desorption kinetics,***’ which
characterizes many desorption systems at high tempera-
tures, mainly those without dissociative adsorption. Note
that the decay rate in this instance is independent of the
size of the quench, a limit preserved by our RG analysis.
LR theory, within the conventional approximation, is
characterized by one decay rate, Eq. (3.14). Thus devia-
tions from LR manifest themselves as “polydispersive”
curved lines in a semilogarithmic plot. The LR decay rate
in the high-temperature limit again is just «, independent
of the field,®® i.e.,

(K =0, B)=a . (5.2)

Since it reproduces the nonequilibrium result exactly, the
“radius of convergence” of LR theory at high tempera-
tures is in some sense infinite, whereas in the critical re-
gion it shrinks to zero. Thus, by continuity, for moderate-
ly high temperatures and large quenches, nonlinear effects
are negligible within the accuracy of Fig. 6. It will be
seen, however, that for lower temperatures, nonlinear ef-
fects rapidly become evident for progressively smaller
quenches. To analyze the nonequilibrium response, we
now introduce a framework to discuss these effects.

Deviations from LR are conveniently investigated by
introducing the relaxation function'>** which absorbs the
initial and final states,

m(t)—m
T v

mp—mpg

In this way, different relaxations can be effectively com-
pared. An exponential representation is expected to be
valid over most of the thermodynamic plane, except for
quenches associated with criticality, which are examined
separately below. Equation (5.3) generalizes equilibrium
relaxations [Eq. (3.15)] and serves to define the (dimen-
sionless) function (¢). The time dependence of i con-
tains the complete history of the order-parameter relaxa-
tion. The instantaneous slope of ¥ is the instantaneous
rate of relaxation. Thus the approach to LR is con-
veniently characterized by studying the relaxation of 1 it-
self.

At long times, Eq. (5.3) will be proportional to the LR
relaxation. Therefore, comparing Egs. (3.15) and (5.3), the
asymptotic structure of ¢ is

lim W) =yy(I,F)+¢"t , (5.4)

where (I, F) is a (positive) proportionality constant dis-
tinguishing each quench. Hence, at long times, the rate of
response is governed by the LR decay rate, but the order
parameter itself will have further evolved during the same
time period, owing to its initial nonlinear response.
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represents the cumulative effects of nonlinear response.
We have no general proof that 1, be positive, but stability
considerations would indicate that this be the case, and
every quench we have examined yields ¥(>0. For
quenches which drive a system into a thermodynamically
unstable regime, e.g., those associated with nucleation, this
condition probably breaks down. 1, vanishes in the LR
and high-temperature limits.
For short times, ¥(2)=1(0)t [(0)=0], where the dot
denotes time differentiation, and where ¥(¢), the instan-
taneous response rate, is related to the magnetization via

PY)=—m()/[m(t)—mp] . (5.5)
The initial response rate is then [see Eq. (4.21)]
$(0)=—T,c/(m;—mp) . (5.6)

In the limit of small quenches, it can be shown that the in-
itial response correctly reduces to LR, i.e,
E — (8

111_1371/)(0)—45 . (5.7
This amounts to the “converse” of Eq. (4.37a), where it
was shown that the long-time response is given by LR for
small quenches. For quenches which are small, but not
vanishingly small, we have examined the approach of ¥(0)
to ¢ in a high-temperature-series evaluation (the first
five terms). This analysis indicates that the initial
response rate is bounded from below by LR theory. While
this result conforms to physical intuition, a rigorous proof
is lacking. (0) is bounded from above by the maximally
possible quench, which corresponds to identically zero ini-
tial coverage. Thus it appears, and we find within our re-
sults, that the initial, nonequilibrium response satisfies the
inequality

$9<h0)<T,,, (5.8)

where T, is the maximum response rate obtained exactly
from Eq. (4.27) in the infinite-field limit,

(1—u)*
Fw=a(1—+u2—)2— . (5.9

Equation (5.8) would require modification below T, to ac-
count for spontaneous symmetry breaking. Our RG
analysis preserves the exact upper bound, I' ;. In Fig. 7
the two bounding functions in (5.8) are plotted against
temperature. The initial response rate, then, lies between
these two curves. Note the two curves merge in the
infinite-temperature limit. The narrowing gap towards
high temperatures explains the relative quench insensitivi-
ty seen in this regime (Fig. 6). As the critical temperature
is approached, ¢ vanishes as the susceptibility diverges,
and causes critical slowing down. I"_, on the other hand,
remains completely insensitive to critical phenomena.

In Fig. 8 the functions ¥(¢) obtained from a series of
quenches at u =0.3 (T /T, =1.42) are plotted versus time
(measured in units of a~!). Here, we will examine the
role that quench strength plays in the development of non-
linear effects. Plotted are the percentage deviations of
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FIG. 7. Upper and lower bounds for the initial response vs
temperature [see Eq. (5.8)].

from LR, i.e., we graph (¢/¢")t —1) in percent against
time. Thus we see that the “excess” response in compar-
ison with LR is positive, i.e., the nonlinear response is
greater than LR in conformity with Eq. (5.8). The initial
fields parametrizing each quench label the curves, as
shown. At this temperature, ¥(¢) is strongly quench
dependent [see Fig. (7)]. The zero-time ordinate is related
to the ratio ¥(0)/¢'. As the quench size goes to zero, it
is seen that this ratio properly approaches unity, accord-
ing to Eq. (5.7). For quenches smaller than those shown,
the initial response becomes rapidly diminished and the
decay to LR becomes correspondingly slower. For all in-
tents and purposes, these quenches may be said to remain

'20 T I T l T ] T ] T
100
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v _
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FIG. 8. Function (t) obtained from several quenches at
% =0.3 vs time. Plotted is the percentage deviation from LR.
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within the LR regime. This contrasts with the highly
nonlinear responses associated with the larger quenches
which decay rapidly away from the initial response rate;
the stronger the quench, the more rapid this “transient”
decay. The nonequilibrium relaxations are then seen to
cross over into an asymptotic, slow approach to LR. In
this asymptotic regime, the rate of approach towards LR
is seen to be qualitatively similar among the different
quenches, the only ostensible differences separating them
being the constants ¢ [Eq. (5.4)]. We will now focus on
characterizing the crossover behavior seen in Fig. 8.

The instantaneous response rate (f) can also be
represented with a nonequilibrium relaxation function

(1),
W)= +[P(0)—¢“Jg(1) ,

where 1/) satisfies the requirements ¥(0)=1 and
¥ )=0. That ¢ goes over to ¢**) at long times is readily
verified by differentiating Eq. (5.4). A natural extension
of the order-parameter relaxation, it is possible to
represent ¥ in this manner, extracting the initial and final
rates, since in both the LR and high-temperature limits
z/;(t ) reduces to a constant decay rate. Therefore, such a
“subtraction” must be present. Equation (5.10) satisfies
all limiting requirements of 1.
We find that the various stages of the relaxation of
seen in Fig. 8 can be effectively summarized via the fol-
lowing assumed form:

(5.10)

V()=e P+ A(1—e~1)—%,

(5.11)

where x < 1 in order to preserve the short-time constraint.
Equation (5.11) is an ansatz for the purposes of discus-
sion. 9 decays exponentially initially and goes over to a
power-law decay at long times. However, there is no
sharp break between these limiting behaviors. More prop-
erly, » and ¥ should be time dependent. Clearly, we could
continually regress in analyzing time-dependent rates of
relaxation.

o is the rate at which the system “forgets” its initially
prepared state. This is a “nonuniversal” quantity in that
it depends upon quench strength. It is observed that for
. the stronger the quench, the larger the rate . This can be
understood from the following consideration. In our
scheme, the larger the quench, the more ordered the ini-
tially prepared spin system. When the ordering field is
suddenly turned off, the system acquires up-down symme-
try for the final states we are considering. A patch of
spins flipped over by a fluctuation has the same bulk ener-
gy as the reversed configuration owing to the special sym-
metry, the only cost in energy to create a region of the
“wrong” phase coming from the surface “wall” energy,
which ultimately limits the size of fluctuations. Fluctua-
tions which were previously suppressed by the field (see
Fig. 4), suddenly begin to build up to (“populate”) the full
regime of thermal excitations characteristic of the final
state. Under this fluctuation “avalanche,” the more or-
dered states are initially easier to destroy than the less, and
thus they decay faster during this transient response re-
gime.
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We have singled out in this discussion a special final
state. The results observed would seem to carry over to
the more general situation, but with a diminished effect.
The ratio of the final to initial susceptibilities probably
sets some scale governing the size of the nonlinear
response. A nonzero final field, though, destroys any crit-
ical effects.

After the period of rapid, exponential relaxation of the
response rate, it crosses over and settles down to a slow
evolution towards LR. This corresponds to a local equili-
brium being set up as the fluctuations approach their final
spectrum. The approach to LR is characterized by an
algebraic decay. During this period the system has largely
“forgotten” how the initial nonequilibrium state was
created. There is some degree of universality in this re-
gime, the power-law exponent being fairly insensitive to
quench strength, which we find to lie approximately in the
range x =0.80—0.85 for all quenches we have examined.

The power-law approach to LR is a fairly subtle effect.
As it occurs at long times, it could easily be buried in the
noise of either a Monte Carlo s1mu1at10n, a real experi-
ment, or from a contribution from ¢'¢. Experimentally,
it would mean that after a system a presumed in equilibri-
um, measurements fit to a form such as Eq. (3.15) would
show a weakly time-dependent amplitude, which is con-
stant in LR theory.

Finally, we examine some quenches associated with the
critical point. Precisely at the critical point, the order pa-
rameter decays algebraically in time!'"»?? (see Sec. IVD).
However, away from the critical region, as we have seen,
m (¢) is characterized by exponential decay. In the vicini-
ty of the critical point, by continuity, one would expect
m (t) to decay with some initial nonequilibrium response
and then crossover into a power-law regime, followed by a
second crossover into the final exponential response. As
one approached the critical point closer, one would expect
the power-law behavior to persist for longer times before
entering an exponential regime. Figure 9 is the time-
dependent magnetization close to the critical temperature
following a large quench (H; =0.95). Labeling each curve
are two numbers. One is the ratio 7/T,, the other is
u =tanhK. We see here explicitly the three stages of evo-
lution described above. The initial, nonequilibrium relaxa-
tion enters a power-law “plateau,” followed by a crossover
into an exponential regime. For comparison, two noncriti-
cal quenches are also presented, known to decay exponen-
tially at long times (see Fig. 6). The dashed line represents
a pure power-law decay, where the slope drawn is that ob-
tained from the critical exponents of our analysis,
x =B/zv [Eq. (4.47)], which we find to equal x =1/17.7,
quite close to the exact (conventional) value x =—. To
the best of our knowledge, this is the first time these ef-
fects have been observed explicitly. It would be interest-
ing if these regimes could be investigated within an ad-
sorbed system. However, this may be difficult, owing to
the nearness to the critical point that is required. Efforts
to obtain small reduced temperatures are hampered in ad-
sorbed phases due to finite-size effects and imperfections.

We note that the “flatness” property of response func-
tions, such as that in Fig. 9, is often taken as a signature
of metastability.!*!> While there is no nucleated phase
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FIG. 9. Time-dependent magnetization following quenches
into the critical region. Initial field value was H;=0.95.
Dashed line indicates the pure power-law decay at slope defined
by the recursion relation.

here, the power-law behavior in Fig. 9 can be thought of
as a “forerunner” to metastability.

VI. CONCLUSION

The nonequilibrium response of a two-dimensional sys-
tem in its paramagnetic phase following an arbitrary
quench in a symmetry-breaking field was investigated
with a recursive, RG method. We have studied a fully in-
teracting model with attractive, nearest-neighbor cou-
plings in a magnetic field and with stochastic dynamics
comprised of simultaneous spin-flip and spin-exchange ki-
netics. It was shown that diffusion does not affect the
evolution of the total (¢ =0) order parameter. Our RG
method preserves the correct initial and final states under
iteration. Critical effects are handled rather well. Furth-
ermore, the dynamics of fluctuations in equilibrium are
equally well incorporated via RG analysis. The deviation
of nonequilibrium response from, and the approach to, the
predictions of LR theory which govern the long-time
response was studied. It was found that nonlinear
response approaches LR in two regimes: An initial, tran-
sient, exponential decay followed by an algebraic, asymp-
totic approach. The nonlinear response in the critical re-
gion was also investigated where the time-dependent mag-
netization was observed to have a power-law regime fol-
lowed by a crossover into an exponential long-time decay.

More challenging tests of these methods would be
quenches into ordered regions. Within the present model
this would entail the effects of nucleation (condensation)
and metastability. Extensions to more general situations
would include the further-neighbor, competing interac-
tions which give rise to the various solidlike orderings ob-
served in adsorbed phases.’®3” This will comprise the ob-
jects of future work.

5141

ACKNOWLEDGMENTS

I wish to thank Professor G. F. Mazenko for his gui-
dance and encouragement. I thank Professor A. N. Berk-
er for suggesting an earlier problem which led to the
present work. I also wish to thank Dr. E. Oguz and M.
Tringides for helpful discussions. This work has been
submitted in partial fulfillment of Ph.D. requirements at
the University of Chicago. This work received partial
support from the National Science Foundation under
Grant No. DMR-80-20609.

APPENDIX: TRANSITION PROBABILITIES

The main requirement determining the transition proba-
bility W;[o] is that W;[c]P[o] be independent of site i.
In this way, detailed balance and stationarity are manifest-
ly satisfied.*> An immediate application of this criterion
is that in equilibrium,

{o;W;[c])=0.

The nonequilibrium generalization of this result has been
discussed in Sec. IV. Equation (A1) may be used to gen-
erate many useful identities.

(A1)

1. Relaxational operator

Purely relaxational kinetics is a single-site process [Eq.
(2.12)]. Thus,

WRlo1=V;[oleH11, (A2)

where H[o] is any part of the Hamiltonian containing
reference to site i, and ¥;[o] is any spin function indepen-
dent of site i. In zero field, Mazenko and Valls*? have
developed a useful form of (A2) (which implies a particu-
lar choice of V;[o]) involving only nearest- and_next-
nearest-neighbor correlations. This is denoted by W;[o],
where*?

Wlol=1+A40;0""+4%"N, (A3)
with
A =—+tanh(2K) , (Ada)
of =X 0iys, s (A4b)
a
UxNNN= 2‘71'+8a0'i+8,,_‘_1 . (A4c)
a

To generalize this form to include the magnetic field is
trivial. We obtain, simply,
Wilol=(1—Ho))W,[o], (A5)

where H =tanhB. Substituting (A5) into (A1), we have
the identity

(o;Wi[o])=H(W;[o]) , (A6)

which reduces to (A1) in zero field. Thus it is easily seen
that
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(WRo]) =(1—H>W;[0]), (A7)
where

(Wi[o]) =1+44%(1,0)0+44%(1,1) (A8)
and where

€1,0)=(0;0; .3} (A9a)
and

&1,1)=(0;0,,5,5) (A9b)

are the bulk correlation functions which reflect, in addi-
tion to the fluctuations, the “background” contribution of
the average of each spin.
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2. Diffusion

In diffusion kinetics two sites are involved. The evalua-
tion of Wj;[o] becomes a little more complicated than for
relaxational kinetics.> One such choice of Wiilo] in zero
field, as well as others, is discussed in Ref. 62. Since no-
where in this paper is W;;[c] needed explicitly, we do not
write it. We note only that to preserve Eq. (Al), it is
necessary to include the magnetic fields in the transition
probability, i.e.,

Wilol=(1—Ho)(1—Ho;)W;[o,H=0] .  (A10)
It is tempting to “eliminate” these factors through the
“kinematical” spin-exchange terms in Eq. (2.13).
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