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Amorphization of a crystalline diluted Ising ferromagnet
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The amorphization of a diluted Ising ferromagnet on a square lattice is investigated with the use
of a new type of effective-field theory with correlation. The exchange parameters are assumed to be
distributed according to a 5 function. The transition temperature, phase diagram, magnetization,
and susceptibility are evaluated. %'e find some characteristic behavior for the amorphization.

I. INTRODUCTION

Recently, magnetism of structurally disordered alloys
has become the subject of both experimental and theoreti-
cal interests as a topic of solid-state physics. A number of
experimental and theoretical investigations lead to the re-
sults that magnetic long-range order may exist in amor-
phous systems. On the other hand, because of the disor-
dered structure, many interesting physical properties not
observed in the corresponding crystalline magnets are now
becoming apparent. '

In what concerns the theoretical procedures, there exist
a great amount of sophisticated techniques. With regard
to the difficulties of the theoretical description of such
complicated magnetic systems, it is sometimes necessary
to do some simplifications. Therefore, for studying such
systems, the lattice model of amorphous magnets has
often been applied, in which the structural disorder is re-
placed by the random distribution of the exchange in-
tegral. In fact, experiments of the Mossbauer effect and
the magnetization of amorphous ferrornagnets indicate
that, at least in some materials, there are large fluctua-
tions in the exchange interaction. It is also found that the
magnetization of an amorphous ferrornagnet is in general
lower than that of its crystalline counterpart. That fluc-
tuation may be the underlying cause for amorphous mag-
nets has been proposed by Gubanov, Kaneyoshi, and
Handrich. However, there are no sufficient answers to
the questions: What are the conditions for the existence
of definite magnetic phases as well as what kind of mag-
netic phase transitions can occur induced by changing the
structural fluctuation? In connection with the questions
the magnetic properties of the diluted amorphous systems
containing nonmagnetic impurities are of great interest,
since the dilution may cause an additional structural fluc-
tuation in the systems. It is, perhaps, possible to find new
phenomena in such systems which are unknown in the
crystalline case.

Some of the present authors have recently introduced,
for the spin- —,

'
pure Ising model, a new type of effective-

field approximation (based on the use of a convenient dif-
ferential operator in the Callen's spin-correlation identity )
which, within a mathematically simple framework, sub-

stantially improves the standard molecular-field approxi-
mation (MFA) results. This approach shares with the
MFA a great versatility and has already been applied to a
variety of interesting situations such as pure systems,
site-random, and bond-random magnets ' including
spin-glasses, " amorphous systems, ' transverse Ising
model, ' and surface problems. ' '

In this paper, the physical properties of a diluted crys-
talline Ising spin- —, system with randomly distributed ex-
change parameters are investigated by using the effective-
field theory, in order to clarify some of the questions men-
tioned above. We calculate the most relevant thermo-
dynamical quantities (transition temperature, phase dia-
gram, magnetization, and initial susceptibility).

The outline of our paper is as follows. In Sec. II, we
briefly review the basic points of the simple effective-field
theory with correlation, when it is applied to the problem
for the amorphization of a dilute Ising crystalline fer-
romagnet. In Sec. III the framework is applied to the
amorphization of the dilute ferromagnet in a square lat-
tice. The analytical forms of the relevant thermodynami-
cal quantities are obtained. For comparison, the transition
temperature in the dilute ferromagnetic square lattice is at
first evaluated within the present formalism as a function
of concentration of magnetic atoms. The averaged mag-
netization at T =0 is studied there; the averaged magneti-
zation, at T =0, varies with the structural fluctuation 5
discontinuously, and as a consequence, the system exhibits
a first-order phase transition with respect to 5 variation.
In Sec. IV the numerical results of the relevant thermo-
dynamial quantities are studied and discussed. We find
some interesting behavior characteristic to the arnorphiza-
tion of the diluted Ising ferromagnet in a square lattice.

II. THEORY

The system consists of X; identical spins, p;=+1, ar-
ranged randomly on a lattice with X sites (or Ã, &X).
The Harniltonian is given by
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where J1 is the exchange interaction with Jr; ——0. g; is the
random variable which takes the value of unity or zero,
depending on whether the site i is occupied by a magnetic
atom or not. H is the applied external field. Moreover, to
describe the structural disorder in a simple way, the sto-
chastic lattice model is used; the nearest-neighbor ex-
change interaction is given by independent random vari-
ables as follows:

P(JJ.)= —,
' [5(JJ J b—J)—+5(JJ J+b,—J)] .

Formal identities for the correlation functions of the Is-
ing model have appeared in the literature for some time. '

The starting point for the statistics of our spin system is
the exact relation due to Callen

(y.;)=(tanh h+px J&~pjgj ),
J

where h =PH and the angular brackets indicate the usual
ensemble average

( . ) =Tr[exp( PH—) ]/Trexp( PH—),
and P=(k&T) '. Here, in order to write the identity (3)
in a form which is particularly amenable to approxima-
tion, let us introduce the differential-operator technique
proposed by Honmura and Kaneyoshi as follows:

cr;—= (y.;)=(exp D xt;;pg~ )[tanhth+x)],
J

1 —
J + J cosh Dt,J +pjsinh Dt,J tanh +x

J

where D =8/Bx is a differential operator and rj =pJ~. For deriving Eq. (4) from Eq. (3), we used both an identity

e ' =cosh'+ p;sinhe

and the relation g,"=g; (n =integer).
By assuming the statistical independence of lattice sites, namely

(4)

Eq. (4) may be rewritten as

o;

=+I�(1

g;+s)+g—;+s[cosh(Dt;;+s)+o;+ssinh(Dt;;+s)] j [tanh(h+x)]„
5

(6)

where 5 only takes nearest neighbors of a central site i
That is to say, in a disordered system, spin-spin correla-
tion should be more reduced than that of its correspond-
ing nonrandom system. The approximation led, in spite
of its simplicity, to quite satisfactory results. In fact, the
approximation essentially corresponds to the Zernike ap-
proximation' in the nonrandom problem, as shown in
Ref. 9. The formalism has been applied to a number of
disordered magnetic systems.

For a disordered system with random bonds and ran-
dom occupation of magnetic atoms, we must perform th-
random configurational average to Eq. (6). In the case
that the exchange interactions and random occupation of
magnetic atoms are given by independent random vari-
ables, Eq. (6) reduces to, upon performing the random
average,

where t =PJ, and 5=6J/2J is a dimensionless parameter
which measures the amount of fluctuation of exchange in-
teractions. The results (8) can be also obtained by using
the so-called "lattice model" of amorphous magnets;" in
the case of the "lattice model" of amorphous magnets dis-
cussed by Handrich, in which the structural disorders are
replaced by the fluctuation b J from the mean-exchange
integral J in a crystalline lattice, namely J,J ——J+AJ,
the average values of exchange interaction are approxi-
mated by

((bJ) ")J——[(AJ) )g]" and ((bJ) "+')~=0,

where n is the integer. Thus, by solving Eq. (7), we can
obtain the averaged magnetization m. The initial suscep-
tibility is then defined by

m = (0.; )„=I (1 p)+p[(cosh(Dr, —
,+s) )J

+m ( sinh(Dt;;+s) )q] j

X [tanh(h +X)]„ (7)

Bm t Bm7= lim
H odH J Bh

where ( ), and ( )z express the random averages. p is
the concentration of magnetic atoms defined by

p=(g; )„=N~/N Zis the numb. er of nearest neighbors.

By means of (2) the random-bond averages are then given

by

(cosh(Dt;;+s) )z ——cosh(2Dt5)cosh(Dt),

(sinh(Dt;;+s) )J =sinh(2Dr5)sinh(Dt),

In this section, we have briefly reviewed the effective-
field theory with correlation in a diluted Ising ferromag-
net with random bonds. %e are in a position to examine
the effects of amorphization on transition temperature,
phase diagram, magnetization, and susceptibility. In the
following sections, we shall study the physical properties
for the amorphization of the diluted ferromagnetic square
lattice by using this framework.



AMORPHIZATION OF A CRYSTALLINE DILUTED ISING FERROMAGNET 5123

III. AMORPHIZATION OF A DILUTED
FERROMAGNETIC SQUARE LATTICE

In this section, let us study the amorphization of the di-
luted Ising ferromagnet on a square lattice. For the case
of four nearest neighbors, Eq. (7}can be expanded, i.e.,

where the coefficients E; (i =1 to 6) and L; (i =1 to 8) are
given in the Appendix. Equation (10) was then derived by
expanding tanh(x+b) in Eq. (7) with h and retaining the
terms linear to h.

For h =0, the averaged magnetization m is given by

m =4Am+4Bm'+Ch+O(h ),
with

(10) 1 —4A

48

' 1/2

A =p Ei+3p (1 p)E—3+3p (1 p) E—5+p(1 p) E—6,
The critical ferromagnetic frontiers can be derived from
the condition

4A —1 =0, (15)
B=p E2+p (1—p)E4,
C=p (L, +6L2m +L3m )+4p (1—p)(L4+3L5m }

+6p (1—p)2(L6+Lqm )

+4p(1 p) Ls+—(1—p) (13)

by which the phase diagrams and transition temperatures
can be determined as functions of p and 5. Then, by ap-
pling a mathematical relation e f(x)=f(x+a), all the
coefficients E; and L; can be expressed as a sum of tran-
scendental functions tanhX with an appropriate argument
X. For instance, the coefficient Ei is given by

Ei ——( —, ) I tanh[4t(1+25)]+ tanh[4t(1 —25)]+4tanh[4t(1+5)]+4 tanh[4t(1 —5)]+6tanh(4t)

+2 tanh[2t(1+45)]+2 tanh[2t(1 —45)]+8 tanh[2t(1+25}]+ 8 tanh[2t(1 —25)]+12 tanh(2t) I . (16)

Here, it is worth noting that in our treatment the transi-
tion temperature T, =Jlkt, for the diluted ferromagnetic
square lattice with 5=0 is determined from, as a function
of concentration p,

p Ei+3p (1—p)E3+3p (1—p) E5+p(1 —p) E6 ———,

(17)

with

E i
———,[tanh(4t, )+2 tanh(2t, )],

E3 ——„' [tanh( 3t, ) +tanh( t, )]

E5 ———, tanh(2t, ),
E6 ——tanh(t, ),

which is equivalent to the result derived by Matsudaira'
and afterwards by Mattis. ' For clarification, in Fig. 1,
T, (p) is depicted as a function of concentration p. The
critical concentration p is then given by p*=0.4284,
which compares reasonably with the exact result for criti-
cal percolation in square lattice, 0.5. The reduced mag-
netization curves and some interesting behavior of reduced
magnetization for a diluted ferromagnetic square lattice
with 5=0 have already been shown in Ref. 15. In the
next section, some of them will be rederived, in order to
complete our understanding for the amorphization of the
system.

As discussed in Ref. 9, when we use the amorphization
given by Eq. (2), the saturation magnetization at T=O

I

shows a characteristic behavior; the averaged magnetiza-
tion, at T=O, varies with 5 discontinuously. The result
comes from the fact that the transcendental functions
tanh[at(1 b5)] with —positive a and b are included in the
coefficients E; and L; [see Eq. (16)], and the functions, at
T=O, can take values

1
1, 5(—

b
1

tanh[at(1 —b5}]= 0, 5=-
6

1—1, 5~—
b

D)
(Jx)

ta2
(18)

with

depending on the value of 5. In Fig. 2(a) the saturation
magnetization at T=0 for selected values of p are depict-
ed as a function of 5. At a critical fluctuation 5, depend-
ing on the selected value of p, the averaged magnetization
disappears discontinuously and the system exhibits a
first-order phase transition with respect to its amorphiza-
tion at T=0. In Fig. 2(b), therefore, the critical fluctua-
tion 5, at T=O is depicted as a function of p and at p =p~
the value also disappears discontinuously.

From Eqs. (9) and (10), the inverse initial susceptibility
is given by

Di ——1 4p (E&+3E2m ) —12p (1—p)(E—3+E4m ) 12p'(1 —p} E5——4p(1 p) E6, — (19)
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FIG. 1. Concentration dependence of the Curie temperatuxe
for the diluted square lattice. For comparison, the MFA result
is also depicted.

FIG. 2. (a} Averaged magnetization m(0} at T=O vs the
structural fluctuation 5. (b) Critical fluctuation 5, at T=O vs
the concentration of magnetic atoms.

D2 p~(L, +—6L2m2+L3m )+4@ (1—p)(L +43L 5m)+6@ (1—p} (L6+L7m )+4@(l p) Ls+—(1—p)

%'e are now in a position to examine the physical prop-
erties for the amorphization of the dilute Ising ferromag-
net in a square lattice numerically. The numerical results
will be given in the next section.

By solving Eqs. (14) and (15), the behavior of the aver-
aged magnetization versus temperature for fixed pair of
values (p, 5) are presented in Fig. 3, and the critical fron-
tiers in the T,5 space are plotted in Fig. 4 for typical
values ofp.

From Fig. 3, we can see that for selected values p, 5 [see,
for instance, the solid curve labeled (1.0, 0.54)] the mag-
netization, which does not exist until certain temperature,
starts to increase, passes through a maximuln value, and
decreases to zero with increasing temperature. The
behavior of the averaged magnetization is similar to the
experimental results of amorphous ferromagnets, showing
the "reentrant" phenomena. In relation to the result, it is

I

worth noting the curves in Fig. 4. In the curve for p = 1,
for instance, there exist two possible different values of T,
for a given value of 5 in the range 0.5&5&0.565. If we
admit the existence of a spin-glass phase below a small
value of the two T„ the result may support the reentrant
phenomena that the transition from the spin-glass phase
to the paramagnetic phase passing through the ferromag-
netic one is possible. Another interesting feature also
observed in Fig. 3 [see the dotted curve labeled (0.46, 0.2}]
is that the magnetization can increase from its value at
T=0, reaches a maximum, and decreases to zero.

On the other hand a great number of experimental and
theoretical works have reported that the temperature
dependence of the reduced saturation magnetization of
amorphous and dilute ferromagnets except some materials

O.O '

G.G 2.0

0.2
I I I

06 3 OB

FIG. 3. Averaged magnetizations vs temperature for Z=4.
Numerical figures associated with each curve denote the fixed
pair of values p, 5.

FIG. 4. Phase diagrams in the T,6 space for Z =4. Here the
interface between the spin-glass (SG) and the paramagnetic
phases (dashed line) is that predicted by the usual MFA (Ref.
19}.



mentioned below has the characteristic feature; it con-
sistently falls below that of the corresponding crystalline
ferromagnets. In Fig. 5, therefore, the temperature depen-
dences of reduced saturation magnetization are shown for
soIIlc values of p Rnd 5, cxecpt tllc special eases IIlcI1'tloilcd

in the above paragraph. From Fig. 5(a), we can under-
stand that the effect of increasing the disorder in the pure
system with (1.0, 0.0} is generally an increase in the
depression of reduced magnetization curve over the entire
temperature range for T & T„as observed in dilute and
amorphous ferromagnets. ' Very near the critical concen-
tration p~, however, the behavior of the reduced magneti-
zation curve is rather different, as depicted in Fig. 5(b).
The curve labeled (0.46, 0.0) is over those of (0.6, 0.0) and
(0.6, 0.2) in Fig. 5(a), and the amorphization of the curve

(0.46, 0.2) exhibits the anomalous behavior, as shown in
Fig. 3. The result of (OA6, 0.0) reminds us of the reduced
magnetization curves observed in some amorphous and di-
lute ferromagnets, such as amorphous ferromagnetic
Fel „B„alloys.' The materials have the Invar charac-
teristic; at first the reduced magnetization curves express
the increasing depression over the entire temperature
range for T & T„on decreasing the concentration of mag-
netic atoms, but from some concentration the curves ap-
proach to that of the corresponding crystalline one [or in
the present case the curve labeled (1.0, 0.0), like Fig. 5(b)].

By solving Eq. (18) the behavior of the inverse initial
susceptibility versus reduced temperature for a fixed pair
of values (p, 5) are presented in Figs. 6—8. In Fig. 6 the
inverse susceptibility for the amorphization of the pure
(1.0, 0.0}system, in which the whole lattice sites are occu-
pied by magnetic atoms, are depicted. Except the speciaI
case exhibiting the reentrant phenomena shown in Fig. 3,
the inverse susceptibility diverges on1y at the transition
temperature, even for the amorphization. A particular in-

teresting behavior is the case expressing the reentrant phe-
nomena, namely the case labeled (1.0, 0.54) in Fig. 3, for
which the susceptibility diverges three times, twice at the
critical points where the averaged magnetization disap-
pears and another one at T=0, because of the existence of
finite clusters, as shown in Fig. 6. For the amorphization
of the system with the concentration of p~ &p & 1, on the
other hand, the susceptibility diverges twice, one at the

(0.46, 0.2 )

0.8

0.2

FIG. 6. Thermal dependence of the inverse initial susceptibil-
ity for selected values of 5, namely the amorphization, when p is
fixed at p = 1.

critical point (infinite-cluster contribution) and another
one at T=0 (finite-cluster contribution), which results are
depicted in Figs. 7 and 8. Thus, we observe the coex-
istence of a Curie-Weiss —type law with a Curie-type one
within one formalism. The fact was also discussed in
Refs. 10 and 22. In Fig. 7 the inverse susceptibilities for
the amorphization of the system with @=0.6 are shown;
notice that for increasing 5 the low-temperature region
expresses an extremely interesting behavior, although the
reduced magnetization curve did not show such a charac-
tcrlsflc, Rs obscrvcd 111 Fig. 5(R). Ill Fig. 8 wc plot tllc II1-

verse susceptibilities for the two cases of p,5, namely (0.46,
0.0) and (0.46, 0.2), since the magnetization curve for the
case (0.46, 0.2) exhibits the anomalous behavior, as indi-
cated in Figs. 3 and 5(b). For the case labeled (0.46, 0.2),
however, no anomaly for the inverse susceptibility is ob-
served for T( T, .

In order to observe the behavior of X above the transi-
tion temperature clearly, the inverse paramagnetic suscep-
tibility X~„, is depicted in Fig. 9 for selected value of p,5.
Near the critical temperatures, the results of g~„', have all
downward curvatures. A characteristic behavior is that
the deviation from the Curie-Weiss law is observed more
remarkably than that of the pure (1.0, 0.0) system, on in-
creasing disorder, which phenomena is observed in amor-

O

A( l.o
8((.0,02 )
C (0.6,0.0 )
D (0.6,0.2)

0.5
T/ Tc

(a)

I

0.5
T/Tc

0.2)

FIG. 5. (a) Reduced magnetization curves for selected values

of p, 5. (1) Reduced magnetization curves for two values, (0.46,
0.0) and (0.46, 0.2). For comparison, two cases, the curve A in

(a) and the curve C in (a) are depicted.
FIG. 7. Thermal dependence of the inverse initial susceptibil

ity for the amorphization, when p is fixed at p =0.6.
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, 0.0)

(0.6,0.0 )

( t.0, 0.3)

+ x

.2) ~(1.0, O.O )

0.5

FIG. 8. Thermal dependence of the inverse initial susceptibil-

ity for the two cases of 5, namely 5=0.0 and 5=0.2, when p is
fixed at p=0.46. For reference, the averaged magnetizations for
the two cases are also depicted as dashed lines.

—1

y(T )=(T—T, )Xp„, (21)

phous ferromagnets. ' In view of the result, we evaluate
the effective exponent y(T ) of the paramagnetic suscepti-
bility defined by

I 2 3 4
T/ Tc

FIG. 10. Temperature dependence of y{T) for selected values

ofp, 5.

"real" critical region, since our theory is a molecular-field
approximation. In amorphous and dilute ferromagnets,
on the other hand, the effective exponent runs through a
maximum and the real critical range is expected to be-
come narrower than that for the pure system. ' Thus, our
result may have some relation to the experimental results.

which was first introduced by Kouvel and Fisher. By
the use of Eq. (18) we can solve Eq. (21) numerically. The
results for selected value of p, 5 are depicted in Fig. 10.
At T=T, the results all reduce to the value of unity, since
our approach is essentially a molecular-field approxima-
tion. For higher temperatures, the exponent also ap-
proaches gradually to the value of unity. The effective ex-

ponent shows a maximum at a temperature T „. A
characteristic feature of the result is that the maximum
value at T=T,„ increases for both the amorphization
and the dilution of the pure system. For crystalline sys-

tems, however, it is well known that the effective exponent
decreases monotonically with increasing temperature from
the value at T=T, . Accordingly, the result for the pure
(1.0, 0.0) system cannot have any physical meaning for the

L2

T/ Tc

FIG. 9. Thermal dependence of the inverse paramagnetic sus-

ceptibility for selected values of p, 5.

V. CONCLUSION

We have discussed the amorphization of diluted spin- —,
'

Ising ferromagnet in a square lattice. Within the
effective-field theory with correlation, we evaluated the
most relevant thermodynamical quantities, namely critical
temperature, phase diagram, susceptibility, and effective
exponent of paramagnetic susceptibility. Some interesting
effects of amorphization come up in the thermal behavior;
the susceptibility shows the effect of the eventual coex-
istence, in the system, of an infinite cluster with finite
ones. The magnetization exhibits the reentrant phenome-
na versus temperature for selected values of structural
fluctuation 5, and also the discontinuous changes at T=0
for increasing the structural fluctuation. Except the spe-

cial cases showing the reentrant phenomena, the reduced
magnetization curve falls below that of the corresponding
crystalline ferromagnets, which phenomena is generally
observed in amorphous and dilute ferromagnets. More-
over, we found some interesting facts within the present
formalism that for amorphization near the percolation
concentration the magnetization increases and then de-

creases, on increasing temperature, such as the curve with

(0.46, 0.2) in Fig. 3, and the susceptibility with (0.6, 0.2) in

Fig. 7 shows an anomalous behavior at low temperatures
for amorphization. It will be an interesting problem to
study whether the phenomena are general or not by using
more elaborated theories.

In these calculations we have applied a decoupling in
the effective-field framework (based on the use of a con-
ventional differential operator) introduced by Honmura
and Kaneyoshi. As discussed in Ref. 9, the approxima-
tion essentially corresponds to the Zernike approxima-
tion. ' This formalism is, from the analytical standpoint,
almost as simple as the standard mean-field approxima-
tion, and because of negligence of multispin correlation,
shares with it the fact that the critical exponents are all



Landau-type, and the related fact that the topology of the
system is only partially taken into account, essentially
through the coordination nulnber, although the effective
exponent of paramagnetic susceptibility expresses a
characteristic behavior on increasing the disorder from the
pure system. Nevertheless, we verify that its results are
quite superior to the other effective-field theories and ex-
hibit some characteristic behavior for amorphization of a
diluted Ising ferromagnet in a square lattice.

KI ——cosh"(2Dt5)sinh(Dt)cosh (Dt) [tanh(x)]„

K2 —cosh4(2Dt5)sinh (Dt)cosh(DI) [tanh(x) ]„
KI =cosh (2Dt5)cosh2(Dt)sinh(Dt) [tanh(x) ]„
E&——cosh (2Dt5)sinh (Dt)[tanh(x)]„

K~ =cosh (2Dt5)cosh(Dt)sinh(Dt) [tanh(x) ]„
J z ——cosh(2Dt5)sinh(Dt) [tanh(x)]„
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APPENDIX

The coefficients EC; (i =1—6) and L; (i =1—8) in Eqs.
(11)—(13), are given as follows:

L 1
——cosh (2Dt5)cosh (Dt)[sech (x)]„

L2 ——cosh"(2DI5)sinh (Dt)cosh (Dt)[sech (x)]„

Lz ——cosh (2Dt5)sinh (Dt)[sech (x)]„

L4 ——cosh (2Dl5)cosh (Dt)[sech (x)]„=o,
L5 =coshs(2Dt5)cosh(Dt)sinh (Dt)[sech (x)]„

L6 —cosh2(2DI5)cosh (Dt)[sech (x)]„0,
L, =cosh~(2Dt5)sinh (Dt)[sech (x)]„

Ls ——cosh(2Dt5)cosh(Dt)[sech (x)]„
The coefficients can easily be calculated by applying a

mathematical relation, e f(x)=f(x+a).
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