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Appearance of quasilocalized surface excitations under the action
of a random surface potential in a Heisenberg semi-infinite ferromagnet
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A calculation is presented, based upon the Green s-function method, of the elementary excitations
at low temperatures of a semi-infinite Heisenberg ferromagnet with a single-site anisotropy energy
—D(S„) with a random distribution of impurities adsorbed on the surface, whose only effect is as-
sumed to be a local modification of the coefficient D of the anisotropy energy on the adsorption site.
We obtain an effective Hamiltonian in the spin-wave approximation by including the self-energy re-
normalization of the configuration-averaged propagator up to first order in the impurity surface
concentration c. It is found that virtual surface states can appear, with a lifetime which depends on
the wave vector of the excitation. The dispersion relation of this "quasilocal" excitation is obtained
in the weak coupling approximation.

I. INTRODUCTION

In this paper we shall consider a system with a free sur-
face on which random perturbations act so as to generate
a local self-energy correction to the quasiparticle spec-
trum, which can be in general complex. We are particu-
larly interested in the case where the imaginary part of the
self-energy is not negligible, and we find in this case that
under certain conditions we have quasilocalized states, in
the sense defined in previous works. '

We choose as an example a case of localized spins on a
semi-infinite simple cubic lattice with a free (100) surface.
The spins interact via isotropic Heisenberg exchange, and
we assume also a single-ion anisotropy of the form

I

D(S,') a—cting on each site i (S& —,'). The surface is

perpendicular to the x axis, and a label m )0 denotes each
(100) plane. The perturbations acting on the surface are
due in our example to the presence of impurities, which
are supposed to change only the anisotropy constant D on
the nearest surface atom.

II. METHOD OF CALCULATION

Since we want to concentrate upon changes of the low-

lying excitations we will consider the low-temperature
case only where we can transform the Hamiltonian to a
single-particle form through Holstein-Primakoff lowest-

order transformation. Then, in units of 2SJ,

H=Hp+ V,
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m, nII m nII+ II
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m, nil' ~
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II
m, nII
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D4+ a a
m, nII m, nII. m, nII

m&0

(2)

Let us call

n —=a a
m, nII m, nII m, nII

the number operator for the spin deviations localized at
site (m,

n
~). We shall assume that V has the form

v=x g (s,')'=z g n

IRI

t

ties are adsorbed on an atop configuration, which means

that the set IRI is a subset of the lattice points in the
(100) surface plane, which contains N, points as a whole.
Let the total number of impurities be N~. Any measure-
ment will be, in practice, equivalent to performing a con-
figurational average on the impurity sites on the surface.
We denote a configuration average of any quantity A by
(A ). We begin by subtracting the average ( V) from V,
defining the fluctuating potential U as

IRI denotes the set of impurity positions on the surface.
We do not consider, for simplicity, surface variation of
the exchange constant J, which is taken everywhere equal
to the bulk constant. Let us assume also that the impuri-

U—= v —(v) .

The configurational average of Vis defined by

(4)
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&-)= g ll P(R;&III .
I R I f n III

6(E)= 1

E+ie—H
(10)

I nil I is the set of all the lattice points in a (100) plane.

P(R;nil) is the probability that the impurity site R coin-
cides with the lattice point nil. In Eq. (5) the assumption
has been made already that the impurities are distributed
independently of each other, which of course is a valid ap-
proximation at low coverages of the surface. We also as-
sume that their distribution is uniform, and we shall
therefore take Go(E) =

E+ie—Ho
(12)

The only nonzero elements of the matrix U [Eq. (4)] areU, =A.5, +5 -—c
nil n

II nil n
II

IRI

Let us remark that (U) =0. We define an unperturbed
operator Go(E) as

P(R;nil�)

=N;/N, =c .

Then

(6)
Now we write the identity

G(E)=G (E)+G (E)UG(E) . (13)
(V) =Ac gn

n
II

I.et us call

Hp Hp+(——V) .

We calculate now the configurational average of the
matrix G by first iterating the identity (13}to obtain the
series

G Go+ GoU Go+ GoU GoU Go

Then

a =Ho+ U (9)
+G UG UG UG +

Then

(14}

where U was defined in Eq. (4).
Since the Hamiltonian is a quadratic form in the spin

deviation operators Ia,a, , I, we can just consider
m, nil' m', n'

the matrix elements of H and define the Green matrix
G(E) as the resolvent matrix for H:

(6)=6 +G (U)G +Go(UG U)Go+ (15)

The second term on the right-hand side of Eq. (15) van-

ishes by definition. The third term we shall take as our
approximate self-energy,

X"',(E):—((UGoU)o o, ) =A, Go o, (E) g 5 —c
n

II
n

II
n

II
n

II
n II, n

(RI
nil R gt, , —c)" II'

=A, c5,6oo(nil —n tl, E)=A, c5-, Q Goo(kll, E)" ll' " ll
" II' " ll +~

kll

2c5,, d kllGoo(kll, E+ie)—= A, c5,a (E+ie)
II 4~ &z n II' " ll

(16)

(where BZ is the Brillouin zone).
We shall sum Eq. (15) approximately by neglecting the contribution of simultaneous scattering by more than one im-

purity and by treating the scattering by each impurity in the lowest Born approximation, which leads to

Q) ra + + ere + (17)

In Eq. (17) each dotted line represents a A, ; a cross, c; a solid line with arrow, 6 .
Th d o gator (6) can be interpreted as the resolvent of an effective, frequency-dePendent Ham'lt

in the representation where the transverse coordinates have bee»ou~««ans«~ed

[H (Ekll)] [H(kll)] +5 5 OX( (E) [H(kli)] +[~+A ~(E+ )]5 5 (18)
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In order to obtain the local modes we must study the poles
of the matrix element

(G(E+ie, k (() )Oo ——

E+i e H—'tt(E, k(() 00

in what follows. We introduce the notation"

2t —1/(2t —. . ) 2t —g
(22)

Assuiiliilg that k « 1, we consider tile case I & 0, and
neglect at first the contribution proportional to P. Then
g g' defined as

go=(g-'+1 —X )-',
where A, '=cA, . In the mterval

~

t
( &1,

~ g ~
=1, and we

have a branch cut, where Im(G) has a discontinuity on
the real axis of E.

There can be a surface state at a pole of go, where

g-'+ I —Z =0 (24)

with
~ g ~

& 1, corresponding to a mode exponentially de-
caying in space into the bulk. The condition for a surface
IBode IS then

(1—A, '/ &1

which is automatically satisfied if A,
' &0.

The dispersion relation of the surface mode is

v,' '=4A(k(i)+D —A,
' /(1 —A, ') .

The surface is therefore stable, with a ferromagnetic
ground state, if —(A, '2/I A, ')+D &0, which —gives a criti-
cal value A,

' &0 such that

(A,
'

) /(1 —A,
' )=D .

Including now the A,2'(E) term in the Hamiltonian,
or in the denominator of g, we look for the zeros of

g '=[2t —/+1 —Ac —A, cP (E+ie)] .

The calculation of P (E+i e) for the square lattice
proceeds along standard procedures, so we leave the de-
tails for the Appendix. Let us write

W(E+i@)=b,(E) iy(E) . —

2t =E—4A(kii) D/—2SJ 2,—

A(kit)=1 ——,
'

[cos(akim)+cos(ak, )]

[we consider the (100) plane which contains the k~ and k,
axes], and, as in Ref. 4, we define the continuous fraction

III. RESULTS

5(kii):—v,"'(kii) —vb (kii) . (31)

In Fig. 1 we plot Ru and Imn vs A(k~~). The calculations
were made for the case A, = —0.5, c=0.2, which yields
A, c=0.05 for the effective coupling constant.

From Fig. 1 it can be seen that Im5 attains its
minimum near A =2, on tbe zone boundary. The real part
of v,"' reaches the lower limit of the continuum for
A=1.3, near the van Hove singularity in the density of
states, which occurs for A= l.

For 1.3 &A&2 the local mode remains inside the con-
tinuum, becoming a resonance proper. One verifies that
the poles of g appear on the lower half of the complex
plane, as they should, since y &0. The time evolution of
the quasi-local-mode, in the terminology of Refs. 1 and 2,
is dominated by this pole, and it is therefore exponentially
damped for t &0, as required for a metastable state. We
remark that in the middle of the band, where v," -4 in
our units, y= —0.1, which describes a reasonably acute
resonance. Near the point I (center of the zone) the
local-mode frequency is well separated from the lower
edge of the continuum band and its width

~ y ~
~0 as

A —+O.

0 05

Neglecting the self-energy we find a pole at the frequen-
cy [Eq. (25)]:

v,' '(kii)=v (kii) —A, c /(1 —Ac) .

Here v ( k~~) =4A(k ~~)+D is the lower limit of the contin-
uum spectrum. The weak coupling limit solution is ob-
tained, as indicated in the preceding section, by substitut-
ing E=v,' ' as the argument of W(E), and calculating

v,"'=v,"'+X'cW(v,'+ie) . (30)

Combining Eq. (27) with Eq. (21), we see that the local-
mode frequencies will be complex, and y must be negative
to ensure that we obtain the branch of G which is analytic
in the upper half-plane. The modes are therefore reso-
nances or metastable states. However, if

~ y ~
is small

they will not be very different from the ordinary stable
modes for a perfect surface. We discuss now the numeri-
cal results for the quasi-local-mode dispersion relation.

FIG. 1. CUIvc Q clcp1cts thc cllffcI'cncc Rc5=Rcv, —vb be-
tween the surface magnon frequency v,'" and the lower limit of
the continuum spectI'um vq, vs the two-dimensional structure

factor A{
k ~~) defined in Eq. (21). In curve b the imaginary part

of the self-energy is plotted vs A(kjt). @=0.2, A, = —0.5, Ener-
g1cs alc cxpfcsscd 1n terms of 2SJ.
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The present work can be seen as a theoretical proposal
for a physical realization of a system whose effective
Hamiltonian is not Hermitian, of a type which was dis-
cussed in Refs. 1 and 2. It should be possible to find these
phenomena by performing experiments which allow one to
detect the presence of surface modes on a clean surface,
and on the same surface with some small coverage of ad-
sorbates. As can be seen from Eq. (25), the net effect of
the average potential ( V) is to produce an effective aniso-
tropy at the surface which is modified with respect to the
bulk value. Since we assume a ferromagnetic surface, we
are limiting the values of A,

' so that ~A, '~ &A,'*. For
reasonable values of (D/2SJ) -0 1, .this implies

i
A,

i
c (0.2—0.3.

A variation of the local anisotropy at the surface plane
can give rise, as it has been found in Ref. 4, to profound
alterations in the critical behavior of the surface. For
small values of A, and c we expect an effective decrease in
the anisotropy at the surface, and this will make it less
stable. Therefore, in case the ferromagnetic substrate al-
ready had a surface anisotropy strong enough to produce a
surface critical temperature higher than the bulk sub-

strate, one might expect to find a disappearance of the
surface magnetism above the bulk critical temperature,
upon adsorbing atoms that interact with the adsorbate in
such a way as to modify the surface anisotropy. Any
quantitative predictions will require the self-consistent
solution of Eq. (27), and the extension of the theory to fin-
ite temperatures, a program with which we are already
working.
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APPENDIX

We must perform the integral, over the first Brillouin
zone of the square reciprocal lattice, of the function
6 (E, k~~) which depends upon k

~~
only through the

function A(k ~() defined in the text [(Eq. (21)]. It turns out

to be convenient to define new coordinates g and q:

f dkrdk, g [E,(k~~)]= f dgdgg (E, l b)—

f dbg (E, l b) f— dg(cos g b)—

(A2)

~2 ~ ~b
~ (1 t2)1 j2(t2 b2)1/2

Making now the transformation

l t —b
sin 0=—

1 —b2

' dm
gO

+g (E, 1+&1+m )]
1 —m

(A4)

The function K(m) is the complete elliptic integral of
the first kind. We have performed the final integration
ln Eq. (A4) over the variable m, by Simpson s method.
The values of K(m) at the discrete set of points involved
(19 points were sufficient) were taken from Ref. 5. Care
must be taken to evaluate Cauchy's principal value of the
integral whenever a local mode exists for that particular
energy, in which case g (E+ie,A) has a pole on the real
axis.
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