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It is sllowll that thc partltioll function of R sllblattlce dilute q-state Potls nlodel (SDQPM) fol'
even positive integer q at finite temperatures is the generating function of a site-bond-correlated per-
colation model (SBCPM) which favors subgraphs with larger numbers of disconnected finite clus-
ters. The phase diagrams for the SBCPM are obtained from the corresponding phase diagrams for
the SDQPM. A device is introduced to establish the connection between the SDQPM for q ~1 and
a site-bond (random) percolation model. The results of this woI'k contain those of some previous pa-
peIs as special cases.

I. INTRGDUCTIGN

This is the sequel of a previous paper, ' in which the
connection between the thermal phase transition and the
gcon1ctrical pclcolatlon tlansltlon was studied. In cstRb-
lishing the connection between the Ising model (and other
Ising-like spin models) and the correlated percolation
model, we proposed' that one should consider the sites
with a spin occupied and only the sites without a spin
unoccupied. One should also regard the coupling between
spins as a bond with a bond probability p, depending on
the coupling strength J and the temperature T. In the il-
lustrative example of the simple Ising model presented in
that paper, every lattice site is occupied by a spin- —, Ising
spin, therefore the spin model corresponds to the bond-
correlated percolation model (BCPM). To demonstrate
that our approach' can also be applied to the lattice spin
model with vacant sites, in this we will apply our ap-
proach to a sublattice dilute q-state Potts model
(SDQPM) which includes many Ising-like spin models
as special cases. In the SDQPM introduced in Ref. 3,
some sites of one of the two sublattices are vacant. Using
the general idea of Ref. 1, we will formally show that the
partition function of the SDQPM at any temperature is
the generating function of a site-bond-correlated percola-
tion model (SBCPM) in which the vacant sites in the
S8 CPM correspond to the unoccupied sites in the
SDQPM and the bond probability depends on the tem-
perature and the coupling strength between occupied sites
ill tllc SDQPM. Ill tllc llnllt tllRt cvclysltc is o'ccllpicd,
the SDQPM reduces to the decorated Potts model for the
"case-1 lattice" in Ref. 3 or Potts model for the "case-2
lattice" in Ref. 3, and the SBCPM reduces to a purely
bond-correlated percolation model. In the limit T~O,
SBCPM reduces to the correlated percolation model de-
fined in Sec. 3 of Ref. 3. From the connection mentioned

above, we can give the phase diagram4 7 of the SDQPM a
new geometrical interpretation. The connection also pro-
vides a geometrical picture for phase transitions in the
studied spin model.

This paper is organized as follows: In Sec. II the parti-
tion function and certain physical quantities for the
SDQPM defined in Sec. 2 of Ref. 3 are expressed in terms
of summations over subgraphs of the whole lattice G. In
such expansions, both sites and bonds in 6 are allowed to
be vacant, while in Ref. 3 only sites are allowed to be va-
cant. In Sec. III a site-bond-correlated percolation model
is defined whose connection with the SDQPM is establish-
ed by the result of Sec. II. The phase diagrams for the
site-bond-correlated percolation on some lattices are ob-
tained from the corresponding phase diagrams of the
SDQPM. In Sec. IV we explore the physical implications
of the connection established in previous sections and
write a formula which may be used to calculate the mean
number of finite clusters per site of the SBCPM from the
analytically continued partition function of the SDQPM.
In Sec. V we introduce a device to establish the connection
between the SDQPM for q —&I and a site-bond (random)
percolation model (SBPM). Using this connection, we ob-
tain the phase diagram for the SBPM from the phase dia-
grarn of the SDQPM for q~ 1. The obtained phase dia-
gram for the SBPM on the semidilute honeycomb lattice
is the same as that obtained by other methods. ' The re-
sults of this paper are summarized and discussed in Sec.
VI.

II. GRAPH EXPANSIGN FGR A SUBLATTICE
DILUTE POTTS MODEL

Here we briefly review the sublattice dilute Potts model
introduced in Ref. 3 and define notations which are not
always the same as those of Ref. 3. Let us divide the lat-

29 5109 1984 The American Physical Society



CHIN-KUN HU

tice of a crystal into two mutually penetrating sublattices,
called the A (i.e., M in Ref. 3) and D sublattice, respective-
ly; their lattice points will be labeled by indices i and a,
respectively. Two possible relations between 3 and D sub-
lattices will be considered below. In case 1 the vertices of
an original lattice Go are taken as the 3 sublattice and the
lattice points at the middle of the bonds of Gp are taken as
the D sublattice, i.e., we have a decorated lattice with ver-
tices as the 3 sublattice and decorated points as the D sub-
lattice. In case 2 all vertices of Gp are divided into two
equivalent sublattices: the A and D sublattices, i.e., we
have a semidilute lattice. Examples of ease-1 and case-2
lattices are shown in Figs. 1 and 7 of Ref. 4, respectively.
Let N, and Nd be the total number of sites on the A and D
sublattices, respectively; then N~/N, =c/2 in the thermo-
dynarnic limit, where c equals z (z represents the coordina-
tion number for vertices of Gp) for decorated (i.e., case-1)
lattices and 2 for semidilute (i.e., case-2) lattices.

Now we assign spin variables to lattice points. Every
lattice point of the A and D sublattice is always occupied
by a q-component spin s with spin components
j,j —1, . . . , (j —1),——j, where 2j + 1 =q and q is a posi-
tive even integer. In addition to spin s, every lattice point
of the D sublattice is also associated with a random vari-
able t~ which can only be 0 or 1. When t~ =0 the spin s~
is eliminated. The Hamiltonian of the system is defined
as

H/kT=K—g t 5(s,s;)+Apt +B,gs;
(,i,a)

+B2+t s

Here the first summation is a sum over all nearest neigh-
bors. 5(s~,s; ) = 1 or 0 when s~ =s; or s &s;, respectively;
I(. =J/kT is the normalized nearest-neighbor (NN) cou-
pling constant. b =p, /kT is the normalized chemical po-
tential. B] and B2 are normalized external magnetic fields
applied to spins of the A and D sublattices, respectively,
which will be set to 0 eventually. The partition function
for the Hamiltonian of Eq. (1) can be written as

Z= g g g exp( H—/kT)
s= —js = —Jt =0i a a

II(i+")II [1+(. —1)5(...., )]
s= —js =—j a (i,a)

where the second summation is over all sites with t =1,
the first product is over all sites in the D sublattice, and
where the primes on the second and third products indi-
cate that the products extend over only those NN bonds or
sites in which t assumes the value 1. Now we expand the
first product in (2) and use the section graphs G' of G
(representing the whole lattice) to represent the terms in
the expansion. In each 6', there are v(G') a sites which
are occupied by the exponential factor (corresponding to
t —1) e in the expansion, where 0 & v (6') & u (G) =Nd,
with Nd defined above. For a given 6', there corresponds
a subgraph G*C6 which is generated from G' by attach-
ing bonds to every pair of the NN occupied sites in G'.
We expand the second product in Eq. (2) and use the sub-
graphs 6" of 6* to represent the terms in the expansion.
In each G" there are e(G") bonds which are occupied by
the factor (e —1)5(s~,s;) in the expansion, where
0&e(G")&e(G*)=lv(6'), with l being 2z/c. If a par-
ticular site a of the D sublattice and the bond (i,u) are oc-
cupied, the spins s; and s are said to be in the same clus-
ter. In general, if two spins can be connected through a
series of occupied sites (of the D sublattice) and bonds in
the sense just mentioned, they are said to be in the same
cluster. A given subgraph 6" usually contains a large
number of independent clusters that include isolated sites
of the D sublattice, whose NN bonds are all vacant. For a
given subgraph G", we can sum over all spin states at sites
with t =1, and in such a summation only the terms
where all spins in the same cluster have the same spin
component have nonzero contributions. It should be not-
ed that in nonzero terms, the spins in different clusters
could have different spin components. Thus Eq. (2) can
be written as

Z = g e g (e —1)' ' II [exp(B(n, +B2n,' )j+exp(B,n, +B2n,' )(j 1)O'CG G"cG* C

+ ' +exp(Bin, +B2n,' )( —j)],
(3a)

where the product extends over all independent clusters of G", and n, and n,
' are numbers of spins which are in cluster cand belong to the A and D sublattices, respectively. Since e(6 ) =lu (G'), it is easy to show that Eq. (3a) can be rewrit-ten as:

Z (eh+El+1)u(G) ~ u(G')(1 )u(G) —u(G') ~ e(G")(1 )e(Ge) —e(G")~ A —5's ~ 5'b —PbO'C G G"C 6*

&& II [exp(B(n, +B2n,' )j + . +exp(Bin, +B2n,' )( —j)],
(3b)

where

exp(b, +IQ)
I+exp(b, +El) ' (4a)

pb = 1 —exp( —K), (4b)
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with l bang 2 and z for decorated and semidilute lattices, respectively. From Eq. (3), it is easy to derive various thermo-
dynamic quantities of interest. For example, the spontaneous magnetization M(G, q,p„pb,A), M(G, q,p„pb, D) of the
spins in the A and D sublattice, respectively, and the internal energy U(G, q,p„pb ) are given by the equations

M{G,q p„pb,A)= lim lim lnz= lim W ' y y II(6',6",q p„pb)(N, /N, )j,
g ~o+ X,Ng —+co Xg BB) X ~co Gicg1 2 G"L:6

M(G, q p„pb,A)= lim lim lnZ= lim W ' g g II(6', 6",q p„pb)(N,'/Ndj),1

()+ N, Ng~oo Ng BBz &d~Ni g L-G1 2 G"CG

U(G, q,p„pb ) — lim hm cp 2Jz
Ps ~a(,a2 o x.,n', N +Nd Bp c+2 (c+2)pb

11(Gi Gii p p ) pu(G )( 1 p }U(G) U( —G)pe(g )( 1 p )&(G ) —e(g )q f

II(6',6",q,p„pb ),
G L:6 6"CGiI'

p, = lim (WNd) ' lnZ= lim g g W 'II(6', 6",q p„pb)U(G')/Nd,
Ad~ac Bk Nd g (-G 6"L:6

pb
—— lim (WNdl) 'pb lnZ= lim g g W 'II(G', G",q,p„pb)e (G")/(Ndl) .

Xd —+ oo BE Xd~oo 6 ~G 6"L:6

In Eq. (8), n/(6") is the total number of finite clusters in 6". The extended cluster is defined to be the cluster which ex-
tends from one side of 6 to the opposite side of 6 and becomes an infinite cluster when N„Nd ~ oo. N, of Eq. (5) and
N,

' of Eq. (6) are the total numbers of spins which are in one of the extended clusters in 6" and belong to the A and D
sublattice, respectively. It should be noted that usually M(G, q p„pb, A)&M(G, q,p„pb, D). The average spontaneous
magnetization of spins in both M and D sublattices is given by

M(G, q p„pb)= lim [M(G,q p„pb, A)N, +M(G„q,p„pb, D)Nd]/(N, +Nd) .
N, Nd ~ oo

It is clear from Eqs. (10) and (11) that p, is the average
number of spins at each site of the D sublattice and pb is
the average number of bonds connecting the NN sites of A
and D sublattices.

A. Definition

Now we consider a site-bond-correlated percolation pro-
cess on the lattice (graph 6) mentioned above, which con-
tains both the A and the D sublattice. For a given even
positive integer q, the site-bond-correlated percolation is
defined as follows.

Proposition 1 (Pl): The sites of the A sublattice are al-
ways occup1ed.

Proposition 2 (P2): The sites of the D sublattice are oc-
cup1ed with a site plobab1llty p~. Th1s process generates
section graphs O'C:G. Attaching bonds to each pair of
the NN occupied sites of 6' constitutes 6*C G.

Proposition 3 (P3): Whenever a site of the D sublattice
is occupied, the bonds which connect this site with its l
NN sites of the A sublattice are attached with a bond
probability pb. This process generates subgraphs 6"C 6*,
where some bonds of 6" are vacant. The occupied sites
connected through a series of occupied bonds and sites are
said to be in the same cluster.

Proposition 4 (P4): The overall probability of a sub-
graph 6"CG' CG is enhanced by a factor q for each fin-
ite cluster in 6".

For given 6, q, p„and pb, one might try to calculate the
following quantities: (i) the probability P(G, q,p„pb, A)
that a site of the A sublattice belongs to an infinite cluster,
(ii) the probability P (G,q,p„pb, D) that a site of the D sub-
lattice belongs to an infinite cluster, (iii) the probability
P(G, q,p„pb ) that an arbitrary site (including both sites of
the A and D sublattices) belongs to an infinite cluster. It
is obvious that expressions for P (G,q,p„pb,A), .

P(G, q,p„pb, D), and P(G, q,p„pb) are exactly the same as
those for M(G, q,p„pb, A)/j, M(G, q,p„pb, D)/j, and
M(G, q,p„pb)/j. Thus they can be calculated from the
corresponding quantities of the SDQPM.

From Eqs. (10) and (11), it is clear that p, is also the
average number of occupied sites at each site of the D sub-
lattice, and pb is the average number of attached bonds at
each NN bond connecting sites of the 2 and D sublattices
for the site-bond-correlated percolation model (SBCPM).
If there is no enhanced factor of (P4), p, =p, and pb ——pb.
The enhanced factor of (P4) favors subgraphs with larger
numbers of finite clusters, hence usually p, &p, and
pb &pb «» 0 &p. pb & 1.

In (P3) only the bonds of 6* are attached with a bond
probability pb. Instead of using (P2) and (P3) above, if all
sites of 6 are occupied with a site probability p, and all
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B. Phase diagrams

For the Hamiltonian of Eq. (1) with Bz ——0 on the
decorated (i.e., case-1) lattices, we can carry out the con-
figuration summation of the decorated spins s~ and ran-
dom variables r, Q = 1, . . . , Ed, to obtain an effective
Hamiltonian

H,rflkT =K' Q 5(s;,s )+8, ps +Ko g—
&J&

on the original undecorated lattice Go. Here the first
summation is a sum over all NN bonds of Go, and K* and
Ko are given by the equations

1+e (e x+q —1)
(14)1+e~(2ex+q —2)

'

exp(KO)=l+e (2e +q —2) . (15)

Equation (14) gives the phase diagram of the order-
disorder transitions for the SDQPM when K assumes the
value of the critical coupling constant K, for the system
of Eq. (13). From Eqs. (4) and (14), we can rewrite such
phase diagram in terms of p, and pb and have the phase
diagram for the SBCPM:

(u, + l)p, [1—2(1—pq) —(q —2)(1—pq)

bonds of G are attached with a bond probability pq, so
that the subgraphs G" are generated, then it is possible to
have "unsaturated" attached bonds in 6", whose end
points are not completely occupied. However, such Unsa-

turated bonds are irrelevant for the calculation of a physi-
cal quantity, c.g., thc spolltancoUs ITlagnctlzatloIl, which
does not depend on the unsaturated bonds.

respectively. With such exact values in Eq. (18) for q =2,
we obtain the critical point p, ,=0.585 786. . . ,
0.422649. . . , and 0.732050. . . for the decorated sq, pt,
and hc lattices, respectively, which are consistent with re-
sults of Table I in Ref. 3.

The exact phase diagram for the SDQPM on the semi-
dilute hc lattice has been calculated by Kondor and
Temesvari and is given by

q'e-'(e —1)-'+3q'(e —1)-'+q'(e —1) '=q .

Using Eq. (4), we can transform Eq. (23) into the phase di-
agram for the SBCPM:

p, [1 3ps(1 —p~)' —q(1 p—s)'+—q 'ps]=1 . {24)

1 3p~(1 p—»)' q{—1 p~)—'+q —'p»'= I,
respectively. For q =2, Eq. (25) gives the critical point
p, ,=0.6666. . . , which is consistent with the value listed
in Table I of Ref. 3. Equation (24) can be extended to the
anisotropic case. If J, (a =1,2,3) are the two-body cou-
pllngs 1n thc thrcc d1I'cct1ons on thc hc lattlcc and
K, =J, /kT, the critical condition is

In the zem-temperature (i.e., T~O, ps~i) or no-vacancy
(i.e., u /J ~ co, p, ~1) limits, Eq. (24) reduces to

p, =q/(q+1)

+(u, +1) '(q —1)(1—ph) ]=u, , (16)

u, =exp(K,*)—1 . (17)

In the limit T +0, we have ps———1 and Eq. (16) reduces to

p, =u, /(u, +1) . (18)

In the limit p/J~ ao we have p, = 1 (i.e., no vacancy) and
Eq. (16) reduces to

(u, + 1)[1—2(1—pg ) —(q —2)(1—pt, )

+{u,+1) '(q —1)(1 p~)']=u, . —

U, =q/[exp{K, )—1],
q exp{—b)

[exp(K & ) —1][exp(K2 )—1][exp(K3 ) —1]

Applying a pI'occdurc similar to that Used to dcrivc Eq.
(3b), we may show that the partition function of the aniso-
tropic SDQPM on the hc lattice may be written as the
generating function of an anisotropic SBCPM on the hc
lattice with bond probablhties ps ~,psz, py3, along three
directions and the site probability p, given by the equa-
t1OIlS

For the square (sq), plane triangular (pt), and honey-
comb (hc) lattices, u, is known rigorously. ' u, for the sq
lattice is given by

ps ~
1 —exp{ K& ), ——ps2 ——1 —e—xp( —K2),

p~3
——1 —exp( —K3),

(28a)

u, (sq) =(q)'~

u, (pt) and u, (hc) can be obtained from the solution of the
cubic equations

(21)

exp(A+K&+K2+K3 )

1+exp(b, +K
& +Kq+K3 )

With Eq. (28), we can transform Eq. (27) into the phase
diagram for the anisotropic SBCPM on the hc lattice:

p.[(1 q)(1 ps' ps2 ps3—)+(2—q){p—su s2—+p'~es3+p—s3ps i)—(3—q I/q)ps joel 3]—=1
The approximate phase diagrams for the SDQPM on the semidilute sq and simple cubic (sc) lattices for q =2 have been
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calculated by Hu and Kleban, 7 using a renormalization group method. " With Eq. (4), we may transform such phase di-
agrams into phase diagrams for the SBCPM on the semi-dilute sq and sc lattices.

IV. RELATIONS BETWEEN PERCOLATION AND THERMAL PHASE TRANSITIONS

One of the purposes of investigating the connection between correlated percolation models and spin models is to
understand whether or not the phase transitions in spin models are related to percolation transitions of certain percola-
tion processes. We have pointed out that the percolation probability of the SBCPM defined in Sec. III is proportional to
the spontaneous magnetization of the SDQPM defined in Sec. II. Thus they have the same critical temperature T, and
exponent P. Following the procedure used in Ref. 1, we may use Eq. (3) to show that the magnetic susceptibility and
spin-spin correlation function of the SDQPM are related to the mean cluster size and pair-connectedness function of the
SBCPM. In particular, they have the same critical point and exponents y (perhaps also y; see Ref. 1 for a discussion),
v, v', and q.

In the following, we will use [Q (6")],„ to denote the mean value of a subgraph-dependent quantity Q (6") averaged
over all subgraphs 6"CG'LG. Namely,

[Q(6")]„=W ' g g II(6',6",q,p„pb)Q(6"), (30)

where Il(6', 6",qp„pb) and 8'are given by Eqs. (8) and (9), respectively. We will also use &Q(6"))o to denote the
value [Q (6")],„per site of the D sublattice in the thermodynamic limit, i.e.,

&Q(G"))0= lim [Q(6")],„/Nd —— lim W ' g g II(6',6",q,p„pb)Q(6")/Nd .
N~~ ce Xd O'L:G 6"L:6

a
T

Using Eq. (7), we may show that the specific heat per spin of the SDQPM is given by

«G, eP, Pb)=
"" ', p, + " ~'&[sU(6-)]'&,+ '~~ &sU(6-)se(6-)&,

a (c +2)Pb c +2 Pb

(31)

+, &[S.(6")]'). ,
Pb

where

U (6")=U (6")—[U (6")],„, e (6") =e (6")—[e(G")],„.
Thus the specific heat is related to the fluctuations and cross fluctuations of U (6 ') and e (6"). In particular, the former
and the latter have the same critical temperature T, and exponents a and a'.

The normalized (by kT) free energy per spin of the SDQPM for 8~ ——82 ——0 in the thermodynamic limit may be calcu-
lated from Eq. (3). If we take the thermodynamic limit first and then set 8& ——82 ——0, we have

f(G,q,p„pb ) = lim lim ln(Z)/(N, +Nd )
8I,82 —+D Ã~, Xd —+ Oo

1n[1+exp(h+E1)]+ lim ln g g II(6',6",q,p„pb)8+2 E X~—+e)
(N, +Nd) . (33)

Now suppose we may analytically continue Eq. (33) from
positive even integer q to any positive real q; the mean
number of finite clusters per site of the SBCPM may be
calculated formally from the equation

f(6 e p. p'b) .
Bg

Up to now, we have considered the SDQPM for q being
a positive even integer, because in this case, we may write
the partition function of the SDQPM in an external mag-
netic field in the form of Eq. (3). When we use Eq. (3) to
calculRte the spontRneous Inagnetizatlon, only pelcolat1ng
clusters have nonzero contributions. Thus we may relate

+B2+ s(s~, 1 ) . (35)

the spontaneous magnetization of the SDQPM to the per-
colation probability of the SBCPM define in Sec. III.

Now we will introduce a device by which we may relate
the SDQPM for q~ 1 to a SBPM. We still consider a lat-
tice G consisting of two Inutually penetrating sublattices 3
and D whose lattice sites are labeled by the indexes i and
a, respectively. Each site of 6 is assigned a q-component
spin s with spin components s =1,2, . . . , q and each site
of the D sublattice is also associated with a random vari-
able t, which may only be 0 or 1. The Hamiltonian of
the system is defined as

H*/kT =K g t S—(s,s; )+b, g t +B,g S(s;,1)



The notations in Eq. (35) are the same as those in Eq. (1).
The difference between Eqs. (1) and (35) should be noted.
In Eq. (35), Bi and Bq couple only with the first com-
ponent of s; and s~, respectively. The first and last terms
of Eq. (35) indicate that the sites of the D sublattice with
t=O still have Potts spins which can couple with the

external magnetic field Bz, and the effect of taking t~ =0
is just to decouple the Potts coupling of s with its nearest
neighbors rather than to eliminate s completely. Using a
procedure similar to that used to derive Eq. (3a), we may
write the partition function for the Hamiltonian of Eq.
(35) as follows:

(ex—1)"'"'g [exp(B,n,.+B,n'. )+q —1] .

The meanings of 6',6",u(6'), and e(6") are the same as those of Eq. (3). The sites connected through a series of at-
tached bonds, and occupied sites of 6' are said to be in the same cluster. The product extends over all clusters in 6"
considered in Eq. (3}and also the sites of the D sublattice with t =0. n, and n', are numbers of spins which are in
cluster c* and belong to the A and D sublattice, respectively. It is obvious that

Equation (37a) is also true for the clusters of Eq. (3a), but Eq. (37b) is not true for the clusters of Eq. (3a). Since
e(6*)=lu(6'},we may rewrite Eq. (36) as

Zs (eb+t/+1)U(G) y pu(G )(1 p )u(G) —v(G ) y pe(G")(I p
)e(G")—e(G") g [exp(8 n +8 n~ )+q I))

where p, and pb are still given by Eqs. (4a) and (4b).
Following Wu's paper' in which the undilute q-state Potts model for q —+ I was shown to correspond with the random

bond percolation model, we write the free energy per site of the SDQPM as

f(G,q,K,b„B),82) = lim lnZ l(X, +Re)
N~, Xg~ cc

f(G,q, K,E,B),82) (40)

Interchanging the order of derivative and the thermodynamic limit and using the relations of Eqs. (37a) and (37b), we
may easily show that

h (G,K,E,B),82)= lim W ' g g II(G', 6",l,p„pi, ) g' [exp( —Bin, 82n', )/—(N, +Nd)] .
e' d G Qg Gyp Gg ce

(41}

where II(6',6",l,p„pb ) and 8"are just those of Eqs. (8) and (9) evaluated at q =1, the summation is restricted to clus-
ters of finite size (indicated by the prime sign) for any Bi ~ 0 or Bz ~ 0. It is clear that the mean number of finite clus-
ters plus the number of vacant sites of the D sublattice per site is given by

X,(G„p„pb)=h (G,K,E,B,~0+,82~0+) . (42)

The spontaneous magnetization M(G,p„pi„A) and M(G„p„ps,D) of the spins in the A and D sublattice, respectively, are
glvcQ bg
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and

M(G p„pb,D)=1+ h (G,X,b„Bi~0+,B2)c +2 BB2 ii p+

= 1 — lim 8' g g 11(G',G", l,p„pb } g' n ',
Nd~ao G'cG G"cG

(44)

It is obvious that M(G,p„pb, A) and M(G,p„pb, D) are
just the percolation probability, that an arbitrary site of
the 2 and D sublattice, respectively, belongs to an infinite
(percolating) cluster of the SBPM defined by (Pl)—(P3),
but without (P4), of Sec. III. Following the procedure of
Sec. IV, we may also relate the specific heat of the
SDQPM for @~1 with the site and bond fluctuations and
cross fiuctuations of the SBPM just mentioned.

We may analytically continue the phase diagrams of the
SBCPM [e.g., those of Eqs. (16), (24), and (29)] to obtain
the phase diagrams of the SBPM. In particular, in the
limit q~ 1, Eqs. (24) and (29) reduce to

p~(3pb pb) =1 (45)

percolation model defined in Sec. 3 of Ref. 3. In the limit
of no vacancy [i.e., b. and E of Eq. (1) satisfy b, /E~ao j,
the SDQPM on the semidilute lattice become the undilute
Potts model which contains the simple Ising model stud-
ied in Ref. 1 for the special case q =2. Thus the results of
Secs. II and III also contain results of Ref. l.

The II(G', G",q,p„pb) of Eq. (33) is given by Eq. (8)
and contains a q-dependent factor:

nf(G )
(47)

where nf(G") is the total number of finite clusters in G".
If we set Bi ——B2——0 first and then take the thermo-
dynamic limit, the q-dependent factor in Eq. (33) must be
replaced by

and

Ps(pbl pb2+Pb2pb3+Pb3pbi PbiPb2Pb3} (46)

nf(G") n ( ") n~(G")
q q~ =q' (48)

respectively, which have been derived before ' using dif-
ferent methods.

VI. SUMMARY AND DISCUSSION

In Sec. II we have expressed the partition function and
some physical quantities of the sublattice dilute q-state
Potts model (SDQPM) (for a positive even integer q) on a
lattice G, which is divided into A and D sublattices, in
terms of subgraph expansions. Such expansions allow us
to draw the connection between the SDQPM and a site-
bond-correlated percolation model (SBCPM) defined in
Sec. IIIA. We then use this connection to obtain phase
diagrams for the SBCPM from phase diagrams for the
SDQPM in Sec. IIIB and to relate the mean number of
finite clusters per site of the SBCPM with the derivative
of the free energy per site of the SDQPM with respect to q
in Sec. IV. In Sec. V we introduce a device so that results
of previous sections may be extended to the case q ~ 1. In
particular, from such extension, we have rederived the
phase diagram of the site-bond (random) percolation
model defined on the semidilute hc lattice, which was ob-
tained by Kondor and Temesvari ' before, using different
methods.

The results of Secs. II and III become those of Ref. 3 in
the limit T~O, in which pb of Eq. (4b) becomes 1 and the
SBCPM defined in Sec. III A becomes the site-correlated

where nz(G") is the total number of percolating clusters
in G" and n, (G")=nf(G")+nz(G") is the total number
of clusters in G". The contribution to the sum over sub-
graphs, e.g., in Eq. (6), is expected to peak sharply on cer-
tain rather similar subgraphs G*. The difference in the
contributions of Eqs. (47} and (48) to the probability
weight II(G', G",q,p„pb) is not very significant, because
nz(G" } « nf (G") for T &0 and previous studies indicate
that nz(G ) & 1 at least for lower space dimensions, ' e.g. ,
d =1—3.

The graph expansion of the SDQPM and its connection
with the correlated percolation may be extended easily to
many dilute and undilute spin models of half-integer
spins, including the fully dilute q-state Potts model
(FDQPM), the Baxter model, etc. Actually Wu has ob-
tained the graph expansions for the partition function of
the simple Potts model' and the FDQPM (Ref. 9) before.
But he considered the connection between these models
and percolation models only for the case q~ l.
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