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The phase transition in the Ising model and the percolation transition in the lattice percolation
model have many common characteristics which have motivated researchers to explore whether the
former is a percolation transition of a correlated percolation model. Previous attempts to draw such
a connection have been either unsuccessful or unsatisfactory. Considering each lattice site with an
Ising spin occupied and the nearest-neighbor (NN) coupling between occupied sites as a bond with a
bond probability p depending on the NN coupling constant J and the temperature T, we formally
show that the partition function of the Ising model is the generating function of bond-correlated
percolation model (BCPM) with a bond probability p =1—exp( —2J/kT). The BCPM has the Ising
critical temperature and exponents, including v, v', g, P, a, a', and y (perhaps also y'). From the
connection between the Ising model and the BCPM, we also derive and hence give a geometrical
meaning of the finite-size scaling and broadening at first-order phase transitions of the Ising model.
Our approach may easily be extended to many spin models and give geometrical meaning to other
properties of spin models.

I. INTRODUCTION

The phase transition in the Ising model' and the per-
colation transition in the lattice percolation model
have many characteristics in common. The singular
behavior in the latter is clearly related to the onset of the
appearance of the percolating cluster in the system. It is
of interest to know whether the phase transition in the Is-
ing model has a mechanism similar to that of the percola-
tion transition, i.e., the onset of the appearance of the per-
colating cluster. To answer this question positively, one
must map the Ising model into a percolation model such
that the latter has the same critical point and exponents as
those of the former and the variables, e.g. , the bond proba-
bility, of the latter are specific functions of the variables
of the former. The purpose of this paper is to propose a
new and elegant approach to accomplish such mapping.
Our approach simultaneously solves a closely related
problem, i.e., to define in a precise way a cluster model
which reproduces the critical point and exponents of the
Ising model. ' ' Both problems have attracted the atten-
tion of many researchers for the past decades. '

In the previous approaches' to both problems, the
lattice site with an Ising spin of one sign is considered oc-
cupied in the corresponding cluster' ' or percolation
model' and the lattice site with an Ising spin of an op-
posite sign is considered unoccupied. The ferromagnetic
interactions between spins induce correlation in the occu-
pation of lattice sites and the external magnetic field is
used to control the concentration of occupied sites. Using
this idea, Fisher proposed a semiphenomenological cluster
model' which was found to be inconsistent with Monte
Carlo data. ' ' In the previous attempts to draw the con-
nection between the Ising model and the correlated per-
colation model, the nearest-neighbor occupied sites are
considered to be always in the same cluster, which is
called the Ising cluster, of a site-correlated percolation

model' (SCPM) or to be in the same cluster with a
bond probability pit of a site-bond-correlated percolation
model (SBCPM). However, it was found that the criti-
cal point' ' of the SCPM in d= 3 is different from the
Ising critical point in d=3, and the cluster-size exponent
of the SCPM in d=2 is larger than the Ising susceptibility
exponent in d=2. Coniglio and Kleinzs found that their
SBCPM does have the Ising critical point in any dimen-
sions for a particular choice of pit

——1 —exp( 2IC), where—
E =JikT. They found by the Migdal-Kadanoff
renormalization-group calculation ' that the mean-
cluster-size exponent yz of the SBCPM in d=2 equals the
Ising magnetic susceptibility exponent y in d =2, provided
that pz ——1 —exp( 2IC). They —also found that '

vz of
the SBCPM equals v of the Ising model for any ptt. In
the same manner, Coniglio and Peruggi found that the
Potts model was related to a polychromatic SBCPM with
similar results.

Thus Coniglio and Klein's SBCPM (Ref. 25) is a good
"candidate" for the correlated percolation model corre-
sponding to the Ising model. However, their approach is
not quite satisfactory. Firstly, in the derivation of the
connection between the Ising model and the SBCPM,
Potts spin variables and their coupling constant [see Eqs.
(1)—(3) in Ref. 25 and Eq. (2) in Ref. 28j are introduced.
Thus the derivation is not elegant. Secondly, there is no
physical interpretation for the introduction of the bond
probability p~ between occupied sites in the Ising clusters;
i.e., pic is introduced artificially, Coniglio and Peruggi
stated: "Note that the bonds are only introduced to define
the connectivity between two nearest-neighbor particles
and do not affect their interacting energy and therefore
the particle distribution. " Thus, strictly speaking, Coni-
glio and Klein did not prove that the mechanism of per-
colation transition can be applied to the phase transition
in the Ising model. Finally, the results vz

——v and yz ——y
were obtained by an approximate calculation.
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In our opinion, we should abandon the previous idea
that the lattice site with an Ising spin of one sign should
be considered occupied in the corresponding percolation
problem Rnd thc site wltll R spill of Rll opposlf c slgIl
should be considered unoccupied. Therefore, in order to
establish the connection between the Ising model (and oth-
er Ising-like spin models) and the correlated percolation
Q1odcl, wc pfoposc that GIlc should consldcI' thc s1tcs with
R spin occuplcd RIld only thc sltcs w1thout a sp1Q Unoccu-
pied. One should also regaI'd the coupling between spins
as a bond with a bond probability p depending on the cou-
pling strength J and the temperature T. Oily the sites
connected by attached bonds are defined to be in the same
cluster. Using these ideas, we will show formally in Sec.
II that the partition function of the spin- —, simple Ising
model with normalized nearest-neighbor (NN) coupling
constant K =J/kT is the generating function of a bond-
correlated percolation modelS (BCPM) with p = 1
—exp( —2K), and the BCPM has the Ising critical point
T~ and cxponcnts, 1.c., thc clUstc1 1Q thc BCPM 1s JUst
thc Is1ng dloplct. Th1s conncct1GQ has bccn dcrivcd by
Us indirectly in R pfcv1GUs papcI'. HcI'c wc dcrivc such
R conncct1on 1Il R d11cct and s1Illplc way. OUI approach
can bc easily extended to many spin models. For ex-

ample, in another paper we show that a sublattice dilute
g-state (g rcpl'cscllfs RII cvcll poslflvc IIltcgcr) Potts lllodcl

(SDQPM) is equivalent to the SBCPM defined in that pa-
per, where the sites with (without) a Potts spin in the
SDQPM correspond to the occupied (unoccupied) sites in
the SBCPM. Other examples will be mentioned at the end
of this paper.

ur approach not only unifies the thermal phase transi-
tion and the percolation transition but also provides
geometrical explanations for many pmperties of spin
modds, such as the finite-size scaling (FSS) of the mag-
netic susceptibihty at the first-order phase transitions.
The FSS was obtained by many different methods, but
its geometrical explanation is still absent. In Sec. III the
connection between the BCPM and the Ising model is
used to obtain the FSS of the magnetic susceptibility and
the broaderung of the transition region at the first-order
phase transitions of the Ising model.

Based on the results of Secs. II and III, a unified physi-
cal picture for the first- and second-order phase transi-
tions and for the FSS at first-order phase transitions is
given in Sec. IV. In Sec. V we discuss some theoretical
p1oblcms fclatcd to th1s work and poiQt out thc cxtcIls1OQ

of this work to other spin models.

= g exp g g (o;cr + I )+8+o; 2E—Xb ',
(la)

g, IT =+1, g =J/kT, Rlld 8 =I/kT. EqllatioII
(la) can be rewritten as

Zz(K, B)= g g [1+(e —1)5(o.,o )]
&ij&

&( g exp(8o;)exp( 2K% —) . (lb)

Here +(,") and g,. extend over all NN bonds and sites

in 6, respectively. 5(o;,ITJ) equals 0 when cr;&crj and
equals 1 when o;=oj. The energy of the system at T=O
is chosen to be 0 as in Ref. 36. Now we expand the first
product in (lb) and use the subgraphs 6'CG to represent
the terms in the expansion. A subgraph 6' of a 5 && 5 lat-
tice is shown in Fig. 1 as an illustration. For each NN
pair of sites (ij ) there occurs in (lb) the two terms 1 and

[exp(2K) —1]5(cr;,ITJ. ); subgraphs 6' with no (ij ) bond
correspond to the former and those with an (ij ) bond to
the latter. There are e(6') bonds in the subgraph 6'
0 & e (6') & Xb. If a- particular bond (ij ) is attached by
the factor [exp(2K) —1]5(o;,oi), then o;=oJ after sum

over spin states and i and j are said to be in the same clus-
ter. In general, if two sites can be connected through a
series of bonds, they are said to be in the same cluster. A
g1vcn 6 Usually contains R 1Rrgc IlUDlbcI' of 11ldcpcndcIlt

clusters, including isolated sites which do not connect
with any other sites via bonds. For a given 6', we can
carry out the configuration summation of all spin states,
and in such a summation only the terms where all spins in
thc sRQ1c clustcf have thc saIIlc spin component have
nonzero contributions. Thus (lb) can be written as

strict these to the case q=2, which corresponds to the
spin- —, Ising model. The partition function of the simple
Ising model on the graph 6 with X sites and Eb bonds
and with only the NN 1ntcfactlons 1s glvcn by

Zz{K,B)= g exp[ A—{o)/kT]

II. CONNECTION BET%EEN ISING MODEI. AND
A BOND-CORRELATED PERCOLATION MODEL

In a previous paper ~' we found that a sublattice dilute
g-state Pofts nlodcl R't T~O ls cqlllvalcilf to R colYclafcd
percolation model. Since a sublattice dilute q-state Potts
model on a decorated lattice [i.e., case 1 lattice in Ref.
30(a)] at T~0 is equivalent ' ' to the q-state Potts model
on the original undecorated lattice at a finite T, it can be
shown that thc lattcf model also coI'Icsponds to thc corre-
lated percolation model of Ref. 30(a). For the sake of
simplicity, we will derive such connections directly and rc™

FIG. I. Subgraph 6' of a 5&5 lattice 6 and a spin state on

the O'. The solid lines represent bonds in the 6', the sites with

Q or represent occupied spin of one sign or an opposite sign,

respectively.



PERCOLATION, CLUSTERS, AND PHASE TRANSITIONS IN. . .

Z~(K 8) g e(g')( I )xg 8(G

6'cG

X g 2cosh[Bn, {6')],

where ff extends over all clusters c m 6', n, (6')» thc
C I

number of sites in cluster c, and p = 1 —exp( —2K). When
8 =0, Eq. (2) reduces to the result of Ref. 36 obtained by
a different approach. From (2), it is easy to derive expres-
sions for the spontaneous magnetization M and the mag-
netic susceptibility X for the Ising model at 8=0. In the
thermodynamic hmit, they are as follows:

M(G,p) = hm lim f~(K,B)
g~o+ N —+oo 88

= lim W ' g II(6',p)[N*(6')/X],
N-+ oc 6'cG

X{G,p)= lim lim fv(K, B)
II~0+ X~ao

where f~(K,B)=InZ&(K, B)/N,

II(6',p)=p" '(1 —p) ' 2 f

~=Xo g
ters in G'
N*(6') of
long to one of the "percolating clusters" in 6', which ex-
tend from one side of 6 to another and become infinite
clusters as N~ oo. The nf(6') of (5) is the total number
of finite clusters in 6', which is essentially the same as the
total number of clusters, including percolating cluster, for
T &0 and N~oo. From (3) and (5), it is obvious that
M(G,p) is just the percolation probabihty of the following
(BCPM) on 6:

(o,ob) = g g [1+(e —1)5(o;,g )]o,g
1

(ij &

X +exp(Bo;) . (6)

Using a procedure similar to that used to derive (2), we ex-
pand the first product in (6) and use the subgraphs O'L 6
to icplcscllt tllc tclIIIS 1II the cxpaIlsloII. Tllc criteria of as-
signing bonds and defining clusters in subgraphs 6' are
the same as those used before. For a given 6', we can car-
ry out the configuration summation of all spin states and
in such a summation, only the terms, where all spins in
the same cluster have the same spin component, can have
nonzero contributions. If the sites a and b locate in the
same cluster of 6', o, and oI, always have the same spin
component (hence o,cd always equals 1), and the contri-
butions from such 6' to the summation of (6) are the
same as those to the summation of (2). However, if the
sites a and b locate in different clusters of 6', cr, and o'I,
have equal probability of having the same or different
spin components (hence o,oi, equals + 1 or —1 with a
equal probability) and the contribution from such 6' to
the summation of (6) is 0. Thus (cr,ob ) of (6) in the ther-
IIlodynanllc 111Ilit RIld Rt 8=0, denoted by (0'gob )0, CRII

be written as

(1) j(III sites of 6 Rrc occupied and each bond of 6 is at-
tached with the bond p«bability p = 1 —cxp( —2K)

(2) The overall probability of 6'(:6 is enhanced by a
factor of 2 for each finite cluster.

The first term in (4) is the mean cluster size for the
BCPM. For p &p, = 1 —exp( —2K, ), the second term in
(4) is always 0, and g(G,p) is just the mean cluster size for
the BCPM. It is possible, but not proved, that for p &p,
the second term of (4) makes only a finite contribution to
X(G,p); in that case the singular part of X(G,p) would be
given by the mean cluster size of the BCPM and they
would have the same critical exponent. This conjecture is
based on the idea that, as N~ ce, the contribution to the
summation in the second term of (4) can be expected to
peak sharply on certain rather similar subgraphs having
values of X* differing by order of ~X or less. From (2),

lim W ' g II(6',p) g n, (6')/X+ lim 8' g g II(6',p)II(6",p)[X'(6') —j((t'*(6")]2/2%, (4)
X~ ao 6'cG C

X-+ co G'cG 6"cG

one can show easily that the internal energy and specific
hea«f thc 1»ng model arc p«poitional to the mean num-

(5) ber of e(6') and the fluctuations of e(6'), respectively, in
the BCPM.

oII(6',p), ancl g, is a sum over all finite clus- Based on (lb), the two-spin correlation function of the
, except the percolating clusters defined below. Ising model, (cr,oI, ), for two spins at sites a and b of 6,
(3) and (4) is the total number of sites which be- respectively, can be written as

(0'gob )0= llnl g p (1—p) 2 5(cg, cb)
N —+ oo G.@G

where 5(c cs ) equals I when a RIld b Rrc In tllc sRm clus-
ter of 6' and equals 0 when a and b are in different clus-
ters of O'. The right-hand side of (7) is just the pair-
connectedness function of the sites a and b in the BCPM.

Thus the exponents vz and vz for the correlation length
near p, Rnd 'g~ f« the pair-connectedness function at p, in
the BCPM are ihe same as the corresponding values for
the Ising model.
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In summary, the clusters in the BCPM have the desired
properties that (i) they diverge at the Ising critical point,
(ii) their linear dimension diverges as the Ising correlation
length, and (iii) the mean cluster size diverges as the Ising
susceptibility. Besides these, we also found that the per-
colation probability in the BCPM is given by the Ising
spontaneous magnetization, and the fluctuations of the
number of bonds in the BCPM diverge as the Ising specif-
ic heat.

III. FINITE-SIZE SCAI.ING

Now we turn to the case of the large but finite N In.
this case, the magnetic susceptibility per spin Xiv(G,p) is
given by

X~(G,p) =NM (T,o+), (10)

when M„(T,O )&0. This is just the finite-size scaling
(FSS) at first-order phase transitions, which has been
reached by different approaches.

Equation (10} can also be obtained from the finite-size
broadening of the first-order phase-transition region. In
the thermodynamic limit X~oo and for T (T„ it fol-
lows from (2) that a vanishing small magnetic field
B~0+ is sufficient to maintain the percolating clusters in
the direction of the magnetic field; i.e., the separation be-
tween the spin-up phase and spin-down phase is vanishing
small. In the system of finite N, it follows from (2) that a
magnetic field with magnitude of the order of

Xiv(G,p) = lim lnziv(K, B)
B~O

1nz~(K, B)—
all

=W ' g II(G',p)gn, /N,
G'CG

(2BN)

ddt =1/n, =1/[M (T,O+)N]

is necessary to maintain the percolating clusters in the
direction of the magnetic field. The Dirac 5 function of
(9) also broadens into a function with width of the order
of Eq. (11) and magnitude of the order of 1/b2t (so that
the integral of the function remains the same). Hence, for
a finite system, the first term of (9) becomes

where g;" is a sum over all clusters, including percolat-
ing clusters in 6', and the nf(G') appearing in II(G',p)
should include the total number of percolating clusters in
6'. In Eq. (8), we have included the contribution from the
smearing of the Dirac 5 function arising from the nonzero
spontaneous magnetization along the B=o axis for p &p,
(i.e., T & T, ) in the limit N ~ oo, while in (4) the contribu-
tion from the 5 function has been excluded. Namely, if
(8) is used to calculate the magnetic susceptibility in the
limit N~ 00, X„(G,p), then we have

X„(G,p) = lim [M„(T,B) M„(T, B—)]/2B—
B—+0+

M„(T,O+)
lim

B~0+

M „(T,B) M„(T,O+)—
lim

B~0+

=M „(T,o+ )5(0)+X(G,p), (9)

where M (T,B) is the magnetization of the Ising model
in the limit N~oo, 5(0) is the Dirac 5 function, and
X(G,p) is the magnetic susceptibility given by Eq. (4).

Suppose 6 is a graph in a d-dimensional space. When
T & T, and N is very large, the contribution to the sum-
mation in Eq. (8) is expected to peak sharply on certain
rather similar subgraphs 6*. The spanning cluster c' in
each G', which is defined to be the percolating cluster ex-
tending simultaneously over the d orthogonal directions
through the lattice, is expected to have the site content
(i.e., the total number of sites) n ~=NM„(T,O+). This
follows from the result that there is at most one c' cluster
in each 6* for d=2 for topological reasons, and it is
reasonable that this is also the case for d=3 in the very-
large-N limit. The contributions of the c* clusters in all
G constitute the leading term of XN(G,p), which is there-
fore given by

M„(T,O+) =M„(T,O+)N, (12)

which is the same as that given by Eq. (10}. Note that the
broadening of the magnetic field, given by Eq. (11), is
similar to Imry's result about the finite-size broadening
of the transition temperature at a first-order phase transi-
tion. Equation (11) is obtained directly from the formula-
tion of Sec. II, while Imry's result is based on the assump-
tion that the temperature fluctuation in a finite system
plays the role of the intrinsic temperature uncertainty.

In sufficiently high dimensions d »2, it was suspected
that an infinite number of percolating clusters can
occur. " If this is indeed the case, then the sum of the
sites in these percolating clusters must be approximately
equal to NM (T,o+) and the leading term of Xiv(G,p) is
no longer as large as that given in Eq. (10) or (12).

For a semi-infinite n )& 00 strip of spins, the spontane-
ous magnetization is still 0 and Eq. (8) is still valid. In
such a system, for 0& T & T„ there is no cluster in 6',
which can extend all the way along the direction of the in-
finite number of spins. Instead, there are many large clus-
ters of equal importance, whose linear dimensions along
the direction of finite number of spins are aon (ao is the
lattice spacing) and along the direction of the infinite
number of spins are approxim. ately equal to the same
value, for example, aol (n, T). I.et Nx be the total number
of such large clusters (actually N~~00 for semi-infinite
systems for 0& T & T, ) in a G*. The contributions of the

Ns clusters in all 6* constitute the leading term of the
magnetic susceptibility X„x (G,p) for the n X 00 system
at T(T,:

X„x (G,p) =Ng[M (T,O+)N/Ns] /N

=M „(T,o+)N/Ng

=M „(T,o+ )nl (n, T),
which is much smaller than n & m as suggested by Eq.
(10).
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IV. PHYSICAL PICTURE OF THE CONNECTION

Here we give a physical picture for the expansion in (2)
and hence the connection between the Ising model and
BCPM. In ordinary descriptions of the thermodynamic
properties of the Ising model, as embodied in (la), the Is-
ing spins are coupled with each other via their NN in-
teractions. Thus the motion of each spin will influence its
neighbors. In (2) such coupled motion is decomposed
with the p into "normal modes" of motion, where each
normal mode is represented by a subgraph O'. The proba-
bility for a given subgraph to appear is proportional to
II(6',p) of (5), which depends on T. Each subgraph usu-
ally contains many clusters; all spins in the same cluster
move up and down as a single entity, but different clusters
move independently; i.e., there is no interaction between
different clusters. It should be noted that the meaning of
the cluster in this BCPM is different from that in ordi-
nary Monte Carlo (MC) simulations' ' or series-
expansion (SE) studies' based on (la). For example, sup-
pose we have a subgraph 6' of a 5 X 5 lattice as shown in
Fig. 1, where the bonds are represented by solid lines and
a spin state is also shown, with X representing spin of one
sign and ~ representing spin of opposite sign. According
to the definition of BCPM, only the sites connected by
solid lines are in the same cluster, so there are two four-
site clusters, two two-site clusters, and thirteen one-site
clusters in this O'. However in ordinary MC simulation
or SE studies, the nearest-neighbor occupied sites belong
to a cluster, so that there are one seven-site cluster, one
two-site cluster, and one one-site cluster in Fig. 1 if the
sites with X are considered occupied. Furthermore, the
spin states generated in MC simulations based on (1a) usu-
ally contain a superposition of many subgraphs and there-
fore it is difficult to reveal the cluster contents of the
BCPM in such MC simulations. Hence, it is desirable to
generate directly the distribution of subgraphs 6' accord-
ing to the probability factor II(G,p) by MC simulation or
SE techniques and study the behavior of clusters in such
subgraphs. This could be a useful new way to study the
thermodynamic properties of the Ising model.

We will now summarize, in a simple physical picture,
what we have said. At. any T, there is a distribution of
O'CG according to the probability factor II(6',p), each
G' usually contains many independent clusters. At
T~ao, the G' with N single-site clusters dominates. As
T decreases, larger and larger clusters begin to form.
When T~T„ infinite clusters begin to appear and there
is a very large fluctuation in cluster sizes, which accounts
for the singular behavior of the second-order phase transi-
tion at T, . For T & T„the dominant subgraphs contain a
spanning cluster c' with a finite fraction of total lattice
sites. The first-order phase transitions and nonzero spon-
taneous magnetization along the axis 8=0 and T ~ T, are
due to the response of such c clusters to the external
field. For the finite and large N it is also due to the con-
tributions of c* clusters that the magnetic susceptibility
follows the FSS at first-order phase transitions.

V. DISCUSSION
The subgraph expansion of the Ising partition function

with 8=0 [i.e., Eq. (2) in this paper with 8=0] has been

derived by Kasteleyn and Fortuin some time ago with a
different method. However, since they did not include the
magnetic field and hence did not derive an equation for
the spontaneous magnetization [i.e., Eq. (3) in this paper],
the connection between the Ising model and the BCPM
was not noticed by them. Essam has used Kasteleyn and
Fortuin's result to draw a connection between the Ising
model and a bond random percolation model (BRPM)
with a bond probability qadi

——1 —exp( —2E). In such a
connection, the Ising partition function is the mean value
of 2"' ' in the BRPM, where n (G') is the number of clus-
ters in O'. However, the Ising critical point E, is dif-
ferent from the percolation point for the BRPM, K, ~,
which satisfies 1 —exp( 2E,~) =—p~ c, with pii c being the
critical probability of the BRPM. Thus we may not use
such a connection to establish that the percolation transi-
tion is the mechanism of the phase transition in the Ising
model.

The results for the simple Ising model obtained in Secs.
II—IV can be easily extended to many dilute and undilute
spin models of half-integer spins, including various q-state
Potts models (QPM) (e.g. , the sublattice dilute QPM
(SDQPM), ' dilute QPM, ' ' and QPM with NN,
distant-neighbor, and multispin interactions), the Ising
model with antiferromagnetic and ferromagnetic compet-
ing interactions, and the Baxter model. In each case, the
sites with (without) a spin in the spin model correspond to
occupied (unoccupied) sites in the percolation model, and
the percolation transition has the same critical point and
properties as the spin model. We can also derive the FSS
and broadening at first-order transitions by a similar pro-
cedure. We can also show that a model for the hydrogen
bonding in water molecules on a lattice is equivalent to a
bond-correlated percolation model, which can be used to
explain some peculiar behavior of supercooled water.
All the above and more results are planned to be presented
later in detail.

Note added in proof. By using the idea of this paper,
the author has established the connection between the
QPM and a q-state bond-correlated percolation model.
Based on such a connection, the author has proposed a
geometrical condition of phase transitions and given
geometrical reasons for the variation of the specific-heat
exponent a with q, the changeover from second-order to
first-order phase transition as q increases, and the finite-
size scaling of the specific heat at the thermal first-order
phase-transition point [Chin. J. Phys. (Taipei) (in press)].
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