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Real-space scaling methods applied to the one-dimensional extended Hubbard model.
II. The finite-cell scaling method
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The finite-cell scaling method is applied to the one-dimensional extended Hubbard Hamiltonian.
The results obtained for the correlation functions show that, in the half-filled-band case, the hop-

ping mixes the charge-ordered and the spin-ordered states. As with the real-space renormalization-

group method, we find that the transition between these states is continuous and that the system, in
the vicinity of the transition, is in a mixed charge-ordered —spin-ordered state.

I. INTRODUCTION

In the preceding paper' (hereafter referred to as I) we
have obtained the phase diagram of the extended Hubbard
model in the half-filled-band regime using the real-space
renormalization-group method. The phase diagram con-
sists of two phases, the charge-ordered and the spin-
ordered phases, and the transition across the boundary is a
continuous transition. In the vicinity of the boundary, the
ground state is a mixed charge-ordered —spin-ordered
state, a result that differs from the broken-symmetry
Hartree-Fock calculations.

The purpose of the present paper is to confirm these
conclusions by means of another real-space scaling tech-
nique: the finite-cell —scaling method developed by Sned-
don. In Sec. II the extended Hubbard model of I is
rewritten in k space and the finite-cell —scaling method is
introduced. The results are presented and discussed in
Sec, III.

II. MODEL AND METHOD

The one-dimensional extended Hubbard Hamiltonian of
I may be written in k space as

H =2t g coskck~ck~+ g 5(k —k +q —q )ck&ck &c&&c& &+ g g cos(k —k )5(k —k +q —q )ck+k &c«c& ~
U

k0 kk'qq' s O.o' kk'qq'

where ck and ck are the usual creation and annihilation
operators of an electron in the state Ik, crI. The first con-
tribution to (1) is the Fourier transform of the first-
neighbor hopping term. The quantity 2t stands for the
half-width of the conduction band. The last two contribu-
tions come from, respectively, the intrasite ( U) and the in-
tersite (G) electron-electron —interaction energies. Here,
n, is the number of sites of the chain whose lattice spacing
has been set to unity. The sums run over all k's belonging
to the first Brillouin zone and 5( ) is the Kroenecker 5
modulo 2m. .

In the special case of G=O, on one hand, the Hamil-
tonian (1) reduces to the standard Hubbard model. On the
other hand, in the saturated limit (all spins aligned in the
same direction), (1) is equivalent to a spinless interacting
fermion system, the analog of the Heisenberg-Ising linear
chain. Both models have been exactly solved with the
result that, in the half-filled-band regime, the two models
have singular behavior, the former at U=o and the latter
at G =2

~

t
~

. For both models it has been shown that this
aspect of the exact solution is we11 reproduced by the
finite-cell —scaling method. ' In addition, the ground-
state energy of the Hubbard model obtained with this
method differs from the exact solution by less than 1%.

Accordingly, one would expect reliable results from its ap-
plication to the extended Hubbard Hamiltonian (1), al-
though there exists no exact result, in the general case, to
check its rehability.

The finite-cell —scaling method essentially consists of
solving the model exactly for finite blocks of increasing
size. Quantities such as the gap are then obtained from
the extrapolation of the finite-cell results to the infinite-
chain system. Of course, on one hand, the larger the cell,
the better the results of the extrapolation process. On the
other hand, the calculations involved in the exact solution
of the cell Hamiltonian rapidly become intractable as the
number of sites increases, even when using all the symme-
try properties of the Hamiltonian. There exists a tech-
nique, however, that makes it possible to partly overcome
this difficulty: the Lanczos method, which has been ex-
tensively used in shell-model calculations, ' and success-
fully applied to both spin-" and interacting-fermion sys-
tems. ' '

This method consists of constructing a tridiagonal rep-
resentation for the matrix of the Hamiltonian by means of
a repeated application of H. Starting with a normalized
initial trial vector

~
1), the Lanczos procedure leads, after

m steps, to
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H
~

1)=a,
~
1)+Pi

~

2) tin, ' we impose periodic boundary conditions for
n, =4,8, 12, . . . ,

exp(~'kn, )=1, ~' ———1 (Sa)

where at each step i, the quantities a; and P; are chosen
such that the generated vector

~

i +1) is normalized and
orthogonal to the previous ones. This process terminates
when the complete basis (of, for instance, M vectors) for
this representation of H is generated. It turns out that it
is not necessary, however, to generate the entire basis to
correctly reproduce the low-lying eigenvalues of H. It has
been shown that the lowest eigenvalue of the reduced
m Xm matrix (m &M) converges rapidly, as m increases,
toward the exact ground-state energy of the M&&M ma-
trix. It is this latter aspect of the method that makes the
Lanczos procedure of real practical interest.

The selection of the initial vector
~
1) calls for a few re-

marks. There are four quantities which are left invariant
by the Hamiltonian (1). These are the number of electrons

1V, the total momentum K, the total spin S, and its projec-
tion along a given axis, S,. These quantities all commute
among themselves, and, accordingly, the starting vector, if
chosen as being an eigenvector of N, E:, S, and S„will
generate, through the Lanczos process, vectors all belong-
ing to the subspace I n, k, s,s, j, where n, k, s (s + 1), and s,
stand for the eigenvalues of the corresponding operators.
Such a choice for the initial vector makes a systematic
study of the low-lying states of each subspace of the Hil-
bert space possible. Here, we are concerned with the abso-
lute ground state, which has been proven by Lieb and
Mattis' to lie within the s =

~
s,

~

subspace, where, for a
given number of electrons,

~
s,

~

takes the lowest possible
value. Accordingly, we shall start the Lanczos procedure
with an initial vector that belongs to the I n, k, s =

~
s, ~,s, j

subspace.
In general, it is difficult to construct a simultaneous

eigenstate of the four operators E, E, S, and S,. We
shall avoid this difficulty by following another approach.
Let us consider the following vector:

and antiperiodic boundary conditions for n, =2,6, 10, . . . ,

exp(& kn, ') = —1 . (5b)

The use of these alternate boundary conditions removes
undesirable oscillations of the relevant physical quantities
such as, for instance, the gap. Equations (5a) and (Sb) as-
sure that the free-electron half-filled-band Fermi momen-
tum

~
k~

~

= —,ir, for the infinite chain, is always included
in the set of k's.

III. RESULTS

Applying the Lanczos method to the Hamiltonian (4)
with the boundary conditions (5) yields the ground-state
energy e(n„n) for a chain of n, sites and n electrons (the
overlap integral t has been taken equal to 1). The gap, de-
fined as

b ( n, ) =e( n„—,n, + 1)+e( n„—,n, —1) 2e(—n„, n, )—,

is plotted in Fig. 1 as a function of 1/n, for U= 1 and for
several values of G. Computer limitations did not allow
us to go beyond n, =8. These curves, as well as similar
curves obtained for other values of U (not shown here), are
sufficiently smooth to be fitted to a polynomial. In fact,
they were fitted to a polynomial of degree —,'n, in 1/n,
with the result that the extrapolated value of the gap to
the infinite chain is given by the following Lagrange ex-
pression:

(3)

and the modified Hamiltonian

H'=H+A[S' —S,(S,+1)] . (4)

In (3),
~
0) is the vacuum state, and A, , in (4), is a positive

constant. The vector (3) is an eiIrenstate of N, K, and S,
with eigenvalues n, g k;, and —, g cr; (cr; =+1). Here,
the eigenvalue of S, is assumed positive for the sake of
simplicity. The additional term in (4) has no effect on
states which belong to the s =s, subspace, while the other
states with different value of s are shifted toward higher
energy. Accordingly, starting with (3), the Lanczos pro-
cedure using the modified Hamiltonian (4) yields a
minimum-energy state that converges toward the ground
state that belongs to the desired s =s, subspace.

The set of momenta involved in (3) is obtained from the
boundary conditions. Here, we shall restrict ourselves to
even numbers (n, ) of sites. Following Jullien and Mar-

0.1 0.2 " 0.3
n, =6

I I

O4
AS= 2

FIG. 1. Gap A(n, ) as a function of 1/n, for U=1 and several
values of G. From the top, the curves correspond to 6=2.75,
2.50, 2.25, 2.00, 1.75, 1.50, 1.30, 1.10, 0.90, 0.80, and 0.30. Here
t= 1.
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FIG. 4. 6-U phase diagram (t=l) for the range U, G~O.
The long-short dashed curve represents the real-space
renormalization-group results, the dashed curve is the Hartree-
Fock critical. line, and the solid curve represents the present re-
sults.
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FIG. S. Correlation functions as a function of 1/n, for 6=0,
and for () U/t=2 and (4 ) U/t=20. The dashed lines
represent C»(n, ), the solid lines represent 8„(n,), and the
long-short dashed curves represent 8„(n,). The corresponding
extrapolated values are given by the intersection vAth the verti-
cal axis.

(9c)

TABLE I. Ground-state energy e(n„n) and the correlation
function 8»(n, ) as a function of the Lanczos steps (here,
6=0.9, U=2, t=1, n, =8, and n=4; the size of the full matrix
is 618X618}.

1

2
3
4

6
7

9
10
11
12
13

—22.39326
—22.68402
—22.717 80
—22.728 60
—22.73609
—22.763 62
—22.807 94
—22.828 59
—22.837 26
—22.84025
—22.840 82
—22.84091
—22.84092

0.25000
0.22565
0.221 17
0.219 17
0.21638
0.20245
0.18759
0.18400
0.18248
0.182 10
0.182 14
0.182 16
0.182 15

are C«(n, )=0, 8„(n,)=—,', and 8„(n,)=0 for all n„a
result that shows that the ground state is tltl. . .
For t+0, the results obtained for these quantities together
with their extrapolated values [obtained from (7) in which
b, is replaced by C«, 8„,or 8„]are given in Fig. 5 as a
function of 1/n, for U!t=2 and 20 (6=0). These show
that the hopping between sites reduces the local moment.

However, the ground state still has alternate up and down
moments. All these results agree with the exact solution.

»»g. 6 we have plotted C«(n, ) as a function of 1/n,
for U=2, t= 1, and for several values of 6 in the vicinity
of the transition [which occurs at 6—1.1; see Fig. 3(b)].
The results are sufficiently well behaved to be extrapolated
to the infinite-chain system. It is worth making„however,
the following remarks. We have found that all the finite
chains undergo a transition for 6-1.1 except the case
n, =2 (see Fig. 7). This is due to the fact that the allowed
values of 'the indlvldllal Inofnellta al'e, according to (5b),
k =+m/2, and the band part of (1) vanishes identically;
that is, the result does not differ from the atomic limit one
(t=O) and the transition occurs'" for U =26. But this ar-
tifact has no consequence on the extrapolated results. For
the range 1 &6~ 1.1, the curves of Fig. 6 are essentially
straight lines, and the extrapolated values do not signifi-
cantly differ whether we use n, =4, 6, and 8 only, or
n, =2, 4, 6, and 8, where we choose the transition to hap-
pen artificially at 6=1.1 in the n, =2 case.

The results obtained for CP, (8), BP,(8), and BP,(8) are
shown in Figs 8and 9 .for t=1 and for two values of U
(U=2 and 5). Among these results, there are two cases
where a jump in the curve can be clearly identified at the
transition. This is not a surprising result since the extra-
polation procedure is performed with only four values of
n, Though the cur. ves obtained (such as those of Fig. 6)
are sufficiently smooth to be extrapolated to the infinite
system, the set of n, 's is not sufficiently numerous for one
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FIG. 6.. 6. Correlation C„(n, ) as a function of 1/n, for U=2
and several values of G. One has, respectively, 1, 6=1.5; 2,
6= 1.3'= . ; 3, 6=1.2; 4, 6=1.0; 5, 6=0.7' and 6 6=0.0. Here
t= l.
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to expect very accurate results. In addition, the extrapola-
tion is performed separately below and above the t
tion (see Fi . 7) an'g. &, d hence we expect to have a jurnp.
Indeed, what is surprising is that the jump, if there is any,
in t e other curves is very small. Figures 8(a) and 9(a)
show that a 1, at least, the jump does not increase as U in-
creases, a result that is not expected if the jump has any
physical meaning.

There is no obvious reason that could explain the fact
that a jump is not systematically observed in all the
curves, nor are there reasons which explain that, for a
given U (see Fig. 8), two curves have a jump while the oth-

FIG. 8. Correlation functions as a function of 6 for U=
and t=l. (a& Ca) „(n,). In (b), curve (1) refers to 8,",(n, ) and

o or =2

curve (2) refers to 8,",(n, ). Here n, =8.

er does not. Accordingly, we infer that the small 'um in
es o ig. stems from the lack of accuracy of the

extrapolated results rather than from hrom any p ysica e ects.
1th the exception of these two cases, the eneral

al c corlslstsls cnt with a second-order tl ansltlon, Rnd 1t 1s
reasonable to conclude that th t t
across the b

e ransltlon 1s continuous
oundary. Thus the system is found in th

cinit of thei y o e boundary, in a mixed charge-ord d-
ordered state.

clc —spln-

lg. , t at the gapFinally, let us note, according to Fi . 3 h
vanishes or U=6 =0 only, a result that clearly shows
the singular behavior of the extended Hubb d
a ong oth the 6 and Uaxes. The origin of the 6-U h
dla ram 1s thug thus a fixed pomt, in agreement with the re-
su ts previously obtained with the real-spacc
renormalization-group method (see I). W h

e app ication of the finite-cell —scaling method to

p en y s udying the model along the 6 axis (near 6=0).
u ion. e are

The resu ts presented in this section call fo f d
'

'
na remarks. The numerical results bea 'd 1

computational runoff errors. W h hc ave~ owcver» taken
special care in performing the Lanczos calculations. Two
di erent numerical schemes were u d 'thusC W1 Out g1v1ng S1g-
mficantly different results. In th f t hn c 1I'st sc erne, each vcc-
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FIG. 9. Corrt:lation functions as a function of 6 for U=5
and t= 1. One has (a) CP, (n, ), (b) BP, (n, ), and (c) BP, (n, ). Here
n, =8.

tor generated in (2) is orthogonalized to the two previous
ones 1n thc second scheme this vcctoI' ls orthogonalized
to all the previous ones. The extrapolation process is
another possible source of errors. For the sake of clarity
we have not put error bars on the curves of the figures.
The results, however, all lie very close to the curves
shown. Finally, our results are not numerous enough for
us to perform a systematic study of the best fit of the
curves. One could have fitted the curves of Fig. 6 with
another function which would have given no jump. To
show that the jump is indeed meaningless requires addi-

In this and the preceding paper (paper I) we have shown
that the real-space renormalization-group and the finite-
cell —scaling methods yield similar results. From the con-
tinuity of the correlation functions, one concludes that the
extended Hubbard system, in the half-filled-band case, un-

dergoes a continuous transition from a charge-ordered re-
gime to a spin-ordered one. Hopping mixes the spin-
ordered and charge-ordered states, and the system, in the
vicinity of the boundary, is in a mixed charge-
ordered —spin-ordered state. Both methods indicate that
the gap varies continuously across the boundary. Only the
finite-cell —scaling method, however, yields a continuous
variation of the derivative of the gap. The results ob-
tained with the real-space renormalization-group method
indicate that the nature of the elementary excitations
changes, at the boundary, from single-particle excitations
to pair excitations. This is due to the fact that for the
charge-ordered regime, the pairs are strongly bound (the
binding energy is U' '~ —ao', see I) and single-particle
excitations are no longer possible. The results obtained
with the finite-cell —scaling method behave differently, as
single-particle excitations are always allowed (the binding
energy is always finite).

In the atomic limit (t=0), the finite-cell —scaling
method yields a gap h(n, ) which does not depend upon
n„and the quantity 5"(n, ) obtained from (7) has the
values b "(n, )=46 —U (U &26, charge-ordered regime)
and 6 (n, )= U ( U & 26, spin-ordered regime) for all sizes
of the cell; that is, this method yields two phases separated
by the boundary U =26, in agreement with the exact solu-
tion. ' This aspect of the phase diagram is also recovered
using the real-space renormalization-group method (see I).
The results, however, behave differently in the vicinity of
the origin of the 6-U plane (see Fig. 4). According to the
renormalization-group scaling equations, ' the quantity
(U 26)/t scales a—s [(U —26)/tj'=[(U 26)/t] (

~

U I, —
6 « t). Hence, the boundary is at U =26. The phase di-
agram of Fig. 4 indicates that the fmite-cell —scaling
method alone is in agreement with the latter result. For
the case 6=0, we have shown that this method yields re-
sults which are in good agreement with the exact solu-
tion. Using the same technique, Uzelac' has also shown
that the essential singularity of the pure Hubbard model is
recovered with great accux'acy. Hence, the finite-
cell —scaling method gives reasonable results in the strong
and weak coupling regimes.

The boundary obtained with the real-space
renormalization-group method (see Fig. 4) departs signifi-
cantly from the V=26 line near the origin. As rnen-
tioned in I, this method yields ( U/t)' = ( U/t) and
(6/t)'= ,' (6/t). The former result —agrees with the scal-
ing law while the latter does not. The quantity
(U 26)/t does not sca—le properly and the method fails
to Icploducc thc boundary U=26. Thc fact that along
the U axis (6=0) this method is in agreement with the



scaling law may be fortuitous. ' In addition, Dasgupta
et al. ' have shown that for the pure Hubbard system, this
method yields an expression for the gap which does not
agree with the exact solution even in the large-cell limit.
For these reasons, me conclude that this method provides
only a qualitative description of the properties of the sys-
tem. It gives reasonable results in the strong coupling
limit only.
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