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Real-space scaling methods applied to the one-dimensional extended Hubbard model.
I. The real-space renormalization-group method
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The real-space renormalization-group method is applied to the one-dimensional extended Hub-
bard model. It is shown that in the half-filled-band case, the phase diagram consists of two phases
and that the transition from the spin-ordered phase to the charge-oxdered phase is continuous, a re-
sult which differs from that obtained previously from the broken-symmetry Hartree-Fock approxi-
mation.

I. INTRODUCTION

The one-dimensional (1D) extended Hubbard Hamil-
tonian is given by the following expression:

H =tg(ctoc;+I +c c )+.U. +n;,n;,

The first term in (1) is the nearest-neighbor hopping term
characterized by the overlap integral t, 2t being the half-
width of the conduction band. The next two contributions
Rccollllt, rcspcctlvcly, fol' thc llltl asltc ( U) Rnd llltcl site
(6) electron-electron interaction energy. In the last term,
p stands for the chemical potential. The operators c; and
c; are the usual creation and annihilation operators for an
electron of spin tr in a Wannier state at site i The .occu-
pation number is defined as n; =c; c; and n; =n;, +n;,

In the atomic limit (t=O), Bari has shown that in the
half-filled-band regime at zero temperature, the system
undergoes a first-order phase transition from a charge-
ordered state to a Mott state when U=26. Both phases
are insulating, and the ground state has either singly occu-
pied sites for U & 26 or alternate empty and doubly occu-
pied sltcs foi U & 26. Ill tllc stlollg Rttlactlvc lntlasltc

(
~

U
~
))t,G) these two states are weil separated.

Neglecting the states with singly occupied sites, Efetov
and Larkin have shown that (1) is equivalent, for the spe-
cial case

~

U
~

G =t, to an exactly soluble, free-boson
Hamiltonian, a result that was extended to all 6 by
Fowler, who has shown that in this strong on-site limit
the ground state of the electron gas is a charge-ordered
state for all 6&0. There are two additional cases for
which the Hamiltonian (1) can be exactly solved. On one
hand, when 6=0, (1) reduces to the bare Hubbard model
whose exact solution has been obtained by I ieb and V/u.
It has been shown that in the half-filled-band regime, the
Rntlfcrromagnctlc gloulld s'tRtc fol' U) 0 bccolllcs thc
charge-ordered state for U&0. On the other hand, in the
saturated regime (all spins aligned along the same direc-
tion), both the intrasite and the intersite interactions be-
tween electrons of opposite spins have vanishing matrix
elements, and (1) reduces to an equivalent spinless in-

teracting fermion system which can be transformed, using
tllc Wlgllcl-Jordall tlansfoiTllat10n, lllto thc Hciscllbcl'g-
Ising linear chain, a well-known system. It turns out
that in the corresponding half-filled-band case (the num-
ber of spinless ferrnions is half the number of sites) the
system undergoes an order-disorder transition when
6/2

~
t

~

=1. For 6/2
~

t
~
«1, the system is found in a

metallic phase, and for 6/2
~

t
~

& 1 it is an insulator hav-
11lg RltcmRtc occupied alld cInpty sites. Except fol tllls
last case, there is no exact result in the general case for
which t, 6, and U take arbitrary values, and the properties
of (1) can be obtained by means of approximate calcula-
tions only. The simplest approach is the broken-
symmetry Hartree-Fock approximation which has been
performed on (1) by several authors. 'I '5 It was found'4
that the Ult G It ph—ase diagram has two phases
separated by the transition line U =26. These phases are
the antiferromagnetic ordered phase (U &26) and the
charge-ordered phase (U &26), and the transition across
the boundary line U =26 is a first-order transition.

In this, the first of two papers, we investigate some of
the properties of the Hamiltonian (1) using the real-space
renormalization-group method. This method has been
previously applied to Inany systems, and in particular to
two exactly soluble interacting fcrmion systems: the 1D
Hubbard modd' ' and the fermion analog of the
Heisenberg-Ising linear chain. ' Aside from the essential
singularity at the unstable fixed points of these models,
which is recovered but with the wrong critical exponent, it
turns out that this method yields results in generally good
agreement with the exact results. The ground-state energy
is wdl reproduced and the magnitude of the local mo-
ment, for the 1D Hubbard model, is reproduced with
great accuracy. This latter result clearly indicates that the
real-space renormalization-group method gives reliable in-
formation about the nature of the transition. It will be
shown that the local moment, for the extended Hubbard
model (1), varies continuously as a function of both U and
6, and consequently, the charge-ordered —spin-ordered
transition is of second order, a result that differs from the
previous Hartree-Fock calculation. ' As we shall show in
the following paper, ' the same result is obtained within
the framework of another approximation scheme, the
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finite-cell —scaling method.
In the following section we review the method, and

proceed to its application to the Hamiltonian (1}. The re-

sults for the range G&0 and U~O are presented in Sec.

III for the half-filled-band case.

II. METHOD

Thlc real-space renormallzatlon-group method csscIlt1Rl-
ly consists of dividing the original chain into blocks of
finite size. Each block is then solved exactly and the
block Hamiltonian, Rs mell as the interblock Hamiltonian,

are projected onto a reduced basis of states of the Hilbert
space. Here, the basis is chosen such that the form of the
Hamiltonian is preserved through this process. There re-
sult ncw values for thc parameters, and thc px'occdQI'c 18

repeated until one reaches a fixed point.
The method can be made more transparent if the origi-

nal Hamiltonian (1} is split into its block and interblock
parts. Written under the electron-hole —symmetry form,
one obtains

where J 1s R Mock index~ Rnd

n —IS 8S n —1S Pl

IIJ'"'=t™g g(cJp c~~+1 +c c )+U. '."' g ( —,
' —njp, )( —,

' —ni~, )+O'"' Q (1 nj~—)(1 n~q+1)—+D'"' g 1~q,
p=l 0 p =1 p=l p 1

(3a)

IIJ ~+1 1 g (cj „——cj+11 +c c )+6. . (1—nj „)(1 nj+—1 1) .(n) (~) (n)

Here n is an iteration index and n, is the number of sites
of each block. In (3a) we have made use of the electron-
hole symmetry to fix the chemical potential: p= —,

' U
+ 26 and D'"' is an additional constant that accounts for

the renormalization of the vacuum energy. In (3a), 1 is
the identity operator. At the initial step (n =0},the Ham-
iltonian (2) is identical to (1) provided that t' '= t,
6"'=6, U'"= U, and D'"= ——,'~.

Each block Hamiltonian HJ"' is solved exactly. There
are four quantities which are left invariant by H~"'. the
number of electrons X, the total spin and its projection
along a given axis, S and S„and the parity H. Accord-
ingly, the Hilbert space I is split into subspaces spanned

by the set of kets I I N, S,S„II,k) I [S =S(S+ 1)], where
k is an additional index that identifies a specific ket
within a given subspace, the number of these k's being the
dimension of this subspace.

The absolute ground-state energy has been proved by
I.ieb and Mattis to lie within the S= IS, I

subspace
whe«, «r a give»,

I S.
I

takes thc lowest possible value.
I.ct us call by I

N, S, ) the lowest-energy eigenstate of each
S =

I
S,

I
subspace, and by E~ the corresponding eigen-

energy. The set I I X,S, ) I provides the reduced basis onto
which the block Hamiltonian as well as any relevant
operator are projected. Of course, this choice of basis is
not unique. However, one expects the ground-state
properties of the system to be reproduced if the projection
is performed onto the basis of the lowest-energy eigen-
statcs.

The set I IX,S, )I spans the subspace I of I. Howev-
er, this set does not satisfy any closure relation, and the
projection onto I of a given operator, for instance, Ar,
cannot be used as the definition of the renormalization of
this operator. In order to avoid this difficulty, one intro-
duces a new Hilbert space y spanned by a set of kets,
I I

X',S,' }I,which is related to the former set, t I X,S, ) I,
through R one-to-onc IDRpplng; that 1s to say, to each kct
IN, S, ) belonging to I, there is one and only one ket

t

IN', S,') belonging to y. We require that this new set
obey the following closure relation:

g I
X',S; )(X',S,' I

=1 .

As a collscqilcllcc of tllc Qnc-to-onc mapping I ~y, the
direct product spaces I 81 and ySy are identical. Ac-
cordingly, f«any operator A r defined in I, there exists a

ique operato 2 defined i y such that ( Ig„ Ij)
=(1

I &y I j), where
I
i), I j)el,

I
1),

I j)~y,
I

& )~
I
1), I j)~ I j). As a result, both operators Ar and

A& are related through

Ar= g I
i)(i IAr I j)(j I,

which defines the renormalization of Al-. The isomorphic
mapping makes it possible to relate average values of any
operator taken in two different renormalization steps. In
other words, it gives a meaning to the iterative renormali-
zat1on pI'occss.

The Hilbert space associated with any given site of the
original chain is spanned by four vectors,. IO),
Il + ) =cilO) I» —) =ci IO)
For the form of the Hamiltonian to be preserved through
any renormalization step, the Hilbert space associated
with any site of the renormalized chain, which replaces a
block of n, sites of the previous chain, should be spanned
by four independent vectors also. Accordingly, at each
step, the selected subspace I of the block Hilbert space I'
is spanned by four vectors of the form

I
m, O),

I
m + 1,+ ), I

m +1,—), and
I
m +2,0), where m is de-

fined below, and the corresponding Hilbert space y is
spanned by four vectors of the form IO), Il, + )=ct&IO),
Il, —)=c,IO), and I2,0)=c,e, IO). It can be shown, with
thc llclp of {5), that all ltci'atlvc constructio11 of thc avcl-
age value of the density operator d = (p )
={1/n, ) g,. (n;) leads to the following relation between
the electronic density produced after n ~ oo steps and the
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minimum filling of the block m at each step:

d' )=m/(n, —1) .

For the half-filled-band case, d' '=1, and, since m is an
I

integer, n, should be an odd number. In the present pa-
per, we shall restrict ourselves to n, =3, and thus m=2.
Accordingly, the renormalized block Hamiltonian H~" +"
reads [cf. (5)]

a,'"+"= [o)(2,o~a,'"'[2,o)(o[+ [1,+)(3,+ )a,'"'[3,+)(1,+ [

+ [1,—)(3,—[II,'"') 3, —&(1,—[+ ) 2,0)(4,0]H,'"'[ 4,0)(2,0[,

which reduces, using the symmetry properties of HJ'"' and
the notation introduced above for the eigenvalues of the
block Hamiltonian (cf. Appendix), to

for 6 & U & 26, and

U(n+1) U(n) 2G(n) G(n+1) G(n) (12c)

U'"+') =2(Ez —E3),
D( + ) 3D( )+ (E +E )

(9a)

where the last term of (9b) accounts for the renormaliza-
tion of the vacuum energy.

The renormalization of the interblock Hamiltonian is
performed similarly. However, this should be performed
carefully since the interblock Hamiltonian results from a
product of operators defined in different Hilbert spaces,
for instance, I J and I 1+i, and the projection must be
done onto the antisymmetric tensor product of the corre-
sponding selected subspaces I j and 'I j+& The renor-
malization is then defined with respect to the antisym-
metric tensor product of y~ and yj+, . Within each Hil-
bert space, yJ and yj+i, the vacuum state is defined up to
an arbitrary phase factor which is fixed by the require-
ment that the form of the hopping term should be
preserved through the renormalization process. This leads
to the following expression:

(n+ &) (n+1)Ifj 1+i =t (cj~~pi~+C. C. )

+6'"+"(1 n) )(1 nj+—i), — (10)

where

HJ'"+"=2(E2 —E3 )( —,
' —nJ, )( —,

'
nj, )—

+[3D'"'+ —,
' (E2+E3)]1j,

where the block index j at the step n becomes a site index
at the step n + 1. Accordingly, one obtains

for U&6. For the last two ranges, U'"+"&U'"'. The
results obtained from the application of the real-space
renormalization-group method to the extended Hubbard
Hamiltonian are presented in the following section for
both the t=p and t&0 cases.

III. RESULTS

The 6-U phase diagram (6&0, U&0) for the special

case t=o is shown in Fig. 1. According to the recursion
relation (12a), starting from any point (U, G) such that
U&2G leads to U'"'=U and 6' '=0. For this range,
the intrasite Hubbard interaction dominates, and the
ground-state is a spin-ordered state. For U & 26 [cf. (12b)
and (12c)], one finds U' )~—oo and G' '=G; both the
intrasite and the intersite interactions have identical ef-
fects on the electron gas, and the ground state has alter-
nate doubly occupied and empty sites. As a consequence,
the phase diagram consists of two phases separated by the
boundary line U =26, in agreement with the exact solu-
tion. '

For t&0 the phase diagram shows similar features (Fig.
2), except that the transition line departs significantly

C.O.
t( +i) t(s)((2 P

~ ~

3 + ))2

6'"+"=6'"'(1—(2,0
~ nJ, ~

2,0))i,
(1 la)

(1 lb)

for all j (see the Appendix). The results (8) and (lp) to-
gether with (9), upon summation over the new site index j,
yield the renormalized Hamiltonian H'"+". Equations
(9) and (11) are the basic recursion relations for the pa-
rameters.

Straightforward calculations show that in the atomic
limit (t=p), these recursion relations reduce to

U«+&) U«) G«+&) ' G«)
9

for U &26,

U(n + 1) 3 U(n) 4G(n) G(n + 1) G(n)

(12a)

(12b)

FIG. 1. G-U phase diagram in the atomic limit. The charge-
ordered phase (C.O.) and the spin-ordered phase (S.O.) are
separated by the boundary line U=2G. The arrows show
schematically the different paths followed by the parameters
upon renormalization.
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C.O. C.O.

of pair excitations (for U' '~ —ao, G' '&0). For the
range U &0, G )0, the gap vanishes along the semi-
infinite ( U & 0, 6=0) line only. For this part of the phase
diagram, the elementary excitations are pair excitations.

G(a) )
(a)

0 1 2 3 Urt

FIG. 2. G/t-U/t phase diagram for t&0. The critical line

separating the two phases departs significantly from the line
Uit= 2(G jt) (dashed line). The arrows show the different re-

normalization paths schematically.

from the line U =2G. In Fig. 3 we have plotted 6' ' as a
function of G for both positive and negative values of U,
and in Fig. 4 we have plotted U'"' as a function of U for
several values of G. In both cases, t has been fixed at I for
simplicity. In all cases, one finds that t' ' —+0. Starting
from any point (U, G) above the boundary of Fig. 2 leads
to U'"' —+ —ao and 6'"'+0, while starting from a point
below the boundary yields U'"'&0 and 6'"'=0. For the
range U&0, Fig. 3 shows that there is a value for 6, say
G*, above which G' ' takes finite values. The jump in6'"' at G' becomes more important as U increases [on
the scale of Fig. 3(b), this jump is very small]. In Fig. 3(c)
we have plotted G' ' as a function of G in the vicinity of
6' for large values of U. The results show a discontinuity
at 6 =G . For each value of U, the set of points ( U, G')
defines the boundary shown in Fig. 2. To the jump in
G'"' there corresponds a jump in O'"'. It turns out that
U' ' (equal to U'"' for G =6*—0) and 6'+"' (equal to
6' ' for G =6'+0) are related through U'"'=2G'+ ',

and the linear relationship U=ZG of the exact solution
(t=O) becomes, here, U' '=2G'+"' (t'"'=0). In Fig. 5

we have plotted the quantities U' ' for G &G*, and
26'"' for 6 & 6*, for several values of U in the vicinity
of the boundary.

Straightforward calculations show that for a finite open
chain with an odd number of sites, the gap in the single-
particle excitation spectrum is b, =U'"' for the spin-
ordered regime (U'"'&0, G'"'=0) and 26' ' —U' ' for
the charge-ordered one (U' '~ —00, 6' '&0). In the
latter case, one can show that the gap in the pair-
excitation spectrum is 5=2G' '. Since U' "'—+ —ao, the
latter excitation dominates. Hence, the results depicted in
Fig. 5 show the gap on an extended scale near the transi-
tion. The gap is plotted in Fig. 6 for a wider range of 6
for both negative and positive values of U. Several con-
clusions can be drawn from the results of Figs. 3—6: For
the range U& 0 and 6& 0, (I) the variation of the gap is
continuous at the transition, while (2) its derivative is not,
(3) it never vanishes across the boundary, and (4) the na-
ture of the elementary excitations changes from a single-
particle —excitation regime (for U' '~0, 6'"'=0) to one

G

(b)

4 G

(~) 0(sO)

G U =15 (C)

0=10

I a i I I I I s i I I a s I

t G
A 8

FIG. 3. G'"' as a function of G for {a) U&0 and (b) and (c)
U&0. In (c), the values of A and B are U=5—A=I, B=4;
U=10—A=5,8=8; U=15—A=16,8=19. In the inset, 6'"'
as a function of G is shown on an extended scale near the transi-
tion. The values of a and P are, respectively, a=3.1,P=3.125
for U= 5, a =5.825,P=5.85 for U= 10, and a =8.5185,
P=8.531 for U=15. The value of C is C=2 for U=5 and C=4
for U=10 and 15.
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0=-co-3 0 2 3 4 5

4 5 6 7 8 U

FIG. 4. U'"' as a function of U for several values of G.

Our results also indicate that the origin of the G-U
plane is an essential singularity. In the case G=O (i.e., the
pure Hubbard model), the method yields, in the vicinity of
U=O, (U/t)'=(U/t), in agreement with the scaling hy-
pothesis. ' However, Dasgupta et a/. ' have shown that
even in the large-cell limit, the results obtained differ
from the exact solution, and the singularity is recovered
poorly. Along the line G)0 (U=O), first-order expan-
sion, near G=O, yields (G/t)'= ,'(G/r), a res—ult that
violates the scaling hypothesis. In view of this, we do
not expect the real-space renormalization-group method to
give reliable results (for the critical exponent that charac-
terizes the opening of the gap, for instance) in the vicinity
of U =6=0. Accordingly, we did not attempt to perform
any calculation around the origin of the 6-U plane.

The ground-state energy obtained from

J/
I y I I I I

FIG. 6. Gap 6 as a function of G for several values of U.

g) (n)

Eg ——lim
5~ oo

is plotted in Fig. 7 as a function of U for several values of
G. For all G the slope of these curves decreases as U in-
creases, which indicates that the average value of the in-
trasite interaction energy in (1) vanishes in the large-U
lixnit. Accordingly, there is no doubly occupied site and
the system is found in a spin-ordered ground state. This
can bc best scen in FIg. 8 &herc wc have plotted thc aver-
age value of (I/N) g, n;„n;, as a function of U and G.
The local moment M, defined as'

M=((n2, n2, ) —),

0.2

-0.2

P / I I I I I I I i

I f
A

FIG. 5. Plot of the quantity A=U'"' below the boundary
and 6=26'"' above it as a function of 6 on an extended scale
near the boundary. The values of 2, B, C, and D are, respective-
ly, A =3.1, 8=3.1025, C=0.7, and D=0.1 for U=5; 3=5.75,
8=6.0, C=7.0, and D= 1.0 for U= 10; and 2 =8.5185,
$=8.531, C=11.0 and &=5.0 for U=15.

FIG. 7. Ground-state energy Eg as a function of U/t for
several values of G jt.
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APPENDIX: UNITARY TRANSFGRMATIGNS
AND PRGJECTGRS

0,0

%'ithin each I Hilbert space, the selected basis consists
of four states: the nonmagnetic states ~2,0) and ~4,0),
and the magnetic states ~3, + ) and ~3,—). In both sub-
spaces, the states are related through unitary transforma-
tions whose general expressions are I

FIG. 8. Average value of (1/X}g,. n;, n;, as a function of U/I
for several values of 6/t.

has been iteratively constructed using (5). The result is
shown in Pig. 9. M varies continuously acx'oss the boun-
dary, and the system undergoes a second-order transition
from a charge-ordered phase (M=o) through a spin-
ordered phase (M = —,). In the vicinity of the boundary,
Fig. 9 indicates that the system is found in a mixed spin-
ordcrcd —charge-ordered phase.

IV. CGNCI. USIGN

U, =exp &'$P;Q; S;

where S;=(S„;,S„,,g„) and p,.=(p„,,&, ,&, ) with

~~g =Cg )Cg g +Cg )CAN g

~~I =z(crlcr~ eric@)

S~ =ng) —pg;),

(Al)

It has been shown that the application of the real-space
renormalization-group method to the 1D extended Hub-
bard model, in the half-filled-band regime, yields results
similar to those previously obtained by means of the
broken-syxnmetry Hartree-Pock approximation. There
are, however, two main differences: (1) The spin-ordered
and charge-ordex'ed phases ax'e separated by a boundax'y
line which reduces to a straight line ( U =26) in the atom-
ic limit only, and (2) the transition across the boundary is
a continuous phase transition. As a consequence of the
latter point, the system, in the vicinity of the transition
line, is found in a mixed spin-ordered —charge-ordered
phase. As we shall see in the following paper, the results
obtained using the finite-ceil —scaling method support
these conclusions.
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p~g =CggCgg +CggCg g,

PyI=Z(CIieiI

and Q; alc arbitrary lllllt vcctol's, and u.
and P; are the parameters of the transformations. These
quantities can be chosen such that

(A3)

The former accounts for the electron-hole exchange, while
the latter amounts to the spin inversion. Both transforma-
tions commute with the block Hamiltonian. Accordingly,
onc obtains:

[4,0&=U, ~2,0&, ~3, +&=U, ~3, —),
and thc nonmagnetic states, as well as thc magnetic OQcs,
are degenerate. The parity operator II, defined as

0.25

0.00

0/t =0.0

also commutes with the Hamiltonian. The expx'essions
(Al)—(A5) can be used to relate the different matrix ele-
ments of the creation, annihilation, and occupatlon-
number operators involved in the renormahzation of both
the block and the interblock Hamiltonians.

The projectors involved in (7) can be written in terms of
fcrmlon operators p

)
0)(0 [

=(1—nl )(I—Ill » I
1 + )(1 + I

=('—")"I
(A6)

-10 -8 -6 -4 -2 0 2 4 6 8 U/t

FIG. 9. Magmtude of the local momellt M as a function of
U/t for several values of 6/t.

~

=(1—n, }n„)2,o)(2,0 )
=n, n, ,

from which (8) follows. Similar expressions lead to (10).
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