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We develop the theory of the temperature variation of surface-spin-wave frequencies in the semi-
infinite Heisenberg ferromagnet, for modes with wavelength sufficiently short that exchange in-
teractions provide the dominant contribution to the excitation energy. Magnon-magnon interactions
are the source of the temperature variation of the surface-spin-wave energies, and our attention is
directed toward the leading contribution in the limit of low temperatures. We find a T correction
to the T=0 spin-wave frequencies, so the leading term exhibits the same temperature variation as
found for bulk spin waves.

I. INTRODUCTION

The influence of a surface on the properties of a semi-
infinite ferromagnet has been the topic of numerous
theoretical studies. ' At temperatures T that are low com-
pared to the Curie temperature T„spin-wave theory may
be employed in such analyses, and one encounters surface
spin waves, which may be viewed as a magnetic analogue
of the Rayleigh surface waves encountered in surface-
lattice dynamics.

Surface spin waves have been studied in recent years by
the technique of inelastic light scattering (Brillouin
scattering). The modes excited here have wavelengths
very long compared to a lattice constant, with the conse-
quence that their excitation energy is dominated by the
Zeeman and dipolar terms in the spin Hamiltonian; ex-
change interactions play only a minor role. In many of
the microscopic theories cited above, short-wavelength
exchange-dominated surface spin waves enter importantly,
but with the exception of one microwave resonance study,
we know of no experimental study of these modes.

A very beautiful study of a ferromagnetic alloy surface
by means of spin-polarized electron scattering shows that
the surface magnetization obeys the same T i law as that
in the bulk when T&&T„although the coefficient is
found to be larger. This is in good accord with an early
theoretical prediction but, as argued previously the
surface-spin-wave contribution to the temperature varia-
tion of the surface magnetization is in fact canceled to
leading order by a deficit which arises from a surface-
induced "hole" in the bulk spin-wave density of states.
Thus, the surface magnetization data cannot be viewed as
providing even indirect evidence for the existence of
exchange-dominated surface spin waves. In general, simi-
lar (possibly incomplete) cancellations will occur in any of
the contributions to the thermodynamic quantities that
scale as the surface area.

Some years ago, one of us proposed that inelastic elec-
tron scattering may serve as a means of detecting
exchange-dominated surface spin waves on single-crystal
surfaces of ferromagnets; the calculations show that the
spectra will contain lines produced by surface spin waves,
and energy-loss bands with origin in scattering from bulk

spin waves, by events which fail to conserve wave vector
normal to the surface. Very similar results emerge from a
study of electron scattering from the surface of a mor'el
antiferromagnet. ' Until recently, such large deflection-
angle energy-loss studies have failed to make their appear-
ance, but this method has been used very recently to ex-
plore the dispersion relation of surface phonons on a clean
Ni(100) surface. " In principle, this method may be ap-
plied very much as in Ref. 11 to the study of spin waves
on surfaces, provided the energy-loss cross section is suffi-
ciently large. Finally, glancing incidence neutron scatter-
ing has been suggested as a means of probing surface spin
waves; our earlier analysis' of this possibility suggests
that an experimental problem will be whether the surface-
spin-wave loss feature can be resolved from a broad peak
produced by inelastic scattering off of the bulk spin
waves.

If surface-spin-wave dispersion relations can be studied
by a method such as electron-energy-loss spectroscopy,
then the temperature variation of the surface-spin-wave
frequency provides one with access to interactions between
spin waves, when they are in the very near vicinity of the
surface. In this paper, we present a theoretical study of
the leading contribution to the temperature variation of
the surface-spin-wave dispersion relation, for short-
wavelength modes whose excitation energy is dominated
by the exchange interactions between the spins. Just as
the leading term in the surface magnetization has the
same temperature variation (T i law) as that in the bulk,
we find the first correction term in the surface-spin-wave
dispersion relation has the T temperature variation
characteristic of that found for bulk spin waves. '

As the above remarks imply, the present paper exam-
ines only exchange-dominated surface spin waves. The
reader may note that an earlier paper' explores the tem-
perature variation of the frequency of the (dipole-
dominated) surface spin waves explored in the light
scattering studies cited earlier.

II. THE CALCULATION

A. Outline of the procedure

We shall need a specific model crystal for the analysis,
and we choose an fcc lattice of spins S with a (100) sur-
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face, and there are nearest-neighbor exchange interactions
of strength J between the spins. Nearest-neighbor spin
pairs in and near the surface are coupled with interactions
identical in strength to the bulk. This is one of many
model geometries that admits surface spin waves. ' '
While the model may seem rather specific in nature, in
fact numerous discussions show the qualitative features of
the surface-spin-wave spectrum are insensitive to the de-
tails of the surface geometry, ' ' with the exception of the
special case where the surface exchange is so strong,
modes are pushed out above the bulk-spin-wave bands in
frequency. ' Furthermore, the low-temperature behavior
of the mean spin deviation

EI ( T) =S—(S,( 1 ill, ) ) T

is also model insensitive. (Here the location of a spin is

denoted by 1 = 1 ~~+zl„with I, an integer that counts the
layers of the crystal. We assume the crystal lies in the
upper half space, with the surface layer labeled by l, =1.)
Thus, while the calculations in the present paper have
been carried through for the model just outlined, we be-
lieve the principal conclusions will be quite similar for
other choices of crystal structure or surface geometry.

Our Hamiltonian is then

1
~%4 ————~~~a -a - -a-a- ——,'a a -a a-

1 1+5 1 1+5 ~ 1 1 1 1+5

——a a a a ).1+5 1 1 1

It is possible, in principle, to diagonalize the quadratic
terms exactly, for the semi-infinite magnet. Indeed, in a
study some years ago of the origin of the intimate rela-
tionship between the surface-spin-wave contributions to
the thermodynamic properties, and those from surface-
induced redistribution of the bulk modes in frequency,
this procedure was carried through explicitly for a finite
ferromagnetic film of thickness L, with the limit L —+ 00

achieved at the end. Translational symmetry dictates the
normal modes are characterized by a wave vector kl~

parallel to the surface, and for each choice of k~~, we have
a sequence of eigenmodes denoted by a= 1,2,3,. . .n, where
n is the number of layers in a finite, but very thick sam-
ple. If we denote the eigenvectors by P- (l, ), and sup-

k Ila

pose the sample is finite in thickness for the moment, then
we have the orthonormality condition

(2.4)

0 = ——QQS(1).S(1+5),
2

5

(2.1)

S~(1)=S„(1)+i'(1)

=(2S) a- — a a a-+1/2
1 4g 1 1 1

(2.2a)

where the sum over 5 covers the nearest neighbors of the

spin at site 1; a spin in any layer with I, )2 has twelve
nearest neighbors, and a surface spin with l, =1 has only
eight. The four "broken bonds" are responsible for soften-
ing the restoring forces on the surface spin, and this leads
to the surface-spin-wave branch of the excitation spec-
trum. '

If one introduces the Holstein-Primakoff transforma-
tion truncated as follows:

We may then introduce a unitary transformation between
the local spin-deviation operators a-, , and the operators

a - which create an eigenmode of the finite film,
k lla

l
1 + k ~~a k ~~a

k a
II

with a similar relation for a -. We apply periodic boun-
1

dary conditions in the two directions parallel to the sur-
face, and E, is the number of spins in the layers parallel
to the surface, in the fundamental quantization area.

In what follows, we shall require the explicit form of
(l, ) only for the surface spin wave whose renormal-

k Ila
ized frequency we wish to calculate. For our model, the
surface-spin-wave frequency may be written in the form'

and

S ( 1 )=S„(1 ) iSy( 1 )—
r

=(2S) a -— ai a1a +1/2

4g 1
(2.2b)

Q, (kii) =A(kii) —,'B(kii)—
where, with

klan
——xk„+yk~, we have

A(kii)=8SJ,

+y(kii), (2.6)

(2.7a)

S,(1)=S—a, a, (2.2c)

(2.3a)

where

with a- and a-, boson operators, the Hamiltonian is
1 1'

decomposed into piece quadratic in the boson operators,
and a quartic piece:

0=H2+H4,

and

ap ap
B(kii)=8SJcos k„cos k„

ap Qp
7'(kii)=cos k» cos kyX

(2.7b)

(2.7c)

Hi =STg(a a -—a -a )
1 1 1 1+5

5
(2.3b)

with the geometry illustrated in Fig. 1. For each choice of
k~~, the surface-spin-wave frequency lies below the bulk-

spin-wave frequencies associated with the wave vector k~~.
These are given by, for the model,
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FIG. 1. Basic geometrical unit of the (100) plane of a fcc
crystal.

Onc proceeds to generate the first correction 5Q, (kii) to
the surface wave frequency as follows. The quartic terms
in the spin-wave Hamiltonian are expressed in terms of
the true normal-mode annihilation and creation operators
through use of Eq. (2.5). Then the expectation value of
H4 is taken in a state in which the various modes are
characterized by a well-defined set of occupation numbers
tn- I. The result has the form

k tta

&a.) = g g 1(kii,~;pic)n, n
g tlk

tiled

q ttl+

QII(kll "k& A(kll) ~ kll cos z duo (2.8)

where the maximum value of k,ao is 2~. The eigenvector
(I, ) of the surface wave, suitably normalized, is given

k tts

by

5(a, )
5Q, (kii) =

5n-
k tts

J X 1(kli~s;qil~a)n
q iiyQ

(2.12)
—(K/2)l

k tts

K=21n 1

y(kii)

(2.9)

(2.10)

where now n is replaced by the appropriate Bose-
q tt„tx

Einstein distribution function to generate the temper-
ature-dependent contribution to the surface wave frequen-
cy. In terms of the eigenamplitudes P (I, ) introduced

lt

above,

5Q, (kii)= — g g n- IP*-„(&,)P-„(&,)P*- (&, +5,)P- (&, +5, )

+It*-„ (&, +5, )P-„ (&, +5, )P*-, (&.)P , (&, )

(l, )P (l, )[y' (l, +5, )y (l, )e

+P* (I, )P (&,+5, )e ' [P* (i, +5, )P (&, )e' ll II y* (I, )y (l )]"it qii q
tt qtt

(i, +5, )e
'

y*, .(&, )y-,-.(i.)JJ . (2.13)

We shall use the expression in Eq. (2.9) for the amplitude of the surface spin wave, and the amplitudes of the thermal-
ly excited spill waves Illay bc cllmlnatcd tlllougll Icsort to ccrta1n Gl'cell s fl111ctlolls glvcll so111c tllllc Rgo. ' Ill Rcf. 16,
these were written in a rather general form which may be applied directly to the present geometry. The notation used in
the following is that of Ref. 16. The spin-wave Greens function, in the site representation, is denoted by
6( I, 1;Q i'), with r—i a positive infinitesimal. The link to the present problem is provided by the identity [Eq. (2.10)
of Ref. 16]

Tllcll Eq. (2.13) 111ay bc written dllcctly lll terms of thc
Green's function.

Translational invariance allows one to write the Green's
function in the form

G(1, 1 ';Q i')= Q—G(qii', i„&,';Q —iI))

'qit' ' tt- ' it'X (2.15)
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and explicit expressions for G(q~~, l, l,';0 i—g) are found
in Ref. 16. This function consists of two pieces:

G(q~~'I I' 0 ig}=Go(q~~' I
I I'

I

'0 irl}

+5G, (q((,'I, +I,';0 —ig) . (2.16)

The piece Go(q~~, I
I, —I,

' I;0—iq) des~ribes spin-wave
propagation in a crystal of infinite spatial extent. If only
this piece is retained in Eq. (2.15), the result obtained
would describe renormalization of the surface mode by in-

teraction with bulk waves, described as plane waves, total-

ly unaffected by the surface. The function b,G, (q~~, l,
—I,';0 ir—l) describes modification of the excitation spec-
trum by the surface. There is a pole at 0, (q~~), the
surface-spin-wave frequency associated with the wave vec-
tor q~~. This leads to a contribution which describes re-
normalization of the surface spin wave by thermally excit-
ed surface spin waves.

The functional dependence of both Go(q~~, I
I, —I,' I,

0 iq)—and b.G, (q~~, ,I+,I'; 0 ig) a—re sufficiently simple

that one may carry out the sums on I, and 5 in Eq. (2.13)
explicitly, once it is written in terms of the Green s func-
tion. Upon noting Eq. (2.15), we are left with the sum on

q~~ and the integral on frequency. The summand will be
simplified by noting that when T « Tc, the thermally ex-
cited (bulk and surface) spin waves have a wavelength
very long compared to a lattice constant. By exploiting
this, the various contributions may be simplified to the
point where simple expressions emerge from the analysis.
We now turn to the details.

B. Mathematical details

It is convenient to introduce a new dimensionless fre-
quency variable 0'=[0 A(qll)]/B(qll As 0 is»ried
from 0 (q~~) to 0 (q~~), where 0 (q~~) and 0 (q~~) are
the minimum and maximum bulk-spin-wave frequencies
0' varies from —1 to + 1. At the surface-spin-wave fre-
quency, 0'=0,'(q~~) & —1. Then the function

Go(qll'I, —I,'
I
0—ig) is given by

I

G (
I

I I
I

0 )
[I[ 0 i(1 0 ) ]

B(qadi)(1 —0' )'

while (for I, and I,
' both equal to or greater than unity),

(2.17)

~2 1/2 ~lz+lz 1~

hG( I I'0 '
) [ —0 —((1—0 )

s q~~' z+ i —~'q =
B qadi)~ 1 —0'

1+y'(q, ~)+20 y(q~, )

['—y'qual']" —0'}'"—I 1 2y(qual)+0'[1+y'(qiI }]]

(2.18)

As remarked earlier, b, G, has a pole at the surface-spin-wave frequency, Eq. (2.6). In the near vicinity of this pole, Eq.
(2.18) may be arranged to read

I

EG~(qual I~+I~;0—i
1

(2.19)
B(q((}[Q'(q((} —1] 4y (q(() 0' —ill —0,'(q(()

We now display the form of the various contributions to the frequency shift, once the sums on I, and 5 have been car-

ried out. First, consider the piece from Go(q~~', I I, —I,
' I;0—iq), and call this 50,'(k~~). When 0' lies between —1 and

+1, it is useful to define g(q~~)= —0' —i(1—0' )', where the dependence on q~~ arises from that in A (q~~) and

B (q~~). We then let ~, =2 in[1/y( k)] be the attenuation constant of the surface spin wave whose renormalized fre-
quency is under study. One then finds

50,"(kii)=—
Ks

y J
dQ (0}( 1}

lm I [1 2y(q )g( )]e
im.X, n (z~~& B(- )(1

+

+
(e ' —1)

[1+2[1—4y(q)()g(q(()]e '+e

+2[y«// —q//}Pq//) —2y«[/)] « *+e

(2.20)

The contribution from EG„ in the frequency regime between 0 (q~~) and QM(q~~) is in fact quite comparable to that

displayed in Eq. (2.20). We call this contribution 50,' '(
k ~ ~

), and find it has the form
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dQ n (Q)(e —1)[1+y q
I I

+2Q'y qll ]
N - " (qii) 8(qii)(l —Q' )'

q II

([y (qll) —1](1—Q' )' +i [ 2y(q 11) +Q'[1+y (qii)]j )

+ ««11)[y kll-qll «qll

[e ' —P'(qii)] .
g (qll)+ —2y(qil)[ +~

—2K~ —(1/2)K,
+«qll +e '+ e '~y

II
—

qll Y(

+ "'«qii)[y«ii —qll)~(qll)

+ y(kii)]]

(2.21)

We are left with the contribution from the thermally excited surface spin waves. This we call 5Q,"(kII). In the alge-
bra, one encounters the combination —Q,' —(Q,' —1)'/ which, upon using the surface-spin-wave dispersion relation,
may be shown to equal y( q II). Then

(,) J n [Qg(qii)](e —1)[1—y (ail)]
5Q,"(k

I I
)=-

y'( q
I I

)[Q,'( q
I I

)' —1]

s 2Ks —(3/2)K
y qii) + y(qll)+ y(qll ' '»(qii»(qil II

'Y(
II ]

[e ' —y'(qii)l

1

y( q II)

—2y qll) —y'(qll e +Yqll +e

—(K /2)+ '

+ y qll)e "'[y
qll y(kll (2.22)

It is possible to simplify the expression for 5Q,"(k
I I

) considerably. We introduce f((a; )= 16 e

f2(~, ) = —8(1+e '), and fo(~, ) =f, (a, )+f2(a, ), and after some algebra, we are led to the much simpler form

5Q,' (kll) = g 2, [fo(a, )+Q'f((a;)y(qii —kii)+Q'f2(a, )y(qll)] .
J ~' " ll' dQ n(Q)

2mN, n (qli) (1—Q' )' (2.23)

The integrals on frequency in Eq. (2.23) may be evaluated in closed form. We let r= kz T/A, and find

+ dQ ~ (g/) n8
n/r 1 )( 1 Q2)1/2

~~e 0
7

(2.24)
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where Io(x) is the standard modified Bessel function of order zero. A similar analysis gives

dQQ ~/, nB

( 0/ T '1 )( 1 II2)1/2
(2.25)

with I~(x) the modified Bessel function.
We now introduce a sequence of approximations that exploit the fact that only low temperatures T && T, are of in-

terest. We make no assumption about the magnitude of k~~, but the thermally excited waves will have
~ q~~ao ~

&&1 in

this temperature regime. Thus, for example, we may expand y(k~~ —
q~~) in powers of q~~. This expansion assumes the

OH11
r

2
ap 2 ap ap ap ap ap

q
I I

' =1' k
l l

' 1 — q
I I

+ + q c» ". »n " +q.c»
8 2 ~ 2 " 2 " " 2 2

2
ap ap ap

+ q„qy sin k„sin —
ky4 " 2 " 2

(2.26)

where the omitted terms are cubic or higher in q„and q~. The terms linear in q~~ fail to contribute to the integral, and
the same is true of the term proportional to q„q„. Thus, it is only the first term that need be retained. In the low-
temperature limit, we also have r «8, so in Eq. (2.24) and (2.25), Io and I& may be replaced by their asymptotic forms
for large argument:

Z

Io(z) =
27TZ

1+ +1

Z
(2.27a)

2

Ii(z) =
V2m.z

3
1 — +

8z
(2.27b)

Finally, the sum over q~~ may be replaced by an integral. When these steps are completed, we have with A the surface
area and N, the number of surface unit cells,

1/2 oo

50,"(k(()= g, J,/ e "'" ' ' [fo(x;)—y(k(()f((a;) —fz(~, )]2(2') /N, „(n' o 8'

+ [fo(~, )+3y(k~~)f)(~, )+3fz(~, )]
SnB

2 2
apq

//+ [f&(~,)y(k~~)+f&(~, )]+ . . (2.28)

where the terms retained will generate the leading correction to the dispersion relation. Explicit reference to the depen-
dence of A and B on q

~~

in Eq. (2.28) has been suppressed.
It may be shown that the first term in square brackets on the right-hand side of Eq. (2.31) vanishes identically. Also,

from Fig. 1, one sees that the ratio 2/N, equals ao/2, so that
2 /2

/ [fo(& )+3)'(k~~)fi«. )+3fz«. )lr,'„f,32(2~) /

4 1/2 00

+ pgp [f1&~,b'&&~~&+f~&~*&l X tlap f& (2.29)
32(2m. ) /

J (-, )Sn"(k )=
)3/2 8SJ t[fi(~. )X(k~~)+f~(~, )]+—,

' [fo(~.)+3)'(k~~)f i(~. )+3fz«. )H . (2.30)

In the spirit once again of the long-wavelength approximation, we may replace /I Bby Slaoq~~, whi-le 8 itself is re-
placed by 8SJ. The integrals on q

~ ~

may then be performed:
5/2

8n,"(k„)=—

The last step is to notice a relation between fo(a, ), f&(~, ), and fz(~, ) and y(k~~) which follows from Eq. (2.10). This
gives the final result for that portion of the renormalization contributed by Go( q ~~, ~

l, —l,' ~;0 ig):—
12Jg( —,

'
)

(2~)'" [1—y (kii)] . (2.31)

The contribution to the frequency shift originating from Eq. (2.21) may be handled in a very similar fashion. Howev-
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50, (k(()=+ g I ~ exp (aoq((+Se) —1(i) - &[I—7 (k)()] 1 " de SJ
2' im' o 2e 7

er, one must treat the integrand with considerable care. As pointed out earlier, ' when one considers the reflection cf
surface spin waves off the surface, there is a resonance in the scattering amplitude, for waves which strike the surface at
near glancing incidence. If qi is the wave-vector component of the wave normal to the surface and q(( that parallel to it,
then thc rcsonancc occurs when g~ =-/I~Co. When an/ physical quantity 1s computed, onc IDUst take care to 1nsurc that= 2

the presence of this feature is accounted for. We proceed by writing 0 = —1+e in Eq. (2.21), and also we suppose
qIIao ~~ 1. After considerable algebra, we find the integrand may be written as

—1

Im[(iq((ao —SM2e) . , (2.32)

which becomes simply

(2.34)

(s) - J['—&'("ii»ao50, (k(()= g q(( exp (a(')qt(+Se) —1 (2.33)
2mN, o 2e

The resonance just described leads to a factor of iq((ao+8~2e in the denominator of the integrand. This, however, is
canceled by an identical factor in the numerator, and as a consequence, the resonance plays no role in the present
analysis. Upon evaluating Eq. (2.33) in the low-temperature liniit, we find

5 ' ' 5/22Jg( —,)
50, (k(()=+, [1—y~(k(()] .

(2~)3/~ SSJ'

We are left with the contribution from thermally excited surface spin waves. As remarked in Sec. I, this portion van-
ishes identically, in the first order of perturbation theory. To see this, refer to the quantity in curly brackets in Eq. (2.22)
as X(k)(,q ~(), and multiply it by [e ' —y'{k(()]/Sy(q)(), to fmd after some algebra that

K
( k (()] ~ —a~ ~ —(z~ /i) ~ —(N~ /i) ~ 2 —(a'~/2)

N(ki(, q(()=e '+2y(q(()y(k(( —q(()e
' —y(k(()e ' —y(k(()y (q(i)e ' —y (q(()e

Sy(q(()

(2.35)

Now for the purposes of calculating the frequency shift 50'"(k(~), the quantity y(k~~ —q(() only enters averaged over
the direction of q((. Calling this average (y(k(( —q(()), one may easily show the average equals the product
y(q(~)y(k((). We are left with

Kg[e —1' (k(()] ~ —a; ~ i —(~ /2) ~ —(a /2) 2
—a;(N(k)(, q(()) =e *+y(k(()y (q(()e * —y(k(()e * —y2(q~()e (2.36)

Sy(q~()

10Jg( —', )
50'(k(() =—

(2~)'/2

* 5/2

[1—y (k(()] .

Note that in our discussion~ wc have made no assumption

—(x /2)
Upon noting that e ' —=y(k((), one sees the right-hand

side of Eq. (2.36) vanishes, and thus 50,'"(k(() does also.
Past discussions * have pointed out that there is an inti-

mate relationship between the contribution to surface
properties of the Heisenberg ferromagnet from thermally
excited surface spin waves, and that from the resonant
scattering of glancing incidence bulk waves. The latter
produces an "antiresonance" in the density of bulk-spin-
wave eigenstates, which partially cancels surface-spin-
wave contributions to surface thermodynamic properties.
We have seen that there is no manifestation of the bulk-
spin-wave scattering resonance in the present calculation,
so it is perhaps reasonable for the surface wave contribu-
tion to vanish also.

Our final result for the renormalized surface-spin-wave
frequency is found by summing that in Eq. (2.31) and that
in Eq. (2.34). Thus,

about the magnitude of the wave vector of the surface
spin wave, so Eq. (2.37) applies throughout the two-
dimens1onal Brillou1Q zone.

III. SOME CONCLUDING REMARKS

The temperature variation we have found for the excita-
tion energy of the surface spin wave is precisely the same
as for bulk spin waves, which is also T / in leading order.
Here we compare the magnitude of the effect for the two
cases. There is particular interest in the limit k(( —+0
since, in the absence of interactions, the term in the
surface-spin-wave dispersion relation quadratic in k(~ is
precisely the same as that of a bulk spin wave which pro-
pagates parallel to the surface. As discussed earlier, ' the
"binding energy" of the surface spin wave resides entirely
in the quartic terms, in this limit. Any difference in the
coefficient in the dispersion relation produced by interac-
tions between spin waves thus has an important influence
on their binding, in the long-wavelength limit. Upon not-
ing that as k((~0, y(k(() =1——,

'
a()kt(, one finds from Eq.

(2.37)
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5 J 25Q, (k(()= —— (k((ap)2 (2m)'t 8SJ

' 5/2

g( -', ) . (3.1)

5/2

5Q(k)= — (kap) g( —', ) .
(2~)'~'

(3.&)

Thus, interactions between spin waves affect the surface

Expressions for the renormalized frequency of bulk spin
waves have been given by a number of authors. Most par-
ticular, Ref. 14 has explored the role of nonlinearities in
both the dipole-dipole and the exchange terms in renor-
malizing spin-wave frequencies. From the formulas given
there, ' we find for bulk spin waves in the long-
wavelength limit, for the fcc crystal with nearest-neighbor
exchange,

mode more strongly than the bulk waves, in the long-
wavelength limit, and produce a difference in the quadra-
tic terms in the dispersion relation in this regime.¹teadded in proof. Since this paper was submitted for
publication, we have learned that Kontos and Cottam
have also studied the renormalization of surface spin
waves by thermally excited bulk and surface spin waves
[D. E. Kontos and M. G. Cottam, paper presented at the
Conference Internationale sur la Dynamique des Inter-
faces, Lille, France, September 1983 (unpublished)].
These authors obtain results only in the long-wavelength
limit, k~cap &&1, but allow for changes in surface ex-
change constants. With surface and bulk exchange equal,
they find a T ~ law as we do, and there is no contribution
from thermally excited surface spin waves. They con-
clude that altering surface exchange may lead to devia-
tions from T t behavior.
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