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We consider a semi-infinite two-dimensional Ising model with nearest-neighbor coupling constants that

deviate from the bulk coupling by Am & for large rn, m being the distance from the edge. The case A (0
of couplings which are weaker near the surface has been discussed by Hilhorst and van Leeuwen. We re-

port exact results for the boundary magnetization and boundary pair-correlation function when A & 0. At
the bulk critical temperature there is a rich variety of critical behavior in the A -y plane with both paramag-

netic and ferromagnetic surface phases. Some of our results can be derived and generalized with simple

scaling arguments.

In a recent Letter Hilhorst and van Leeuwen' reported
exact results for the Ising model on a semi-infinite triangu-
lar lattice with nearest-neighbor couplings Kt(m), K2(m)
(see Fig. 1) which depend on the distance m from the edge.
Far from the surface the couplings vary as

K(m) =Ks+A;m, m »1
They give 3; a convenient ratio, setting

1 1

A l
= —,A slnh2KI~, A2 = —3 cosh2K2q (2)

and consider the case 3 & 0 of couplings which are ~eaker
near the surface. The following behavior for the pair-
correlation function g(r) of the surface spins at the bulk
critical temperature is found. For y & 1, g(r) decays asr, q ~~

= 1, just as in the homogeneous semi-infinite' case
3 =0. For y =1 the exponent q ~~

is nonuniversal and
varies with A. For y & 1 there is an anomalous exponential
decay rather than an algebraic decay.

Burkhardt4 and Cordery5 subsequently pointed out that
these results are compatible with a local scaling picture ap-

plicable to any semi-infinite system with a divergent bulk
correlation length with critical exponent u. In a rescaling or
renormalization operation in which the lattice constant is

multiplied by a factor b, the quantity 3 transforms as

(3)

Thus the inhomogeneity is a "relevant" parameter which
modifies the surface critical behavior for y & v ' but not
for y & p ', Burkhardt and Guim' have shown that the
Gaussian model with 3 &0 exhibits the same variety of
surface critical behavior as the Ising model, with crossover
at y = v ' = 2 in accordance with the scaling prediction.

In this Rapid Communication we consider an Ising model
described by Eqs. (1) and (2) with A &0, i.e. , the couplings
are stronger than the bulk coupling (but never infinite) near-
er the surface. From the scaling theory one expects the sur-
face critical behavior for y &1 and A &0 to be essentially
the same as for 3 =0, since the inhomogeneity is "ir-
relevant. " We were particularly interested in learning
whether or not there is a spontaneous boundary magnetiza-
tion at the bulk critical temperature for y & 1. The
enhancement of the coupling constants over the bulk cou-
pling favors a magnetization, whereas the one-dimensional
surface has an opposing tendency.

Our results for A &0 were obtained with the method of
Hilhorst and van Leeuwen' with modifications noted below.
Blote and Hilhorst have independently applied a Pfaffian
method to the same problem. Before outlining our calcula-
tional procedure, we summarize the results:

(1) For y & 1 and A &0 there is no spontaneous surface
magnetization at the bulk critical temperature, and the

correlation function of surface spin s falls off as r
q ~~

= 1, just as in the homogeneous semi-infinite3 case.
(2) For y =1 there is a spontaneous surface magnetiza-

tion m I at the bulk critical temperature for
= —, sinh2K2~. As A approaches A, from above, ml van-

ishes9 as (A —A, )' '. For A & A, and A & A, the correla-
tion function falls off algebraically with the nonuniversal ex-
ponent

q~~
= I1 —A/A, l (4)

FIG. 1. Semi-infinite Ising model. The vertical bonds parallel to
1 3the edge are designated by Kl(m), m = T, 2, . . . , and the diagonal

bonds by K2(m), m =1,2, . . . .

At A =A„where q~~ vanishes, g(r) decays as (lnr)
(3) When y & 1 there is a spontaneous surface magneti-

zation at the bulk critical temperature for all 3 &0. As A

approaches zero, it vanishes as 2 ' '2" ~". The correlation
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function exhibits an anomalous exponential decay of the
form

g{r)—exp[ —(rl()' '] (5)
' 1/(1 —y)

' y/(1 —y)

2A, I'(1/2y)

~'"r( 1/2y + —,
'

)

2n
g(r) = g2 '"—" +„f(n)[1 —m((n)]

n 1

{10)

f( ) = g [1 —e p[ —4K ( —,',j)]} . (11)
j~ 1

The quantity exp[ —4K, ( —,', n) ] approaches zero as n

We note that Eqs. (4), (5), and (6) hold' for A &0 as
well as A &O.

These results were calculated using the method described
in Ref. 1. One uses a mapping based on the star-triangle
transformation to generate a sequence (n =0, 1,2, . . . ) of
Ising models with coupling constants K&(m, n), K2(m, n)
(see Fig. 1) from the original model {n=0). The surface
magnetization and boundary correlation function transform
accordlAg to

m)(n) = [1 —exp[ 4K, {,
'—

, n +1)—]}'~'m)(n +1)

g(r, n) = —, [1 —exp[ 4K(( , , n—+1)]}—

x [g(r +l, n +1) +2g(r, n +1) +g(r —l, n +1)]
(8)

The correlation function g(r, n) = (o.(r)o.(0)) —(o)' satis-
fies the boundary condition g (O, n) = 1 —mt'(n) . It fol-
lows' that m t = m ~ (0) and g (r) = g (r, 0) are given by

m( = lim [f( )n]'~' m)( )n

v —
M

2 2 1
slnh2E1 = Q, sinh2K2 = —Q

4uv U

0 = [1 ——,
' (~ -u)']'"+ [1 ——,

' (~+u)']'"

(12)

The upper sign is used for supercritical couplings and the
lower sign for subcritical couplings. Both the supercritical
and subcritical domains map onto u +v & 2. The bulk criti-

cality condition corresponds to u+v=2. With these substi-
tutions the differential flow equations for the coupling con-
stants may be put in the form

Bm Bn Bm Bn

Hilhorst and van Leeuwen' solve Eqs. (14) for 2 &0
with the surface boundary condition K2(0, n) =0 suggested

by Flg. 1 BAd by computer ltclatloAs of thc transfolITlatlon

equations for the coupling constants. Instead, we require
that the solution to Eqs. (14) satisfy the transformation law
fol' thc cdgc coupling,

K, ( ,', n +1—)= K, ( ,', n) + —,
' —lncosh2K2(l, n) (15)

which differs f10m thc tlansfollTlatlon cquatlons for lntcrlor
coupiings, from which Eqs. (14) follow. For A &0 both
procedures lead to identical results. However, for y=1,
A & A, and y &1, 3 &0 our analytical results imply that

K2(m, n) no longer extrapolates to zero at m =0. Computer
iterations of the difference equations appear to confirm this.

Following Ref. 1, we consider solutions of Eqs. (12)—(15)
of the form

tends toward infinity. All of our results for the critical
behavior listed above follow from the asymptotic form of
exp[ —4K&( —, , n)] for large n .As in Ref. 1 we calculate the

asylTlptotlc form rcplaclng thc dlffcrcncc cquatlons which lc-
late the nth and (n +1)st sets of coupling constants by dif-
ferential equations. We also introduce variables u, v where

rn mo = u „dp ~(p)a Ii(pu) [Ki{p&a)lo(p'U) +Ii(p~a)Ko(p~)]
—PQg

n = u „, dp w(p) e aIo(pu) [Ki(pea)Ii(pv) —Ii(pua)Ki(pu) ]

fPl fPl 0
exp ( —4K

~ ) = sinh'2K2 = (18)

Herc I„BAd E~ dcnotc modified Bcsscl fuActloAs. A COA-

stant mo to be fixed by the boundary condition Eq. (15) has
been included in Eq. {16). For A & 0 we find that a weight
function a (p)~ p

"~r+"~' for large p yields coupling con-
stants with the m ~ dependence of Eqs. (1) and (2) for
m )& n, just as for A & 0.

We now discuss the large-n behavior of the surface cou-

pling Kt( 2, n) in different regions of the A-y plane. Our

conclusions are summarized in Table I. Proceeding as in

Ref. 1, one finds that for y &1 and m « n Eqs. (16) and

(17) imply

y &1, A arbitrary

y=l, A K A~

y=l, A =A,

y=l, A &A,

—,(1 —3/A, i n
1

(n inn)

-(I+a/W )/2
cl n C

TABLE I. Asymptotic form of exp) —4E1( 2,n)] in the large-n
1

limit. For completeness we have also included the results of Ref. 1

for A &0. ( is defined in Eq. (6}. c~ and c2 are constants (Ref.
10).

The boundary condition Eq. (15) requires mo =0.
For y = 1 and pn &( n we find

m —mo . , 2(m —mo) +A/A,
exp —4K' sinh 2@2=

n 2n
(19)

y&1, 3&0

y%1, 3+0

1 —y
2(

' 2/(1 +y)
n -2y/(1+y)

' 2/(1+y)1+y 1 —y „(1-y)/(1+y)
1 —y2g'y
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For A & A, the boundary condition requires ma =
2 A/A, .

For A & A, we set mo= 2. Then exp[ —4K|( 2, n)] van-1 1

ishes to order n '. However, it does not vanish identically,
but instead approaches zero faster than n '. Inserting
sinh22K, from Eq. (19) with mo = —' into Eq. (15), one

finds that
—(] +A jA )/2

exp[ 4K'(——, , n)] = cin

where c1 is a constant. ' Computer iterations of the differ-
ence equations confirm this n dependence.

This correction to the leading 0(n ') behavior is not
contained in Eqs. (16) and (17) but follows if extra terms of
the form

m —mo= +u Jt dp w, (p)e '&Kt(pu)IO(pv), (20)
0

lrI oo

n = —v Jiidp wl(p)e '&Ko(pu)11(pv) (21)
0

are included, with a weight function

12+1—AA 2

wi p cc cip

for large p. The additional terms do not alter the m

dependence of Kl, K2 for m » n given in Eqs. (I) and
(2).

For y = 1, A = A, we find that the choice wl (p)
~ p' '(lnp) 2 for large p yields a consistent solution satisfy-
ing the boundary conditions. For m « n one obtains

1

2 CO ~ 2 m CO
exp( —4K') = +, sinh'2K2 ———+

n n inn' n n inn

(22)

The quantity co is a proportionality constant in wi(p). mo

has been chosen so that the coefficient of the n ' term in

exp( —4K, ) vanishes at m = —. The boundary condition

Eq. (15) implies co= 1.
Finally for y & I, A & 0, and m « n Eqs. (16) and (17)

yield

exp( 4K')=—, sinh'2K2 =, &~, i, (23)

P, i(1 —.y)
m] —A (25)

for y & v
' as A approaches zero from above. Here Pl is

the conventional exponent associated with the "ordinary"
transition" in the homogeneous case A =0. Equation (25)
follows from Eq. (3) and the scaling ansatz m1(A ')

P] /|r=b ' ml(A), which is analogous to the ansatz for the
correlation function considered in Ref. 4(b). For the two-
dimensional Ising' model, Pl ———and v=1, and Eq. (25)
reduces to the result we calculated from the information in

Table I.
The exact results that have been obtained for the Ising

model and the information which follows from scaling have
led to a fairly complete picture of surface critical behavior in
critical systems with smoothly inhomogeneous couplings.

Our results for the asymptotic form of exp[ —4K|(—, , n)]1

for large n are summarized in Table I. All of our con-
clusions concerning the critical behavior listed above follow
from Table I and Eqs. (9)-(11) in a fairly straightforward
manner. We plan to publish a more detailed account of our
work in the future.

The local scaling picture4' which leads to Eq. (3) suggests
that other critical systems with couplings described by Eq.
(I) exhibit the same variety of critical behavior in the A -y

plane as the Ising model, with marginal behavior at y = v

The characteristic length ((A) at the bulk critical tempera-
ture for y & I ' is expected to diverge as

(24)

as A vanishes. This follows from Eq. (3) and the require-
ment that ((A) transform' according to ((A') =b '((A)
An assumption beyond scaling that suggests generalizing Eq.
(5) to

g(r) —exp[ —(r/() ' "«]

is discussed in Ref. 4(b). These predictions are consistent
with exact results' we have obtained for the Gaussian model
(v = —, ).1

A final generalization we obtain from scaling is the pre-
diction that the surface magnetization vanish as

where

[
i

( I ) g
—( I —y) ]2/(I+«)

2
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