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Lower bounds for the width of domain walls in the random-field Ising model
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Using the replica trick we construct a "Mermin-Wagner-Hohenberg" style inequality which
places a lower bound on the width of domain walls in the random-field Ising model (RFIM). We
apply our inequality to two competing interface models of the RFIM, that of Pytte, Imry, and Mu-
kamel and that of Grinstein and Ma which yield different values of d„ the lower critical dimen-
sionality, and the width of domain walls. If we assume replica symmetry, our lower bound is con-
sistent with the work of Pytte et al. but inconsistent with that of Grinstein and Ma. Our result sug-
gests that d, for the RFIM is 3. However, this result is not conclusive given our assumption of re-
plica symmetry, and the validity of the inequality as the number of replicas tends to zero. Indeed,
our result suggests at least indirectly that consideration of these questions may be essential to under-
standing the conflicting results obtained from the two interface models.

I. INTRODUCTION

The value of d„ the "lower critical dimension" for the
random-field Ising model (RFIM) remains an open ques-
tion despite eight years of both theoretical' ' and experi-
mental"' efforts. The first theoretical analysis was that
of Imry and Ma' who predicted d, =2 on the basis of a
very simple and physical domain argument. Subsequent
work, ' however, raised doubts about this result. It was
shown order by order in perturbation theory that the criti-
cal behavior of the Landau-Ginzburg representation of
the RFIM in d dimensions corresponds exactly to that of
the pure system in d —2 dimensions. Since d, = 1 for the
pure Ising model, this correspondence suggests that d, =3
for the RFIM. Binder, Imry, and Pytte then suggested
that the assumption of smooth, i.e., nonrough, domain
walls in the Imry-Ma argument was incorrect. Specifical-
ly, if w /L ~ ao, where w is the width of the wall and L is
the length, the wall should be considered rough and the
accounting of the exchange energy in the domain argu-
ment should be modified. This observation spurred the
construction of several continuum interface models to
analyze the low-temperature properties of the RFIM and
in particular to calculate w/L and d, .

In replica space, the effective Hamiltonian of the inter-
face models constructed by Pytte et al. 3 and Grinstein
and Ma takes the form

jeff ~ex+~field ~

where

n

H,„=tro I d" 'x g I 1+ [ VS(x)] ]
'~

a=1

and

(la)

(lb)

n n

Ht;„d ——I d 'x g g g[f (x)—fit(x)], (lc)
a=1 P=1

where fa(x), a single-valued function of x, describes the

interfacial profile assuming that we neglect droplets and
overhangs. The coordinate x characterizes the (d —1)-
dimensional hyperplane parallel to the flat interface with
fa(x) =0. The energy H,„corresponds to the nonrandom
exchange energy in the rough phase and is simply the sum
of the total surface area for each replica interface. ' '
The factor pro is the bare surface tension. The energy
Hf ]d describes the interaction of the spins with the ran-
dom field and b, is proportional to the variance of the
field distribution (assumed to be uncorrelated between
sites). The form of the function g(y), y =f (x) fp(x), —
appearing in (lc) has been disputed. Pytte et al. arrive at
the form (1) by analyzing the interfacial properties of the
Landau-Ginzburg representation of the RFIM. Their
g(y) behaves as y for small y and as

~ y ~

for large y.
The exact form of their g(y) is not crucial, and we will
assume that in their work g -ln(coshy) (this form repro-
duces the limiting behaviors mentioned above). With the
use of a low-temperature renormalization-group analysis
of (1), Pytte et al. obtained d, =3 and found that
w/L -L' ],thus invalidating the original domain ar-
gument. Their analysis focused on the small-y behavior
of g(y), and these authors argued that higher-order terms
are irrelevant. Similar results were obtained by Kogon
and Wallace without replicas, using a supersymmetric
formulation of the Landau-Ginzburg form.

Grinstein and Ma constructed an interface model of the
RFIM beginning with discrete spins rather than a
Landau-Ginzburg form. In replica space their model
takes the form (1) with g(y) =

~ y ~

for all y. By primari-
ly using the nonreplica version of their model, these au-
thors argued that d, =2 and w/L -L' ]~ . ' [The per-
turbative analysis of their version of (1) is complicated by
the nonanalyticity of ~y ~, although this analysis also
suggests that d, =2.] Grinstein and Ma argued further
that Pytte et al. may have obtained d, =3 because they
erroneously assumed that the small-y behavior of g deter-
mines d, and the scaling of w/L. Possibly, an improved
treatment of the model with g-ln(coshy) would yield
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d, =2 if it focused on the large-y regime, where both
forms of g(y) agree.

In this paper we attempt to elucidate the source of the
discrepancy between the results of Pytte et al. and Grin-
stein and Ma. Using the replica trick, we construct a
"Mermin-Wagner-Hohenberg"' ' (MWH) style inequal-
ity which places a lower bound on w/L. This inequality
is analogous to those constructed to place an upper bound
on the magnetization in the random-field vector spin
model and the random-axis model. ' %hile MWH ine-
qualities are generally restricted to models with continu-
ous symmetry and hence massless modes (seemingly ex-
cluding the Ising model), an inequality can be constructed
for the interfacial version of the Ising model, in the con-
tinuum limit. In this representation, the capillary
waves are analogous to the spin waves in vector
models; in particular, they are massless.

With the assumption (possibly critical) of replica sym-
metry (i.e., that thermodynamic averages involving the
fields f are independent of the index n) we find that
w/L &L' "'~ regardless of whether we use g(y)= ~y ~

or g(y)=ln(coshy). This result is consistent with that of
Pytte et al. but inconsistent with the result of Grinstein
and Ma. Owing to the nature of this inequality we need
not make any a priori assumptions regarding which re-
gime of g (y) is important. Constructing the inequality we
find that it is the small-y behavior of g(y) which deter-
mines the behavior of ui/L.

Our result rules out the presence of a ferromagnetically
ordered phase below three dimensions with rough domain
walls, leaving open the possibility of an ordered phase
with smooth walls. However, the latter possibility also
conflicts with the work of Grinstein and Ma who found
only rough walls in their ordered phase between two and
three dimensions. In fact, the presence of an ordered
phase with smooth walls between two and three dimen-
sions in the RFIM seems unlikely, since in the pure model
the domain walls are always rough between one and two
dimensions, in both lattice and continuum models.

Our derivation involves two key assumptions. First, we
assume that all thermodynamic averages involving f are
independent of the index a, i.e., we assume replica sym-
metry. However, in the spin-glass phase of the random-
bond Ising model it was found that a state with replica
symmetry is unstable to symmetry-breaking fiuctuations.
Parisi has developed a replica symmetry-breaking
scheme for the spin-glass phase which restores thermo-
dynamic stability. It would seem possible then that a
similar phenomenon might occur in the RFIM. However,
as yet no one has established the existence of a replica
symmetry-breaking instability. It is also unclear how one
would generalize Parisi s scheme, which applies to a phase
described by a matrix order parameter q & to a ferromag-
netic phase in the RFIM described by a vector f .
Nevertheless, these questions merit further study.

Our second key assumption concerns the validity of the
MWH inequality in the context of the replica method. In
deriving our key results, Eqs. (17) and (26), we divide both
sides of the inequality by n and eventually let n go to 0.
This step could be dangerous. However, we note that
similar manipulations were employed in deriving the

MWH inequalities for the random-field vector spin
model 0 and the random-axis model, ' and the results of
these inequalities are in agreement with all other calcula-
tions on these models.

An additional complication arises when we construct
the MWH inequality for the Grinstein-Ma model. As we
discuss more fully in the final section of this paper, the
nonanalytic form of g(y) in their model forces us to im-
pose a nonzero, although arbitrarily small, lattice spacing
a to obtain a finite domain-wall width at high dimensions.
In particular, we are forced to replace f~(x) by an
integer-valued field representing the discrete steps of the
interface. Similarly, in the perturbation theory of Grin-
stein and Ma, their expansion of g(y) about y =0 yields
bare interactions which are divergent because of the con-
tinuous nature off (x). However, these authors find that
resummation of all of these divergent terms after the fluc-
tuation integrals have been performed yields finite results
for quantities such as the surface tension. Gn the other
hand, in our MWH inequality, Eq. (26), the limit a —+0
cannot be taken.

With all of these unanswered questions, we do not wish
to predict values of d, for the RFIM. Instead, we hope
that our work will stimulate further investigation of these
matters.

This paper is organized as follows: In the next section
we construct, for the sake of illustration, a MWH inequal-
ity for the width of domain walls in the pure Ising model.
In Sec. III we present our MWH inequality for the RFIM
interface model (1), for both the Pytte et al. and Grinstein
and Ma choices for g (y).

II. PURE ISING MODEL

For the purpose of illustration, we construct a MWH
inequality which places a lower bound on the quantity
w/L in the nonrandom Ising model. We assume that the
domain walls in this model can be described by the Ham-
iltonian (lb) with n =1, namely,

8=00 X l+ V X (2)

In terms of f( x), the width m is defined as
w—:[(f (x))]' where the angular brackets refer to a
thermal average over the ensemble defined by (2).

The classical MWH inequality, ' derived from the
Schwarz inequality reads

T
I &[c~']& I'

(3)

for as yet unspecified operators A and C. The classical
Poisson bracket [R,S] for operators R and 8 is defined by

5R 5S
5f(x) 5P(x)

M M
5P(x) 5f(x)

(4)

where f(x) and P(x) are the canonical variables of the
system. The variable P(x) is the momentum conjugate to
f(x), i.e., the generator of translations of the interface.
We choose the operators A and C appearing in (3) in the
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usual fashion, ' i.e.,

d(k)= f de 'xe 'e 'f('x)

C{k)=Id" 'xe '"'"P{x),
(5a)

{5b)

and ultimately we integrate (3) over k. Using (5) we find
that

I(—= li —g (f,'( ))'„,
n-+0 Pg

where the angular brackets ( )„denote an average over
the action generated from (1). All of the averages appear-
ing in the inequality (3) are evaluated likewise.

For the operators A and C appearing in (3) we
choose~ ' '

d~ 'kf e, ( fr((k)le)=(f de rxfr(x)I,

~
([C(k),&'(k)])

~

= f d 'x(l)

& [C(k),[C'(k ),a]]&

A (k)= g Jd~ 'x U pe Ifp(x),
p=l

ll
~
~ -+

C (k)= g f d 'x U rre
'" "Prr(x), '

p=i

(10a)

(10b)

(k Vf)
[(+(('f)'f'" j

where P (x) is the momentum conjugate to f (x). The
matrix U p is an orthogonal n Xn matrix which diago-
nalizes a matrix of the form

d —1~ 2

With the use of (6), the inequality (3) yields the result

For an interface of linear dimension L, the integral over k
in (7) has a lower limit —1/I.. Thus from (7) we obtain
the following bound on ui/I. for large I.:

assuming that d ~ 1, so that we can neglect the upper lim-
it of the integration. This divergence of ]e/I. is consistent
with the value d, =l for the pure Ising model. Note,
however, that w itself diverges below three dimensions as
expected in a continuum interface model. Consideration
of the finite lattice spacing would in principle show that
u] diverges only below two dimensions at low tempera-
tures. 25'26

III. INEQUALITY FOR THE RFIM

Here, we construct an inequality for w/L in the RFIM
using (1). The width of the interface in the quenched sys-
tem is now defined as

abb
bab
bba
bbb

e

b .
b

b

b
0 0

abbb
ah b
bab
bbc

in replica space. Some useful properties of U p are

Pl

U]~ ——~, g U~p Vn 5]~, —g U~PUrp=5
Pl p p=1

l
([C„(k),d (k)l). I'= f d' '*(()-

For the denominator of the right-hand side of (3) we have

If we were to drop the factors U p in (10), we would ob-
tain ultimately the useless inequality 1 & 0 from (3).

Using (10) and (11)we find that

Ap ~=Pi X ~ X
(2m) '

p

(12a)

([Ce(k),]C'e(k),H.rr]]), = g f d 'x f de 'x Ue Uerr
'', e'"'*

n, p= 1

Using (1) and (11),we find from (13), with the use of replica symmetry„

([C„(k),[C„"(k),H,tt]]}„=I dd 'x oo
I I+[~fi,(»]'I '"

[k 7(f (x)]

f (+[ (rf e(x) ]'
f
re' ~.

2nd(l 5 )
d'g(y)+ T p, 1

dJP y =f (x)—f&(x) n
2
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The quantities in the angular brackets on the right-hand
side of (14) are independent of the replica indices.

With the Pytte et al. choice of g(y)=ln(coshy), we
have

d'g(y) =sech y &1 .

([C„(k),[c*„(k),H,ff]])„

f d 'x(1) crok + (1—5p() (16)

The least upper bound on (14) is then given by choosing
V'f~(x)=0 and y =f~ fp—=O for all a and P. Thus the
MWH procedure indicates that with the assumption of re-
plica symmetry, it is the small-y regime of g(y) which
controls the important fluctuations. Therefore, from (14)
we have

'/ („,)F(fp(x, ))

=5.p5~[F(fp(xq)+1) —F(fp(xj))], (21)

where F is an arbitrary function of fp. A similar equa-
tion holds for the difference operator associated with the
conjugate momentum P(f (x;)). The operator P(f (x;))
generates translations and equals hf (~ ).a~t '

As we discussed in the Introduction, the MWH inequal-
ity can only be implemented when a continuous symmetry
is present. In the continuum limit, the translational sym-
metry is continuous. When we consider the lattice model,
we must restrict ourselves to the rough phase. This re-
striction arises naturally if we reconsider Mermin s deriva-
tion' of the MWH inequality from the Schwarz inequali-
ty. His derivation requires the use of the following rela-
tion:

Inverting (12) and (16} into (3) and performing the sum

over p, the integration over k and letting n —+0 we obtain
e H/T 5H— T 5

(e H/T)—
5f (x) 5f

(22)

w &T
d'k 1 b, 1+-

(2m. )
' ook T (ook )

Thus, for large L we find

(17)

Equation (22) is certainly true if f (x) is a continuous
field. However, for an integer-valued field f (x;), the
discrete analog of (22) where we replace the functional
derivative by its lattice counterpart [see (20d)] is valid
only if 1/T ~b/(„. Q ~

«1. In the pure Ising model, if
we write the exchange energy in the solid-on-solid form

& gl/21 (3—d)/2

L,
— H,„=o.oa" 'gg

~
f~(x;) f (xj) ~, —

a (ij)
(23)

The infinite upper bound of (19) is an artifact of the
continuum model which we have been using, where f (x)
assumes all real values. We regularize this divergence by
returning to the discrete interface model on a lattice with
spacing a. The transcription of the coordinates, fields,
and operators of the continuum model to their counter-
parts in the lattice model is as follows:

(20a)

f (x)~af (x),
d-'x ~ ad-'

(20b)

(20c}

5 1

5f (x) a"—' (20d}

which is consistent with the renormalization-group result
of Pytte et al. that d, =3.

We now consider Grinstein and Ma's choice of g(y).
Placing a least upper bound on (14) is somewhat more dif-
ficult in this case since

d g(y) d
2 iy i

=25(y)&00.

we find

Af(»)He„—— a 'g[~ f (x;+n) [f (x;)+—1]~

—
~ f (x;+n) —f (x;)

~ I,

(24)

where the sum in (24) is over the z-nearest neighbors of
x;. The factors a" ' appearing in (23) and (24) arise be-
cause cro is the quantity defined in (lb); i.e., the surface
tension in the continuum limit, which is finite as a~O
[recall (20c)]. The right-hand side of (24) will be small
compared to unity if o~a" '/T«1. For a —1, this
condition restricts the validity of (22) to high tempera-
tures, i.e., the rough phase. As a~O, (22) becomes valid
at progressively lower temperatures. For a =0 we recover
the continuum limit where the validity of (22) extends to
zero temperature.

When we include the lattice analog of the field energy
(lc) of the Grinstein-Ma model in the quantity
1/T

~

5f (.)H ff ~, we find that this quantity is small if

~I(f (~, ))

5P(f (x)) a' ' a
(20e)

—ooa + a (n —1)«1,d —1 ~ d
T2

where b, is the variance of the field distribution and is fin-
ite as a —+0. The condition (25) is equivalent to requiring
that T/o.o»a ' and 6 ~ To.o/a. Thus our MWH in-
equality for the lattice model will be valid everywhere for
small but finite a except at very low temperatures and

where x; labels the lattice sites in the (d —1)-dimensional
hyperplane parallel to the flat interface and f (x;) is a di-
mensionless, integer-valued function. The forward differ-
ence operator hf ( ) is defined by the relation
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high b, . This restriction should not be a major limitation
of our result since Grinstein and Ma have shown that
their ordered phase between two and three dimensions
persists for some finite-temperature range where T «oo.
The latter region is still within the realm of validity of our
inequality since we can make a arbitrarily small.

Finally, assuming that we avoid the temperature region
T/oo«a ' we can implement our MWH prescription
straightforwardly. The calculations are similar to those
used to obtain (17), and the transcriptions shown in (20)
are used. The analog of Eq. (16) is

([C„(k),[C"„(k),H,ff]])„

ggd '
grok + (1—5 i) . (26)

Ta

Note that the discrete analogy of (19) is

ly+2 I

—2 ly+1I + Iy I

(27)

for an integer-valued function y.
We insert (27) and the discrete analogs of Eqs. (12) into

(3). After summing over p and k, dividing by n, and let-
ting n~0, we obtain

T 1 2 5 1

~k' u & (~k')2 (28)
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where N is the number of sites in the (d —1)-dimensional
hyperplane. Aside from the factor of 2/a multiplying b.,
Eq. (28) is identical to (17). Thus with the Grinstein-Ma
form of g (y) we obtain the same lower bound for m/L as
we did using the energy of Pytte er al. The quantity of
w/L is bounded as shown in (18) and as explained in the
Introduction, it is inconsistent with the result of Grinstein
and Ma. If we let a ~0 in (28), then w should be infinite
for all dimensions, which seems highly unlikely. As we
noted following Eq. (19) the continuum limit seems
pathological in the presence of the nonanalytic field ener-
gy proportional to

~ f (x) fp(x) ~.—Thus we believe that
a should be kept very small but finite. Further investiga-
tion of this point would be of interest.
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