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Random-field effects in site-disordered Ising antiferromagnets
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%e describe a simple and unambiguous rvay of mapping the site-dilute Ising antiferromagnet in a uni-
forrn field onto the problem of a random-field ferromagnet, and identify the effective random field, in the
weak-field lim it.

Random-field Ising systems have attracted considerable
recent theoretical and experimental attention. It was point-
ed out by Fishman and Aharony' that a dilute uniaxially an-
isotropic two-sublattice antiferromagnet in a uniform field
glvcs 8 rcallzatlon of such 8 system In that 18ndom local
fields couple linearly to the antiferromagnetic order parame-
ter. Since theoretical discussion has focused on the concep-
tually simpler ferromagnetic random-field model, it is im-
portant, for the antiferromagnet, to calculate the quantita-
tive behavior of the effective random field HRF in terms of
the applied uniform field H.

In their original paper, Fishman and Aharony' considered
bond disorder only. The antiferrornagnetic order parameter
was introduced by grouping the lattice sites into cells con-
taining equal numbers of spins from each sublattice. How-
ever, the experimental systems considered' " actually exhi-
bit substitutional site disorder, rather than bond disorder.
%ong, von Molnar, and Dimon have extended the
Fishrnan-Aharony argument to this case, using the same
cell construction. They point out the existence of a
"direct" random field, which is numerically larger than the
Fishman-Aharony effect. This direct field would lead to a
linear dependence of HRF on 0, even in strong applied
fields.

Their explicit expression for the effective random field is
somewhat complicated, and its calculation involves the de-
tailed lattice structure. There are also several uncontrolled
approximations, on which we shall comment at the end. In
this paper we present an alternative expression for HRF
which is simple and easy to use in that it depends on only

I

simple thermodynamic parameters of the system, and not
the detailed microscopic Hamiltonian.

This approach involves performing a systematic Hubbard-
Stratonovich transform from the discrete spin antifer-
romagnetic to a form in which the fluctuating degrees of
freedom are the values of the local staggered magnetization
@(r). The random field is identified as the term coupling
linearly to $(r). Truncating this form at the Gaussian level
corresponds exactly to solving the inhomogeneous mean-
field equations. %hen higher-order terms are included we
obtain the version which is the starting point for continuum
analyses of the critical behavior of the random-field Ising
model. '8 These higher-order terms are irrelevant in the
renormalization-group sense, and thus we establish that the
dilute antiferromagnet is in the same universality class as
the random-field ferromagnet, but they do, of course, affect
nonuniversal properties by factors which are typically of or-
der unity in the critical region.

%C consider a simple site-dilute Ising antiferromagnet
with Hamiltonlan

XJ(r —r')e(r)e(r')s(r)s(r') —H g~(r)s(r)

Here ~(r) =0 or 1 depending on whether or not there is an
impurity at site r. For definiteness we consider a discrete
spin model with s(r) = + l, although our main conclusions
are valid for any good Ising-like system. The partition func-
tion Z = Tr, e ~~ may be written, using the standard
Hubbard-Stratonovich transformation, as

Z = Tr Trexp-
S

gy(r)J '(r —r')y(r')+ $[PH+Q(r)]e(r)s(r)
2p r

(2)

= Tr cxp gy(r)J '(r —r')y{r')+ ge(r)l ncos[hpH+y r{)]
2p r

Here, p(r) is a real scalar field. Note the fact that e(r) may be factored out of the second term. This feature makes site
disorder more tractable than bond disorder in this approach. Defining the local magnetization

M(r) = p ' gJ '(r —r')y(r')

(3) may be rewritten as

Z = Tr exp' ——,P QM(r)J(r —r')M(r')+ ge(r)lncoshP QJ(r —r')M(r')+H —= Tr e
M(r) M(r)

f,f I

r'
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(~I ) ~(~( )~( )) x(1 —x)(PJ) (PH)
, (14)

M(r) =e(r)tanhP QJ(r —r')M(r')+H (5)
I

=e(r)tanhP +(r —r')e(r')M(r')+H . (6)

wllcfc wc llavc solved tile Illca11-flcid cquat101l (g) fof slllali
H. This may be written in a more useful form

The mean-field equations result from extremizing the ex- of the zero-momentum component of (11):
ponent:

The last equation follows because {5) implies that M(r)
vanishes wherever e(r ) does. Equation (6) is the naive

ean-field equation. Nevertheless, Eq. {4) correctly takes
into account the fluctuations without an e(r ) factor
present.

We expect the uniform magnetization to be nonzero in
the presence of H, but its fluctuations to be noncritical. Wc
therefore write

M(r) =M+ ( —I)'It (r) (7)

= ( —I)'PM —J+x ' QJ(r —r')e(r')
I

I'

(9)

(10)

Note that (h(r)),„=0, as a consequence of M satisfying
the mean-field equation. The correlations of II (r) are short
ranged:

(h (r1) h (r I ) ),„

where ( —1)"is defined to be + I on the two sublattices. M
is chosen to satisfy the averaged mean-field equation

M = x tanhP(JM + H )

where x ls thc conccAtratlon of magnctlc lons
[(e(r))„=x],and J = Q, J(r). y(r) is the antiferromag-
netic order parameter. On substituting the decomposition
(7) into the free-energy functional one finds a field /I (r)
coupling linearly to It {r) of the form

I

h (r ) = ( —I ) P —MJ + t anPh( J M + H) QJ (r —r') e') '

x ( I —x ) [ Tg~'(0)/T l '(H/ks T ) '

(I ~ gMF(„)/T]2 (15)

which caA bc shown to bc valid for 8 gcAcl al spIA "5 IslAg
model, Here kaH "=J for the 5=

2
model, and, in gen-

eral, is the usual parameter appearing in the Curie-Weiss
susceptibility.

Equation (15) is our main result. 9 If Tg" and 8M" are re-
placed by their true values (a modification which is con-
sistent with the other approximations) we have a simple
compact formula which depends only on easily determined
macroscopic paramctcrs of thc system. Thc 8pproxlrnatloA
of dropping higher-order terms does not affect universal
behavior, and should affect nonuniversal quantities by fac-
tors of order unity.

Our expression is in qualitative agreement with the
col rcctcd vcrslon of Wong ef al. ln thc 1 cgloA to which lt

applies. The result obtained by formally setting HMF=O in
(15) corresponds precisely to the direct random field. The
factor of [Tg "(0)/T] = (pJ)' is present because /IRF cou-
ples to the local staggered magnetization @(r), rather than
the original spins s(r). The I'ull denominator in (15) re-
flects a modification of the direct random field by exchange
effects, which act to reduce hRF if the interaction is dom-
inantly antiferromagnetic, i.e., 0 ) 0. For antiferromag-
nets with dominantly intersublattice exchange, 0 "=T~ ",
and (hRF) is thus reduced by a factor of 4.

The additional factor [T~ "(0)/T]' leads to an overall x
dependence in h Rp at the critical point of the form
(1 —x)/x, since T11(x)~x for small x. Crossover theory'
implies a fractional shift in the specific-heat peak, in a weak
field 0, proportional to

The full partition function has the form

Z = Tr exp ——p QJ(r —r') ( —1)' '
It (r )@(r')

2

f,1

+ g/I (r )@(r) + gp(r )@(r)'

+. . . +X $@(r) +. . .

This is precisely the starting point for the analysis of the
continuous spin, random-field Ising model. There is also a
I'Bndolll contflbutlon to tllc $ tcf Ill coffcspoIlclIIlg to boIlcl
cllsofdcf. Tile Illcall-fIclcl tI'BIlslttoll 'tclllpcfatufc (Bt wl11cll
the coefTicient of @2 vanishes) is depressed according to

where J = X, ( —1)"J(r) is the mean-field transition tem-
perature for the pure system, in the absence of a field.

The effective random field h RF is best measured in terms

This predicted x dependence is observed experimentally. '0

Tllc cxpfcssIoll (15) differs 111 clcta11 ffolll tllat of Wotlg
et a/. This is because the approximations made are dif-
ferent. Their approach starts from the same Hamiltonian
(1), and involves dividing the lattice into two-spin cells (a
procedure which violates some lattice symmetries). Local
ferromagnetic and antiferromagnetic order parameters are
defined by s+ = (s1+s2)/J2, where s1 and sI are spins in
one cell, on different sublattices. The Hamiltonian, which
is quadratic in the s (r), is then written in terms of s+ ands, which are then treated as independent variables. This is
exact if the s (r) are continuous Gaussian spins, but in the
physical case when s(r)'=1, there are infinitely strong
correlations between s+ and s . If this constraint is incor-
porated by including a term, for example, X g, [s(r )' —1]',
in the Hamiltonian, with X c, the higher-order quartic
terms give contributions to the effective random field, of
O(h. ). We conclude that there may be large corrections to
the expression of Kong et al. ' duc to the discreteness of the
spins. The appearance of these higher-order corrections was
recognized in the original paper of Fishman and Aharony. '

Another feature of the HRF defined by Wong et al. is that
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it couples linearly to s . However (s ) is not the local
staggered magnetization, since s contains contributions
ffofn fictitious splns s(f ) on the vacancies. Thus the true
local order parameter is x(s ). Thus their expression for
HRF should be divided by x to give the true random field to
be used, for example, in the crossover theory. With this
modification, the x dependence, at least of their direct term,
agrees with that of our full expression, close to T~(x).

Finally, we note that our result (15) is valid only at weak
flclds H KK J. Fol large H thc truAcatloA of thc hlghcr
terms is not allowed. The effective random field HRF acting
on an equivalent discrete spin ferromagnet may be found by
performing the same Hubbard-Stratonovich transformation
and comparing the result with (12). In the large H limit,
this leads to the direct random-field result HRF~ H, as ex-
pected.

In conclusion, we have presented a theory of random-
field effects in site-dilute antiferromagnets which gives a
simple form for the effective random field in weak applied
fields, 8Ad 8 qualltatlvc dependence oA coAccAt18tlon which.

appears to agree with experiment. At the present time it is

unlikely that experiment can distinguish between our form
and that of Ref. 5, when correctly interpreted as discussed
above.
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