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Melting of a physisorbed commensurate phase
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The general Landau-Ginzburg-Wilson Hamiltonian for the melting of a physisorbed +3&&V 3

commensurate phase on a substrate of triangular lattice symmetry is examined. Two limits in which

it simplifies are considered: first, the lattice-gas limit resulting from infinite substrate potential, and

second, a decoupling limit in which the Hamiltonian reduces to three independent chiral clock
models. Universality classes of melting transition with various degrees of symmetry might occur;
evidence exists for two. It is argued that the "chiral" transition which may have been observed for
Kr on graphite cannot be modeled by a simple lattice gas. Possible phase diagrams are examined

and a new spin model with the appropriate symmetry is proposed. The general approach should be

applicable to other commensurate surface phases.

I. INTRODUCTION

Atoms or molecules adsorbed on a face of a crystal may
form commensurate ordered phases, in which the atoms
preferentially occupy one (or more) sublattices of the full
array of lowest-energy adsorption sites. Some experimen-
tal systems in which the melting of such phases has been
studied in some detail are He on graphite, ' Kr on gra-
phite, and 0 on Ni(111). For low temperatures and
intermediate vapor pressures, both He and Kr on graphite
order in a v 3&& V 3 commensurate phase where one of
p=3 equivalent sublattices of adsorption sites is preferen-
tially occupied, ' as illustrated in Fig. 1(a). The symme-
try that relates the three sublattices (A,B,C in Fig. 1) is
spontaneously broken when the adsorbate freezes into the
commensurate phase.

It was Alexander who first suggested that this
V3&&v 3 commensurate ordering transition should be in
the same universality class as the ordering transition of
the three-state Potts model, where the symmetry relating
the three equivalent states of the Potts spins is broken.
Bretz' then measured the specific-heat exponent a for the
transition in He on graphite and found a result consistent
with the Potts model exponent, cx= —,'. Domany, Schick,
Walker, and Griffiths' have formalized and greatly ex-
tended Alexander s idea, examining the melting transi-
tions of many commensurate phases on substrates of tri-
angular, square, and rectangular lattice symmetry. They
predicted the universality class of each transition on the
basis of rules due to Landau and Lifshitz,
renormalization-group ideas, and a lattice-gas approxima-
tion.

More recently, however, a high-resolution x-ray scatter-
ing study of Kr on graphite by Moncton and co-workers
found a continuous melting transition of the V 3 && V 3
commensurate phase that does not appear to be in the
Potts universality class. Specifically, the apparent scaling
function for the structure factor was not found to be sym-
metric about the first Bragg point. Huse and Fisher in-
terpreted this asymmetry as indicating a phase transition
in a new "chiral" universality class. An examination of

domain walls demonstrates that the adsorbate-substrate
system actually has a lower symmetry than the three-state
Potts model. ' The spin model with the appropriate
symmetry for modeling V 3 &(v 3 melting in a simple lat-
tice gas, where all adatoms are assumed to sit at lowest-
energy adsorption sites, is a Potts model with additional

(a)

A 8 C A B C A 8 C A

0ooooo
ooooo
0000000
ooo

(b&
G)

FIG. l. (a) Ground state of a V 3 X V 3 commensurate phase.
The capital letters represent the array of lowest-energy adsorp-
tion sites. All sites are equivalent, but they are labeled as three
sublattices A, B,C. In the ordered phase the adatoms (circles)
preferentially occupy one of the three sublattices. (b) Reci rocal
lattice of the substrate (large solid circles) and the 3XV 3
commensurate overlayer (small solid circles). The three basic
reciprocal-lattice vectors of the overlayer are shown explicitly.
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"triaxially chiral" symmetry-breaking terms present in the
Hamiltonian (see Refs. 9 and 10 and Sec. II of this paper).

The lattice-gas approximation, which has been either
explicitly or implicitly used in most previous studies, 6, 8 —&o

is certainly suspect when applied to physisorbed systems
such as Kr on graphite. This is because many atoms may
sit well away from the lowest-energy adsorption sites in a
typical equilibrium configuration, since the variations in
the substrate potential are on a scale smaller than or of
the same order as those defined by the experimental tern-
peratures and the krypton-krypton interactions. In this
paper the lattice-gas approximation is therefore not made.
As originally pointed out by Bak and Mukamel, " the
commensurate phase then has three independent complex
scalar order parameters, namely the Fourier transforms of
the density at the three basic reciprocal-lattice vectors of
the commensurate overlayer. For a simple lattice gas
these three order parameters are precisely equal for all
configurations, so there is really only one order parameter.
The general Landau-Ginzburg-Wilson (LGW) Hamiltoni-
an for the melting of a physisorbed V 3 X V 3 commensu-
rate phase is functional of the three local order-parameter
fields and has various symmetries corresponding to the
symmetries of the substrate-adsorbate system. " A rela-
tively simple spin model with the same symmetries is pro-
posed at the end of this paper; further study of this model,
which consists of three coupled chiral clock models, may
be useful for understanding phase-transition behavior near
V 3&& V 3 commensurate phases.

The scaling behavior of the structure factor near con-
tinuous fluid-to-V 3 X V 3 commensurate transitions is
considered in Sec. III. The scaling function for the struc-
ture factor may, in principle, have at least four possible
symmetries, each corresponding to a different universality
class of phase transition. One possibility is, of course, the
Potts universality class, for which the scaling function has
a very high symmetry. The transition in the exactly
solved hard-hexagon model, a simple lattice gas with con-
tinuous W3&&v 3 melting, ' is apparently in this univer-
sality class, as was suggested by Alexander's argument.
The other likely possibility is a universality class for
which the scaling function for the structure factor has no
additional symmetry beyond that of the adsorbate-
substrate system itself. This would be a chiral transition
that cannot be modeled by a simple lattice gas because the
simple lattice gas has a symmetry in rnomenturn space
that is not present in real systems. The transition in Kr
on graphite observed by Moncton et al. appears to be in
this latter universality class, as is argued in Sec. III below.

The types of arguments used here and in Refs. 9 for
V3&(V3 commensurate phases may be applied equally
well to other commensurate phases. Therefore, evidence
for new universality classes might be also looked for in
the melting of other commensurate phases. Likely candi-
dates are those transitions classified by Domany et al. as
being in the universality classes of the four-state Potts
model and the X- F model with cubic anisotropy. Those
transitions that Dornany et a/. have assigned to the Ising
universality class, on the other hand, do indeed have the
full Ising symmetry, so new types of transitions seem
much less likely to occur.

II. LGW HAMILTONIAN FOR V 3 X V 3
COMMENSURATE MELTING

f~(r)= J dr 'IC(r, r ')e " p(r '), (2.1)

where K(r, r ') is a finite-ranged coarse-graining kernel
and p(r) is the local density. For each symmetry of the
substrate there is a corresponding symmetry that the
LGW Hamiltonian must have. There are four basic sym-
metries. First, there is global translation of the adsorbate
relative to the substrate by a substrate-lattice vector; this
has the effect of multiplying each of the three fields f~(r )
by

co=exp(2mi/3), (2.2)

or by co*, depending on the lattice vector. Second, there is
rotation of the adsorbate by 180' about a lattice point
(taken to be the origin); this has the effect

P (r)~P"( —r) . (2.3)

Third, there is rotation of the adsorbate by 120 about the
origin; this has the effect

P +1 ( od3)(~ r ) (2.4)

where A is the rotation operator. And fourth, there is re-
flection of the adsorbate about the x axis [which is chosen
parallel to G&, see Fig. 1(b)j; this has the effect

(2.5)

The general Hamiltonian that is invariant under these
syrnrnetry operations is

Let us consider a physisorbed monolayer that is ordered
in a V 3)& V 3R30' commensurate phase on a substrate
with triangular lattice symmetry, such as Kr on gra-
phite. Upon freezing into such a commensurate phase,
the adsorbate selects one of the three equivalent sublat-
tices [A, B,C in Fig. 1(a)] of lowest-energy adsorption sites
to preferentially occupy. A ground state of this phase is
shown in Fig. 1(a). The order parameters of this com-
mensurate phase are the Fourier transforms of the adsor-
bate density at the basic reciprocal-lattice vectors of the
overlayer. There are three such basic reciprocal-lattice
vectors, namely G&, G2, and G3 in Fig. 1(b), and therefore
three corresponding complex scalar order parameters.

The Landau-Ginzburg-Wilson (LGW) Hamiitonian ap-
propriate for modeling a continuous order-disorder transi-
tion from this commensurate phase should be a functional
of the fluctuating local order-parameter fields. The three
complex scalar ordering fields may be defined by a
coarse-graining scheme as
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a +u2 a r +Re m~ a + 2 a r
3

+ w3$i(r)$2(r}$3(r) +s Im gP (r)V P'(r) +
a

(2.6)

where

V:—G V, (2.7)

and all terms of higher order in the field or gradient than
those shown have not been exhibited (although some of
schematic form

l Vg l
and f are certainly essential to

the physics). Bak and Mukamel" have written an essen-
tially identical Hamiltonian, although they have neglected
some unimportant terms, such as that proportional to u2
above. This Hamiltonian is rather complicated; one limit
in which it simplifies is the infinite-substrate potential or
lattice-gas limit. In this limit all the adatoms sit at sites
in the triangular array of lowest-energy adsorption sites

I RI, for all of which

iG& R iG2 R iG3 R
e =e =e

The local ordering fields are therefore equal,

pi(r ) =$2(r ) =1i3(r),

(2.8)

and thus there is just one local ordering field, which we
shall call tP(r) To ord. er and PV g*, the general LGW
Hamiltonian for v3X 3 melting in such a lattice gas
(which will be referred to as a "simple" lattice gas) is

Hi= J d"I jul@( )rl'+ i I
V@(r) I'

+ tv Re[$3(r)j+u4
l
g(r) l

4

+s 1m[a(r)ViV2V3$'(r)]+ .
I . (2.10)

In some previous treatments, '" the final term shown
explicitly in (2.10) was ignored in constructing the lattice-
gas LGW Hamiltonian. The resulting Hamiltonian is pre-
cisely that of a three-state Potts model. However, the
three-state Potts model Hamiltonian is invariant under the
transformation

g(r)~f'(r) . (2.11)

The term proportional to s in (2.10) is not invariant under
this transformation, and thus the lattice gas actually has a
lower symmetry than the three-state Potts model. '
Such symmetry-breaking terms have been dubbed chiral9
because they discriminate between configurations in
which P(r} moves clockwise around the origin in the
complex f plane as one moves through real space and
configurations in which the motion is counterclockwise.
The chiral symmetry-breaking term in (2.10) is invariant
under rotation by 120' in real space. It has therefore been
termed triaxially chiral to discriminate it from the uniaxi
ally chiral terms that arise in the LG%' Hamiltonian for
3 & 1 commensurate phase melting.

The scaling exponent of the triaxially ehiral field s at
the Potts-model critical point (at which s=0) may be es-

I

timated by naive power counting or by low-temperature
expansions similar to those carried out for the uniaxially
chiral field by Huse, Szpilka, and Fisher. ' Both ap-
proaches indicate that the triaxially chiral field is ir
relevant, with a renormalization-group eigenvalue of ap-
proximately —1. Thus the melting transition of a
+3&&V3 lattice-gas phase should remain in the three-
state Potts-model universality class (as originally suggest-
ed by Alexander ) as long as the triaxially chiral symme-
try breaking is sufficiently weak. Crossover to a chiral
transition for strong symmetry breaking cannot be ruled
out, although there is no evidence that such crossover can
occur in lattice gases. Baxter's' exact solution of the
hard-hexagon model is consistent with these conclusions.
The melting transition of the V 3XV 3 phase of this lat-
tice gas has critical behavior that appears to be in the
three-state Potts-model universality class. One possible
interpretation of the nonanalytic corrections to scaling
present in the exact solution is that they are due to an ir-
relevant triaxially chiral field with a renormalization-
group eigenvalue of precisely —1.' '

The Hamiltonian (2.6) of a real adsorbate without the
lattice-gas symmetry (2.9) may be viewed as a generaliza-
tion of the lattice gas where two new nonordering fluc-
tuating fields are introduced, namely the differences be-
tween the fields f (r). Since these are nonordering fields
(in the V3&&v 3 phase their expectation values vanish),
they should not change the critical behavior, at least when
their amplitudes are small. Thus one might argue that the
critical behavior of an adsorbate with very strong, but fin-
ite, relief in the substrate potential should be in the same
universality class as that of a lattice gas. This is probably
the case for most chemisorbates. However, for physisor-
bates the energy scale of the substrate relief can be small
relative to, for instance, the ordering temperature. The
system can then be quite far from a lattice gas, with many
atoms sitting well away from the lowest-energy adsorption
sites. This is the situation in Kr on graphite, as illustrat-
ed, for example, by the molecular-dynamics simulation of
Abraham, Koch, and Rudge. ' Thus, to understand phy-
sisorbates it is useful to consider a limit of the general
Hamiltonian (2.6) that is far from the lattice-gas limit. In
the lattice-gas limit the three fields 1t (r ) are rigidly cou-
pled by (2.9). Thus let us consider the opposite limit, in
which all couplings between the different fields vanish.
Exactly what type of adsorbate-substrate system this limit
corresponds to is not obvious, but it is certainly one in
which the adatoms are permitted to sit away from the
lowest-energy adsorption sites. Thus this decoupling limit,
in which a certain simplification of (2.6) occurs, is in a
sense closer to physisorbate systems than is the lattice-gas
limit.

In the decoupling limit, uz ——0= mz ——m3, etc. , the gen-
eral Hamiltonian (2.6) reduces to
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+uii Re[1( (r)]+u4
~ g (r)

~

+sG Im[p (r)VQ'(r)]+ j, (2.12)

which is simply the Hamiltonian of three independent
uniaxially chiral clock models. Each chiral clock model,
a=1,2,3, consists of a three-state Potts model with addi-
tional uniaxially chiral symmetry-breaking terms, propor-
tional to s in (2.12), that break the invariance under (2.11).
The uniaxially chiral field in each model is sG and thus
is of the same magnitude as and oriented at mutual angles
of 120' to the chiral fields of the other two models. The
chiral term is first order in the gradient, in contrast to the
lattice-gas limit where it is third order and thus irrelevant.
In this decoupling limit the chiral field s is actually
relevant at the Potts (s =0) critical point, as indicated by
scaling arguments, ' series expansions, ' and as con-
firmed by den Nijs's recent exact analysis of related
models. ' Thus it appears that chiral symmetry breaking
can become more important as the substrate relief is
weakened, making new, intrinsically chiral classes of
phase transitions more likely for physisorbed systems
than for chemisorbed systems and lattice gases. The evi-
dence for a chiral transition in Kr on graphite is discussed
in the following section. A more detailed examination of
the decoupling limit of the LGW Hamiltonian (2.6) and a
related spin model is then undertaken in the remainder of
this paper.

q =G~+ k, (3.2)

where
~

k
~

is small compared to the inverse of the range
of the coarse-graining kernel in (2.1). Then the structure
factor may be written in terms of the complex scalar
order-parameter field (2.1) as

S(G~+k)=L f dr dr'e'"'' ' '(P (r)tP*(r'))

(3.3)

when the kernal K (r, r ') is appropriately normalized.
If the adsorbate undergoes a continuous transition from

the disordered fluid phase to the v 3)&v 3 commensurate
phase, then the structure factor in the near critical disor-
dered phase should scale as

S(G +k)=Pi"D (kg), (3A)

where g is the correlation length. The scaling functions

D~(z) and the exponents y and v will be determined by
the universality class of the transition. One can imagine

III. STRUCTURE FACTOR AND SCALING

The structure factor of an adsorbate is

S(q)=1. ' f drdr'e'"' ''(p(r)p(r')), (31)

where I. is the total area of the substrate over which the
integrals run. Let us examine the structure factor of an
adsorbate on a substrate of triangular lattice symmetry for
q near a Bragg point of the v 3)& v 3 overlayer such that

I

universality classes for which the D (z) have at least four
possible symmetries, although there is evidence for the ex-
istence of only two of these. Assuming that there is no
orientational ordering, the structure factor of a general
adsorbate on a substrate of triangular lattice symmetry is
invariant under rotations by 60' about the origin and re-
flections about lines through the origin parallel to the

I G j in momentum space. These symmetries dictate that
the scaling functions may all be written as

D~(z)=D(z, 8 ), (3.5)

where z =
~

z
~

and 8 is the angle between z and G .
The only symmetry that the scaling function D (z,8) must
have is

D(z, 8)=D(z, —8) . (3.6)

There are two other symmetries which the scaling func-
tion may or may not have. If the chiral symmetry [in-
variance under g~( r )~g~( r ) ] is restored in the scaling
limit due to irrelevance of chiral symmetry breaking, then
the scaling function will have the symmetry

D(z, 8)=D(z, 8+~) . (3.7)

If the system is a simple lattice gas with all adatoms sit-
ting at sites of the substrate triangular lattice, then the
structure factor has a discrete translational invariance in
momentum space, namely

S( q) =S(q+K), (3.8)

where K is any reciprocal-lattice vector of the underlying
triangular lattice. The resulting symmetry of the scaling
function is

D(z, 8)=D(z, 8+2~/3) . (3.9)

For a real adsorbate system this lattice-gas symmetry may
be restored in the scaling limit.

If the melting transition of a V3X v 3 phase is in the
universality class of the three-state Potts model, as origi-
nally suggested by Alexander, and as appears to be the
case for the hard-hexagon model, ' then the scaling func-
tion must be identical to that of the Potts model and
therefore have both chiral [Eq. (3.7)] and lattice-gas [Eq.
(3.9)] symmetries. This means the system attains a high
degree of symmetry in the scaling limit which is not
present in the original Hamiltonian. One should expect a
second possible universality class of melting transition for
which the scaling function does not have any symmetry
beyond that dictated by the Hamiltonian (2.6). For such a
transition both the chiral and lattice-gas symmetries
remain broken in the scaling limit. Thus this chiral tran-
sition could not be modeled by a simple lattice gas or by
the one-field LGW Hamiltonian (2.10). A more general
lattice gas in which adatoms are also permitted to "sit" at
certain positions away from the lowest-energy adsorption
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sites might exhibit this type of chiral transition. The
melting transition of the commensurate phase of Kr on
graphite near 97 K as observed by Moncton and co-
workers appears to be a chiral transition of this
minimal-symmetry type. They measured the location, rel-
ative to the Bragg point of the ordered phase, of the max-
imum in S(q) in the fluid phase. The product of this
"incommensurability" and the correlation length appears
to approach a constant of order unity at the
commensurate-phase boundary. This admittedly prelimi-
nary data is consistent with a scaling function D(z, 8)
which is not symmetric about the Bragg point, having a
maximum at 8=0, z=zo ——0(1). Further study of this
transition, perhaps at higher temperatures where the criti-
cal region may be larger, is certainly needed to check this
interpretation of the experimental results.

The melting transition will be in the Potts universality
class if both the chiral and the lattice-gas symmetries are
restored in the scaling limit. One may also postulate two
other universality classes, in each of which only one of
these symmetries is attained. No evidence for the ex-
istence of either type of transition has appeared. One
would be a chiral transition in a simple lattice gas and the
other a nonchiral, non-Potts transition that cannot be
modeled by a simple lattice gas.

(b)

FLUID

INC.

IV. DECOUPLING LIMIT INC.

Let us now return to consideration of the decoupling
limit (2.11) of the general adsorbate Hamiltonian (2.6).
The uniaxially chiral clock models into which the model
separates here are relatively well understood, ' ' ' ' al-
though agreement on some details does not yet exist. ' '

Since physisorbed systems such as Kr on graphite are in
some sense closer to this decoupling limit than to the
lattice-gas limit, it is worth asking what behavior we
might expect near the decoupling limit. The most
straightforward, and probably the most important, term
in the general Hamiltonian (2.6) that couples the different
ordering fields, f (r ), is the local pairwise ferromagnetic
coupling term, proportional to uz in (2.6). Thus we
should examine the consequences of adding such a cou-
pling to (2.12).

A schematic phase diagram of the uniaxially chiral
clock models (2.12) is shown in Fig. 2(a). There is a fer-
romagnetically ordered phase at low temperatures and
small chiral fields s. This phase represents the commens-
urate phase of the adsorbate-substrate system and is there-
fore labeled as such in Fig. 2. At decoupling the three
models order independently, each into one of three possi-
ble ordered states, making the commensurate phase 27-
fold degenerate. As the chiral field s, which corresponds
roughly to the pressure or chemical potential in the physi-
cal system, is increased, this commensurate phase be-
comes unstable at s, (T), undergoing a commensurate-to-
incommensurate transition for sufficiently low tempera-
tures. ' ' If the temperature is then increased, this
"striped" incommensurate phase ' will melt into the
fluid phase which exists at high temperatures. Precisely
how these phase boundaries join up is presently a contro-
versial point, ' ' but it is clear that the commensurate

8
FIG. 2. {a) Schematic phase diagram of the uniaxially chiral

clock model. Commensurate, incommensurate, and fluid or
disordered phases are indicated. Precisely how the phase boun-
daries meet is not known: The fluid-incommensurate boundary
may (dotted line) or may not (dashed line) extend to the Potts
point I' at s=0. (b) Possible phase diagram when the three
chiral clock models are coupled, with the fluid phase intruding
between commensurate and incommensurate phases. The
commensurate-fluid transition will probably be in the Potts
universality class for a small chiral field s, but may cross over at
a possible multicritical point M to a chiral class for larger s. A
first-order commensurate-incommensurate transition {not
shown) might also occur, particularly at low temperatures.

phase melts directly into the fluid phase via a transition in
the Potts universality class for zero chiral field (s =0).
Thus the commensurate-incommensurate and incom-
mensurate-fluid phase boundaries must meet at some
s )0., Of course, for a general model first-order transi-
tions may preempt any of the continuous phase transi-
tions shown in Fig. 2.

A possible schematic phase diagram for a small but fin-
ite coupling between the three models is illustrated in Fig.
2(b). In the commensurate phase all three models must
now order the same way so that the degeneracy is reduced
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to threefold. The coupling between the models represents
a relevant {in the renormalization-group sense of the
word) perturbation of the decoupled Potts point I' in Fig.
2(a). General scaHng arguments affirm that the crossover
is P=y= —', . ' The phase transition at s=O presumably
CI'osscs ovcI' to a Qcw tI'RQs1t1on 1D tIlc Potts UnivcIsallty
class, but with the three models coupled in the scaling
11mlt. Slncc ch1I'Rl syIHITlctfy bl cRk1Qg 18 1I'fclcvant Rt this
coupled Potts fixed point, a finite segment of the com-
mensurate phase boundary should be in the Potts univer-
sa11ty class when thc models RI'c coUplcd.

IIl ofdcf to understand %'hat IDay hRppcn to the
coIDIDcnsuf Rtc-lncoIDIQCQsuf Rte tI'Rnslt1on %'hen the
models are coupled, we must first examine the incom-
IIlcIlsUI'atc phase. IQ thc dccoup11ng 111Tllt, thc weakly 1Q-

commensurate phase of each umaxially chiral clock model
may be viewed as consisting of roughly parallel fluctuat-
ing domain walls separating the three types of domain,
say A, 8, and C. ' ' Thc domain %'Rlls I'UQ, on RvcIagc,
normal to the chiral field, and as one moves along the
direction specified by the chiral field one finds the domain
sequence ABCABC. . . . The domain-wRH spacing
diver gcs Rt thc coGlmcnsuf Rte-BlcoIllIQcnsuf atc tI'ans1"
tion ' as (s —s, )

'~ . When the three models are then
considered together, the incommensurate phase consists of
fluctuating domain walls running in three different direc-
tions and separating a total of 27 types of domain, with a
glvcD doIDRIQ sequence» Rs 111UstIatcd 1Q Flg. 3. When thc
three models are coupled, the degeneracy of the 27
doIDaln types 1s bl'okcQ, with those domains 1Q which Rll
three models are ordered the same way becoming favored;
these domains are labeled AHA, 888, and CCC in Fig. 3.
The coupling therefore produces a periodic transverse
force on each domain wall, tending to modulate each wall

in order to enlarge the favored domains, producing the
pattern shown 1Q Flg. 4. This fcquif es bcncbng thc
domain walls, and thus is opposed by the domain-wall
"stiffness. " ' ' The resulting susceptibility to the cou-
pling, namely 8 f/BJ, where f is the free-energy density
Rnd J 18 tIlc coup11Ilg, 18 proportional to thc waII spac1Ilg
as thc commensurate-incoIIlIDcnsufatc tfan81t1on 18 RP-
proached in the decoupling limit. This divergent suscepti-
bility indicates that the coupling is relevant at the transi-
tion and thus will cause crossover to a new type of phase
transition for nonzero coupling.

The coupling between the models produces a somewhat
IDofc ofdclly lncoIDmensufate phase» with three doHla1ns
in the pattern being favored over the other 24. The result-
ing pattern, Fig. 4, is the "hexagonal" or "honeycomb" in-
coIDIDcnsUI'Rtc phase, Rs discussed by Bak et al. Rnd
Coppersmith et al. For weak couphng, the bending of
thc doIIlaIQ %'alls w111 bc lafgc only QcRf thc
coIDIIlcQsUf Rtc-1ncoIDIDcQsuf ate tfRQ81tlon. IQ tcIms of
the physisorbate system this means that for relatively
weak substrates a distinct honeycomb domain-wall pat-
tern will be present only Dear the tI'ansition. Well away
from the transition, only a small fraction of the adatoms
sit very near the lowest-energy absorption sites (represent-
ed by the domains AHA, 888, and CCC in Fig. 3), and a
description in terms of domains and doniain walls is not
RPPI'OP flatC.

Coppersmith et al. have argued that a continuous
commcnsuf Rtc-to-honeycoIIlb lncoIDmcnsuf Rte tl ansltlon
CRIlnot occUI. Thus thc continuous tI'RIls1t1on that occuI'8
in the decoupling limit should cross over either to a first-
order transition or to a sequence of two transitions (either
of which could also be first order), with the fiuid phase
1Qtfud1Ilg bet%'cc1l thc two ordered phases, %'hcn thc cou-

FIG. 3. %cakly incommc11sufatc phase ln thc dccoupl1Ilg
11IQ1t. The Auctuatlng doIQMIl %'RHs scpRI'atc thc 27 d1ffcfcnt
tYpcs of doIQRins. Thc thfcc 1cttcls in thc 1abclcd domains
feplCSCIlt thC dOIMD tppC fof CRCl1 Of thC thfCC C1CCOUpled Chlfal
ClOCk modelS.

FIG. 4. Weakly incommensufate phase with a weak coupling
bctwccIl tl1c IIlodcls. Thlcc of thc 27 doIQMIl types ln F10. 3 Rfc
now favofcd, namely AHA, 888, Rnd CCC. Each domMA %'RH

1Il Flg. 3 1s no%' defofmed ln onicx' to enlafgc the RI'ca of the
favoI'cd domM11s. Tllc fcsult111g pattcfn 1s thc 11o11cpcomb 111-

COIICI1SUI RtC PhRSC.
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pllng 18 added. The intrusion of the flui phase is due to
the instability of the weakly incommensurate honeycomb
phase to dislocation-mediated melting. This is a
thermal effect and thus is most likely to be important at
higher temperatures. At lower temperatures a first-order
commensurate-to-incommensurate transition appears to
be more likely [not shown in Fig. 2(b)]. If the fluid
phase intrudes between the commensurate and incom-
mensurate phases, and the commensurate-fluid transition
is continuous, then this transition occurs in the presence
of a strong chiral field and may well be in a chiral univer-
sality class. If so, the chiral portion of the
commensurate-phase boundary would be separated from
the portion in the Potts umversality class by a new type of
multicritical point, labeled M in Fig. 2(b). The experi-
Inents on Kr on graphite ' suggest a phase diagram that
is qualitatively similar to Fig. 2(b), with a narrow interval
of fluid phase and a chiral commensurate melting transi-
tion near 97 K. Precisely what happens at lower and
higher temperatures is not yet known.

In order to explore the phase diagrams and phase tran-
sitions we might expect near ~3X~3 commensurate
phases, it may be useful to have a simple spin model with
the same LGW Hamiltonian (2.6). Our examination of
the decoupling limit makes it clear that any such model
may be viewed as three separate uniaxially chiral clock
models, with additional couplings between the models.
The symmetries of the system dictate that the model
should be defined on a triangular lattice with three spins
n;, a=1,2,3, at each site i. Each spin may take on the
possible states n; =0,1,2, The chiral field' ' in each
model, a=1,2,3, must be oriented at 120' to those in the
other two; let us choose the fields to be perpendicular to
nearest-neighbor directions. Then the miniInum cou-
plings needed to construct a physical model are chiral
bonds coupling nearest-neighbor spins whose separation is
not normal to the chiral field and on-site ferromagnetic
coupling between the different spins. The resulting Ham-
iltonian is

II,= —Jo g icos (n; —n; )
2'7T 0 p

u&p i

—J& g g cos (n n +b, ), — .
a &ij &

where the sum g&, &
runs over those nearest-neighbor

pairs for which the vector from i to j points in a direction
30' to either side of the chiral field for the a spins. Of
course, one may also add couplings between nearest-
neighbor spins whose separation vector is normal to the
chiral field, as well as any other couplings consistent with
the symmetry of (2.6), but these are not essential to the
basic physics of the system. Simulation or other study of
this model, especially in the commensurate-
lncommensuratc tlansltlon lcglon foI' weak coupling Jo»

may be useful in illuminating the behavior of Kr on gra-
phite and other v 3 X~3 ordered physisorbates.

The general LGW Hamiltonian (2.6) appropriate for
modehng the continuous melting of a W3 X W3 commens-
urate phase is a rather complicated functional of the three
complex scalar ordering fields that has a given set of sym-
metries (2.2)—(2.5). The LGW Hamiltonian of the three-
state Potts model is a special case of (2.6) with higher
symmetry. Those perturbations allowed in the general
Hamiltonian (2.6) that break the Potts-model symmetry
all appear to be irrelevant at the critical point of the Potts
model. Thus a general class of possible ~3Xv 3 melting
tlansltlons will bc ln thc Potts-Inodcl universality class, as
was originally suggested by Alexander. In these cases the
system attains the full Potts-model symmetry in the scal-
ing 11mlt» R symmetry not pI'cscnt ln thc orlglnal Hamll-
tonlan (2.6). This will be reflected ln the scaling function
for the structure factor, which will be highly symmetric
about the Bragg point in momentum space. On the other
hand, we might expect that other v 3 X~3 melting transi-
tions might occur for which the system has no additional
symmetries in the scaling limit. In fact, universality
classes of W3XW3 melting transitions with at least four
possible symmetries are conceivable; in each case the scal-
ing function for the structure factor will exhibit a corre-
sponding symmetry (or lack of symmetry) about the
Bragg point in momentum space.

Qne might expect to be able to model a general
~3X~3 melting transition using a simple triangular lat-
tice gas where all adatoms are assumed to sit at lowest-
cncrgy adsorption sltcs. HowcvcI', such R lattlcc gas has
the symmetry (3.8) in momentum space, which dictates a
symmetry of the structure factor about the Bragg points
of the W3Xv 3 phase {the Brillouin-zone corners) which
is not present in a general adsorbate-substrate system.
Thus such a lattice gas will be inadequate for modeling
~3X~3 melting transitions for which the lattice-gas
symmetry is not attained in the scaling limit. The x-ray
scattering data of Moncton et al. for Kr on graphite sug-
gest that the scaling function for the structure factor at
the commensurate melting transition near 97 K is not
symmetric about the Bragg point. Thus this transition
appears to be in a chiral universality class that cannot be
modeled by a simple lattice gas. The spin model (4.1) in-
troduced above is a relatively simple model which, unlike
a simple lattice gas, has the appropriate symmetry for
modeling the melting of W3 Xv 3 physisorbed commensu-
rate phases.
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