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Quantum-classical crossover in quasi-one-dimensional systems
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New results are obtained for quasi-one-dimensional systems. Quantum fluctuations are treated by
the Wilson renormalization group and are shown to have a strong influence on the three-
dimensional correlations for systems with two-particle interchain coupling. The nonuniversal char-
acter of the quantum-classical crossover and the implications on the standard microscopic
Ginzburg-Landau theory are examined. We also point out a possible connection to the experimental
results on the (tetramethyltetrathiafulvalenium)z-I [{TMTSF)2-X]compounds.
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Here, i is the chain index, L is the length of the chains,
V~ is the Fermi velocity of the linearized fermion spec-
trum, and g is an interaction constant specific to each

For a large class of quasi-one-dimensional (1D) sys-
tems, it is well known that 1D quantum fluctuations can
strongly depress the phase-transition temperature Tc.
This has clearly been shown' using the full quantum
nature of the 1D correlations ' in a mean-field treatment
of the transverse coupling. These calculations neglect,
however, the time-dependent effects which are surely
relevant whenever the thermal-fluctuation frequencies are
less than the characteristic dynamic frequencies. It is the
purpose of the present paper to give an adequate descrip-
tion of quantum-fluctuations phenomena in quasi-1D sys-
tems. The application to the observed critical behavior of
the tetramethyltetrathiafulvalenium-X [(TMTSF)2X] com-
pounds is emphasized.

Consider a set of Nt parallel chains of interacting fer-
mions packed into a square lattice with interchain dis-
tance d~. In the interaction picture, the partition func-
tion of the entire system is

P
Z=ZII T,exp — Hz v dv. (1)

II

where P= 1/T, T is the temperature ( kz ——1), and r is the
imaginary Matsubara "time." Hz is the interchain Ham-
iltonian. Z~~ and ( )

~~
are the partition function and the

thermodynamic expectation value evaluated with the in-
trachain Hamiltonian H~~. By a series of transformations,
the single-chain part of the model Hamiltonians that we
shall be studying can be written entirely in terms of parti-
cle density operators (bosons), ' '

r

2m V~
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= X g [P&, '(q)P1, (q) +p2, (q)P2, (q) ]
i=1 q

model (6=1). The operators p~~2) refer to the density of
particles with velocity VF ( —V~).

These are essentially connected with long-wavelength
excitations, ' ' which give power-law singularities in the
pair or density-density response function X,D. At low
temperature, for distances x and "times" r smaller than

g~~ ~ —V&/T and 1/T, the correlations are quantum and
decay according to a power law

X&D(x,r)- ~x+tV r~"

Here, Vp is the characteristic velocity of the excitations.
At large distances when x ~~/

~ & and r-I/T, we have
an exponential decay of correlations XqD(x)
—T "e,where

g~~ T ——VFIT is the thermal~
—

I
&

I ~III, T

correlation length. Correspondingly, in Fourier space,

X~D(q, to )-(to + Vpq )

for nonvanishing values of co~ =2mmT, m an inte. ger, and

Vpq & 2m. T at T&0, whereas X~D(T)- T " when
m =q =0. Since the power-law exponent g and
V~= V+[1—(g/~VF) ]' depend on g, the quantum
properties of 1D correlations are nonuniversal. ' ' As
V & VF, the thermal (classical) coherence length always
encompasses the characteristic quantum length

We are interested in a class of interchain coupling
which involves two-particle processes. In such cases, Ht
can be written in the following general form:

Hj ———g g f VqaOta(x)OJ a(x)dx .
a= 1 ij

Vj ~ is the strength of coupling between the chains i and j
for the component a of the operators O. For simplicity,
V~ will be assumed isotropic. The interchain tunnelings
of 2KF electron-hole pairs and of singlet pairs of electrons
leading to the charge-density-wave (CDW) transition and
to singlet superconductivity (SS) are, respectively,
described by the following relevant operators:
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and

0;(x)= g fi;,(x)$2, ;,, (x)
s=+1

0;(x)= g sit, ;,(x)1(p;,(x) .
s =+1

A functional integral form for Z can be constructed
rigorously via the Hubbard-Stratonovich transformation
obtained by the application of the following identity for
two commuting operators 0 and O~, "

eo o= f dpdp'exp[ —m.
I p I

z ~m(Otg+Op')],

Here, the f's are the fermion-field operators and s is the
spin. Such tunneling for CDW's can be induced by inter-
chain backward scattering, ' or for SS and CDW's from
interchain hopping (ti) with V proportional to ti. The
latter is only possible for fermions with spin for which a
gap As & tz exists in the spin excitations.

to the interaction term of (1). By a cumulant expansion of
the remaining thermodynamic average, the result is ex-
pressed as a function of the intrachain response functions
in all orders of perturbation. These can be approximated
following the suggestion of Menyhard. ' ' We arrive at
the result Z=Z~~ f 5&e

H(y, q')= & g [ .r+~(~' + V'q')""+S'.q', f I y.(q) I'
a

+ UT/(L&i) X g 4.(qi W'. (q2W p(q3) Pp(ql q2+q3)+ ' ' '

~~ f@

where

d P (q )dit*(q )

m
I

V (qi) IXiD~(q, co~)
(4b)

Here (q)=(q, qi, co ) and A is a constant. To this order,
H has a quantum Landau-Ginzburg-Wilson (LGW) form.
The quadratic term has been obtained by expanding

V~(qi) around the transverse ordering wave vector q i
with S~ as the effective (short) range' of V in units of
di, and also by the above-mentioned asymptotic behavior
of XiD for the 1D quantum-fluctuation phase space

~m
Q)D ) p ) 2'HATT

pq

(see Refs. 4, 5, 8, 10, and 12). Here, r~ =(T/TP~ ) 1, —
with Tc"—

I V(qi)
I

as the three-dimensional (3D)
mean-field (MF) transition temperature which is deter-
mined by the condition

~1D(TC,.")
I

V (q i) I

' —1=0 ~

The mode-mode coupling strength U is proportional to
the fourth-order 1D free-fermion loop at co=q=0, which
is finite at T&0. ' The natural energy cutoff for quan-
tum effects coD = Vpqo is the Debye energy of the 1D col-
lective excitations, ~ 5 with qo as the cutoff wave vector.
In the transverse direction qi0 2n/di is the nat——ural cut-
off. Clearly, the above quasi-1D LGW form for the P
field has an effective anisotropic range of interaction
which can be long range in space and time for the longitu-
dinal direction (g &2) and short range in the transverse
directions.

In the cases where T~ &&uD, the static approximation
for H is not justified. ' It must be preceded by the in-
tegration of all quantum degrees of freedom. This can be
done properly by applying the Wilson renormalization-
group (RG) technique for quantum functionals (we shall
denote these techniques as QRG), + " first introduced by
Beal-Monod. Following Ref. 6(b), we first integrate the

I

P's of the outer-shell phase space

e '&5(co +q ) +S qi &1
2g/2

in reduced units (5 & 1), and we rescale anisotropically the
4 2l/g~ ~ ~ ) Ivariables q ---q =e q, qz =-qz ——e qz, and co

-
co

21/g=e co taken to be continuous. The fields are then re-
scaled as

—(2/v +d/2+1/2)1

in order to preserve the form of H, the phase space, and
field densities. ' Here, d is the dimension and I is the in-
finitesimal generator of the RG. This rescaling procedure
leads to the usual forms of the RG equations, '

dr~ Ed „U=2I"~+

E'd „U=e~U-
(1+r.)' (Sb)

e~ =4—2(E/rl~ —2/g~+ 1) & e~

for K) 6 and d=3. The passage to a classical thermo-
dynamic regime can be determined when only one finite
Matsubara frequency remains, ' ' that is, when

—21*/g
a&De =2mT. This defines two characteristic wave
vectors in the fluctuation phase space,

Here, Kd „and Ed „are constants which depend on the
dimension d and the number n of the g components. The
rescaling gives a different value of @~=4—(d —1 + 4/g )

for g & 2. In contrast to the classical case, ' where i) =2,
co=0, and a=4 —d, the effective dimensionality in the
critical-behavior sense is increased by anisotropic quan-
tum effects to d' =d —1+4/g &4 for g &2 and d=3.
If e &0, the quartic term in H acts as a small perturba-
tion for the relevant 3D Gaussian properties. ' Higher-
order terms in H do not affect this behavior since they
have a faster decay during the renormalization, namely

e1
U~ ——U~e with
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and

—21*/gq« ——qoe = (2m T/coD )qo

q /2q„=(2~T/~D) q, o .

For q & qi, ~ and q & qi, ~, the fluctuations are essential-
ly quantum and they are governed by the QRG equations
(5). This indicates, in contrast to the usual static calcula-
tion, the possiblity of transverse propagation of the quan-
tum correlations. On the other hand, for q &q, and

qi & qz, ~, the fluctuations are static and classical with
E'= 4—d.

In the classical regime, the critical behavior is treated
by the usual classical LGW functional with the renormal-
ized values of T, and U and the new cutoff q, and

qi, .6'4 To first order in U, the renormalization of T, is
given by the solution of (5),

with

The quantum-classical crossover temperature T* is
reached when the transverse coherence length gi is of
the order of the transverse characteristic quantum length
di, =—2~qj, ' . For smaller values of gz the correla-
tions are governed by quantum dynamics, while for larger
values they are governed by thermal fluctuations. Since
for T & T', e &0, a Gaussian-like behavior of gi leads
to gi —gJ 0 (r )

'~ with gi 0 =S /V 2di. The cross-
over condition g~ ~(T )=~dz, ~ yields, in the linear ap-
proximation for r~,

b, t'= (T* T, )/T-, —

,'(S~/ri~)(—2mT, ~/coD) ./[1—(& ~/)2( m2. ,T/oiD)"~]

(8)
The crossover exponent becomes p =1/iI, with the tem-
perature as the symmetry-breaking parameter. ' ' ht~ is
then a measure of the range of validity of the classical
LGW treatment. The region T & T, is subjected to the
same conditions since quantum effects for qi &qi, per-
sist throughout the long-range-order regime. As g de-
pends on g, P~ reflects the nonuniuersal way that the sys-
tern loses its Gaussian quantum properties. From the
crossover condition on the longitudinal coherence length,

(T =T')=2~q, '—=d~~, , and Eq. (8), it follo ws that

——g'iso [(T—T, )/T, ]

for T& T*, which might have been guessed in advance
from (4).' More generally, for arbitrary interaction in a
transverse direction' q j —&qi in (4) (0 & o & 2),
/~= 1/g~, and the longitudinal and the transverse ex-
ponents v~~ =I/g and v~ =1/o for g satisfy the fol-

lowing anisotropic relation: vi ~/v~~ ~=g~/o for the
growth of the quasi-1D quantum-correlation cluster at
TQ T

A few remarks are now in order. From Eqs. (5)—(8), in
the 1D free-electron-gas limit where g —+0,

I

e
I
~oo,

and l* —+0, the correction to T~ ~ vanishes and
T* »T, "

S.imilarly, near the classical limit, when
mD &2mTc~" or q~=2, we also have Tc~Tc~". For both
cases, an unrenormalized static LGW treatment becomes
justified. Furthermore, one must note that the limit g —+0
with d ~co is consistent with static BCS-like thermo-
dynamics near T, .' However, for other values of ri and
coD it is possible that the renormalization of T, due to the
addition of a large number of nonthermal-fluctuating
modes may be of the order of T, "itself. This can occur
despite the fact that in the renormalized static calculation
the relevance of U in the Ginzburg sense is restricted to a
narrow temperature range around T, ".' Similar large
quantum-fluctuation corrections to LGW parameters
have been already obtained in the context of itinerant fer-
romagnetism. ' Clearly, in such cases, the use of the
mean-field transition temperature is surely not valid, and
even its low-order corrections can be questionable, and it
is more preferable to consider T, as a parameter of the
problem.

We now look at some phase transitions where the re-
sults derived above are applicable (i) A backward scatter-
ing process for VJ can give rise to a CDW transition. '

In the case of spinless fermions the short-wavelength cut-
off Ao ——2m.qo is the range of the interaction which can
be taken to be of the order of the 1D lattice constant a.
For weak coupling, ' Vz-V~ and 0&ri &1. Quantum
corrections increase with g. Since there is no gap in the
1D interacting Luttinger model, the ellipsoid-shaped
volume V, -vrdj, d~~, spanned by quantum fluctuations
can be considered to be the real size of the 3D electron-
hole pairs. ' Their collective motion which drives the
transition is then described by the classical LGW treat-
ment. (i) For the SS transition and weak attractive cou-
pling along the chains, 0&g & 1 and Vz-V~, and Ao is
increased to go ——V~/b, „which is of the order of the size
of the bound pairs of electrons. With 1D strong local at-
tractive coupling between electrons, quantum effects can
be stronger since go-a, 0&ri & —,, and V~& Vz) 4 Vz.
With a nonretarded attractive coupling between electrons
and V -ti, some competitive effects between the SS and
CDW types of long-range ordering can occur. According
to Refs. 4 and 5 it is the strongest in the weak attractive
coupling where

MF MF0 & ICDW & ASS Or Tc,CDW & Tc,SS

whereas it is small in the strong coupling case where
gcDw ——O when ass ———,. Thus, we have the possibility of
a quantum-classical crossover for both types of correla, -
tion with NcDw= I/gcDw Pss= I/r/ss and b tcDw & htss
The classical regime can be described by retaining only
the correlations with the highest T, .' (iii) When the 1D
electron-phonon interaction dominates the 1D Coulomb
interaction g, a Peierls transition can occur with V-tL
(or transverse backward scattering), V =(m/m ) VF,
Ao ——Vz/bo, and di, ——T, /T"(m/m*) ~ di. m" is the
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CDW effective mass and m is the electron-band mass. In
the adiabatic approximation m*~&m (zi=2), the gap
5p = 1.73 T p where T,p is the 1D mean-field transition
temperature. It follows that the quantum correlations to
the transition are quite small, namely 0 & coD & T, ",
1*=0, and dz, -dq. This means that the use of an un-
renormalized classical LOW functional becomes justified
for essentially all temperatures. The conclusions are com-
pletely different if we are in the nonadiabatic limit when
m*=m. In this case, the electron-phonon interaction is
equivalent to a nonretarded attractive coupling between
electrons, and therefore the treatment in (ii) applies.
However, the above discussion was restricted to the in-
commensurate cases and it appears that the conclusions
for the half filled band, or commensurate, case are dif-
ferent. For example, in the nonadiabatic limit of
electron-phonon interaction, because of the relevance of
umklapp scattering processes, ' the 1D problem is highly
quantum" and there is a gap in both charge and spin de-
grees of freedom with only divergent CDW correlations.
These are characterized by g=2, but with coD &&T, ".
With a 3D kinetic or potential coupling it follows that
e=O, d =4 in the quantum regime ( T* & T), and /= —,',
for At* «1; that is, strong quantum corrections must be
taken into account.

The implications of the above results for the
(TMTSF)2X family of superconductors are of interest.
This is especially true if one looks at the effect of the re-
normalization on the Ginzburg critical width in units of

C&

5tG ktG(dl /tlic) ( Tc/Tc ) 'Vle Vc T c U'

where AtG comes from the unrenormalized calculation,
which have been discussed in detail in Ref. 12. Several ar-
guments suggest that for organic superconductors, ' ' '

1 & g & 0 and 6, =20—30 K. From our analysis,

dj, /dq (b—.—, /T*)"I and b,t*=S /2 (Tc/6, ), and from
the experimental value of Tc-1 K we can conclude that
the quantum corrections to the static prediction (g=O)
0 & AtG & 0.05 (g = 1) can be important; that is,
b, tG «htG and the chances of observing a real departure
from 3D mean-field behavior are small. The electronic
specific heat is linear in temperature when it is dominated
by 1D quantum-fluctuation effects ' ' ' ' " for
Tc&T &5,. Therefore, the transition would resemble
that of an ordinary 3D superconductor despite the quasi-
particle confinement due to a pseudogap of width 2b, '

The small width of the transition observed by specific-
heat measurements on (TMTSF)zC104 (Ref. 26) is there-
fore compatible with a quantum-fluctuation picture.

As a final remark, we wish to emphasize that the
present approach does not apply when 6, « tz. When
spin- or charge-excitation gaps are not relevant in the
presence of transverse hopping, transverse one particle-
events must be taken into account. As stated previously,
this was neglected by writing Hz in the form given by (3).

In conclusion, we have pointed out that 10 quantum
fluctuations can propagate in the transverse direction.
For a large class of quasi-10 Hamiltonians, a RG treat-
ment for these fluctuations leads to a nonuniversal cross-
over from a boson variable description, valid when 10
quantum effects dominate, to a standard, but renormal-
ized, static LGW approach near the transition.
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