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The electronic Raman scattering by pairs of quasiparticles is calculated at zero temperature, gen-
eralizing previous calculations that were based on the Bardeen-Cooper-Schrieffer model of a super-
conductor. Analytical and numerical results are presented for the spectrum as a function of wave
vector q, and an integration is performed over q, to include the effect of a finite optical penetration
depth. Allowing for gap anisotropy, we correct the results for vertex and Coulomb polarization ef-
fects. The theoretical results for finite q are used to calculate spectra for N13Sn, V3Si, and Nb,
neglecting gap anisotropy. Experimental data are presented for V3Si and Nb. The data for V3Si are
fit to a zero-q theory that includes gap anisotropy, with results similar to those presented earlier for
Nb3Sn. The role of possible excitons on the Raman spectra is examined. These theoretical results
are then used to discuss the self-energy of a Raman-active optical phonon in a superconductor.

I. INTRODUCTION

At very low temperature the presence of the energy gap
6 in a superconductor prevents the conduction electrons
from being excited unless the energy transferred exceeds
2h. ' There should, therefore, be no electronic Raman
scattering for energy transfers below 2b, . Early calcula-
tions of the electronic Raman effect in superconductors
neglected anisotropy in 6 and in the attractive electron-
electron interaction, and were made in the limit of large
wave-vector transfer q. In a metal the relevant value
of q is 5 ', where 5 is the optical penetration depth, and
"large q" means that 5 is small compared with the coher-
ence length g=h'vF(25) ', where vy is the electron veloci-

ty at the Fermi surface. In this limit the calculations
predicted that at zero temperature the scattered intensity
would discontinuously turn on at 26 to a value above that
of a normal metal, and for increasing energy transfer it
would rise, but gradually approach the normal-metal
value from above. The first reported attempt to see
structure near 2h in a Raman-type experiment was per-
formed on Nb3Sn. Given the recent results to be dis-
cussed below, one can probably characterize this attempt
as unsuccessful. The first clear evidence of Raman
scattering by gap excitations was the observation of 2h
peaks in 28-NbSeq. ' The small-q limit characterizes
this layered compound, which also undergoes a phase
transition to a charge-density-wave (CDW) state at a tem-
perature above the superconducting transition tempera-
ture. Studies of the Raman spectrum in a magnetic
field ' and use of impurities to quench the CDW (Ref.
10) strongly suggested that the Raman peaks at 2h owed
their Raman activity to coupling of the electronic excita-
tions to Raman-active amplitude modes of the CDW.
Two theories of this coupling have been published. "'

The second clear case of evidence of Raman scattering
from gap excitations was provided by simultaneous re-
ports by two groups of the observations of peaks near 2h
in Nb3Sn and V3Si." ' The samples studied in most de-

tail underwent a cubic-to-tetragonal martensitic transfor-
mation at temperatures above the superconducting transi-
tion temperature; nevertheless, it is convenient to describe
the Raman symmetries as though the samples remained
cubic. In a transforming sample of Nb3Sn, peaks near 2b
were seen in A&g, Eg, and T2g symmetries. ' ' The Eg
peak was about 20% lower in energy than the other two
peaks. '3' In a nontransforming sample of V3Si a peak
was seen in E~ and 2 ~~ symmetries, but the 3 &~ peak was
too weak to analyze. ' ' The temperature dependence of
the Es peak in transforming V3Si was studied in some de-
tail and the data were presented on the Eg peak in a non-
transforming sample of Nb3Sn by Hackl et al. ' ' There
is also some evidence of a 2h peak in Nb. '

Dierker et al. fitted their Nb3Sn results with a theoreti-
cal expression derived using Bardeen-Cooper-Schrieffer
(BCS) theory' in the limit q~O. ' ' They assumed that
the peaks near 2A were due to direct Raman scattering
from quasiparticle pairs without the intervention of in-
direct coupling via phonons. This assumption appears
justified (1) in the case of the 2b, peak of A,s symmetry by
the absence of any Raman-active phonon of A ~g symme-
try, (2) in the case of the 2b, peak of T2g symmetry by the
weakness of the Raman scattering from the Tzs phonon,
and (3) in the case of the 25 peak of Eg symmetry by the
fact that the CDW-like Eg optical phonon in Nb3Sn has a
frequency of about 7b, /fi, too far from 2b, /A' for strong
admixing (whereas the CDW phonons in 2H-NbSe2 have
frequencies of about 4b/th'). Dierker et al. attributed the
lower value of the Eg gap peak frequency in Nb3Sn to an-

isotropy of the gap Ak as a function of wave vector k on
the Fermi surface combined with different weighting of
the b,k's in the different Raman symmetries.

In the present paper we develop the theory in some de-
tail for zero temperature using an anisotropic, nonretard-
ed, attractive electron-electron interaction. We will
correct the "bare" Raman matrix element for the effects
of final-state interactions (vertex corrections), to make the
theory gauge invariant, and we will correct for screening
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Electromc Raman scatter 1ng can be treated by cons1der-
ing the perturbation Hamiltonian
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of the vertex by the Coulomb interaction. In the q —+0
limit either of these corrections essentially subtracts the
Fermi-surface average of the Raman matrix element from
that matrix element, apart from small Fermi-liquid-like
corrections.

In Sec. II we derive the Raman spectral function for a
superconductor using results from second-order time-
dependent perturbation theory. More attention is paid. to
the wave-vector dependence than is found in previous
treatments. Some details of the derivation and evalua-
tion for finite q are given in Appendixes A and B.
Derivations and numerical results for the Raman spectral
function after integration over the component of q perpen-
dicular to the interface, are presented elsewhere. '

Section III is devoted to the effect of vertex and
Coulomb corrections. In addition, we examine the possi-
bility that the observed Es Raman peak in Nb&SU might
be due to an "exciton" of that symmetry rather than gap
anisotropy. In Sec. IV the results of Sec. III are applied to
the polarization operator (self-energy) for an optical pho-
non. Results are summarized in Sec. V.
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and where c is the annihilation operator for an clee-
k, o

tron of wave vector k and spin cr in the conduction band,
and we use units in which III'= 1. The quantities e; and e,
dcllotc polarlzatloI1 Ulllt vcctols foi tllc lllcldcllt Rlld scat-
tered photons.

The "internal" photon cross section per unit volume
(wlllcll llcglccts lcflcctloll losses Rt thc suIfRcc) ls tllcn
given by

d R =r,S(q, t0),
dQ dRI

(1d)

where r, =e /mc is the Thomson radius, and where

S(q, to)={27r) ' f dtcxp( —iNt){p (0)p {t)) . (le)

S( q„co) has been calculated for zero temperature for the
8CS model of a superconductor by Abrikosov and
Fal'kovskii, and by Tong and Maradudin vnth yk given
by the first term of Eq. (lc). The usc of the full Eq. (lc)
can be accounted for in their result by inserting a factor of

l yk l
/(e; e, ) mto the final sum over the wave vector,

glvlng

where A(rj) is the vector potential of the optical fields
acting on thc Jth clcctroQ Rnd pj 1s that electron s momen-
tum. The term in Eq. (la) second order in A, used in the
first order of perturbation theory, combines with the term
first order in A used in the second order of perturbation
theory. More precisely, the pJ"A(rj ) term in Eq. (la) in-
duces transitions from the conduction-band states, denot-
ed by

l
k) to higher or lower band states

l
bk) of energies

ek and cbk, respectively. The photon scattering vertex is
then given by the densitylike operator

p~=~ c~ ~ c~
q k+q g ko k

k qQ

EE' &k&i +~k-
2EE' (2a)

Here Ak is the gap parameter, assumed to be slowly vary-
lllg llcRI tllc Fcrlnl sUrfacc, Rnd Ek=6'k+& Ek+ q v'k. '

The zero of energy for ek is assumed to be the Fermi ener-
gy. Thc quasiparticlc cncrglcs E Rnd E obey

E=(c',+a', )'", E =(~'„.+a'„.)'". (21)

The factor (EE' ekek+b, k)/—(2EE') in Eq. (2a) is the
BCS coherence factor for a type-I excitation.

Equations {2a) and (21) are rearranged in Appendix A
to glvC

wllcrc N(0) ls t11c dcllslty of stRtcs fol ollc spill, wllclc fol
a function E(k) we define a Fermi-surface average by

N(0) &E(k) &' =—I';F(k)5(E„), .(31)
(2n. )'

and where the prime means that the integral in Eq. (31) is
restricted to those values of k such that

a) )45k+(q. vk)

We may evaluate Eq. (3c) further assuming a constant
gap Ak =5, R constant scattcr1ng vcrtcx pk =p Rnd a
spherical Fermi surface where

l vk l
=Uz is a constant.

This ls doIlc 111 Appclldlx B. Solnc llllIncrlcal rcsUlts foi
S„d{q,ro) =S(q,a))[N(0)y ] ' are plotted in Fig. 1.
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FIG. 1. Reduced structure factor S,~(q, co)

=S(q,cv}[1V(0}y'] ' vs cv/(2h} for qua=0. 1, 0.5, 1.0, 2.0, 4.0,
and 8.0 where g'= vF/2h is the coherence length.

XS(q =(q,'+q'„)'",~) . (4a)

This result depends only on the magnitude q~~
of q~~.

Equation (4a) generally requires numerical evaluation;
however, in certain cases analytical expressions can be
found which semiquantitatively display the behavior of
the function. This was done in detail in Ref. 18, and we
display some results here.

In Figs. 2—4 we have plotted

I„d(5,qt, qll, ro):~I(5,qi, qll, rv—)[N(0)y 5]
from (4a) versus co/2b, in the near-gap region for the di-
mension]ess ratio r, =0.1—10.0, where

and

5 vF
r, —: =g/5,

2b,
(4b)

Actually, only qll, the component of q parallel to the
interface, is well defined in a Raman experiment in met-
als. ' The perpendicular component q, has both real
( =qj ) and imaginary components ( =5 ), where 5 is the

—1

penetration depth for the incident optical intensity, and
must be averaged over. The ratio of scattered to incident
intensities is proportional to

ao diazI(5,qi, qll, rv) =n'f." tn+e'~ +

the two panels of each figure correspond to rll/rt =0.1

and 10.0. Note that
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This is a good approximation to I for r, & 1 and g & 1; the
main effect of finite qz and qll is to remove the singularity
very near to co =26. For r, & 1 and r~~ &&rz the scattering
near r0=2b, is strongly suppressed, the curves becoming
rather featureless. For r, & 1 and rll »rL a cusp appears
at co = 52( ]+rl

I

)'/ . The sharpness of this cusp is a result
of our assumptions in Appendix B of a spherical Fermi
surface, and it will be rounded for an anisotropic Fermi
surface.

We feel that in the general case when b,k&const and
when yk&const, it will still be true that a good approxi-
mation to the frequency dependence of vrI(5, qz, qll, rv) will
be given by 5S(q =O, rv) with an appropriate weighting of
b, 's, as long as the penetration depth is of order of ork

2 2 1/2 —1greater than the coherence length and (qll+qJ ) &5
As discussed earlier, experimental results now exist for

8—10Raman scattering by gap excitations in 2H-NbSe2,
Nb3Sn, ' ' V3Si, ' ' and Nb. ' In Fig. 5 we have plot-
ted I„d(5,qz, qll, ro) for each of these materials using the
parameters g, r„rz, and rll tabulated in Table I. The
small r, values for 2H-NbSeq, Nb3Sn, and V3Si make

(4c)g=uF!2b

is the coherence length. We similarly define rz =qqg and
r

II =&Il~.r—:q ~~. The curves for ro &0.1 are equivalent to those
for r =0.1. Figures 2, 3, and 4 correspond to
g=(rll+rz ) /rz ——0.1, 0.5, and 2.0, respectively, while

0'
2
~/26

4 0

co}=mI(5,q, qll, co}[X(0}r'l ' » ~/t
26.
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0.026
0.084
0.010
0.513

TABLE I. Dimensionless real wave-ave-vector transfers rj, rll in
Nb S V Si and Nb normalized by the coherence2H-NbSe&, 3 n,

length g compare wid 'th the normalized imaginary wa
f0.

FIG.
co/ 2k.

2 4 0
fA) /2h,(d /2D

4. I,~(5,qk, q)), co) =krI(5, qk, p(~, co)[N(0)y~] ' vs

co differ little from an inverse square-root
R f. 18. Note the drastic ef-

e coherence length of niobium in reducmg
the scattering intensity at 2A compare o e
terials.

Raman spectra from a sample
Si T =16.85 K, the residual resistivity ratio

'] wh' h is not believed to undergo
a martensitic transformation, taken at 1.8 an

near 45 cm ' represent scattering from gap excita-

on E . (BS), convoluted with a Gaussian distri u-
nner of E s. (34f) and (34g) in order totion of b, in the manner o qs.

d 'th a Gauss-and then convolute wi a amimic gap anisotropy,
f '

The fits
'

n to mimic the spectrometer resp onse unction.
~ ~

e data well; the results are given in
Table II. Although the Rig gap peak is too wea

icular to the layers is given. P. deTrey,'The value of g' perpendicular o
11 421 (1973).. 6 ax, and J. P. Jan, J. Low Temp. Phys. 11, 421

N'ff S. Foner, and M. R. Beasley,T. P. Orlando, E. J. McNk, . o
ev. B 19, 4545 (1979).

. W. Crabtree, D. H. Dye, D. . arin, an
d- and -Band Metals, edited by H. Suhl,in Superconductivity in d- and - an e

r 1980), p.an d M. B. Maple (Academic, New Yor, , p.
r e and P. A. Fleury, J. Phys.Optical constants from R. T. Harley an

C 12 L863 (1979).
B. Dierker and M. V. Klein (unpub-'Optical constants from S. B. Dier er an

roll S. T. Ceyer, and A. J.Optical constants from J. J. Carro,
Melmed, J. Opt. Soc. Am. 72, 668 (1982).

et al. ' ' have done for Nb3Sn,by subtraction as Dierker et a .
one can infer from the increase in ho in going rom s o

E to A i + ,' Es that t—he Es gap peak frequency in
V Si is ) 10% lower than the ks gap pe

e-cr stal, thin-film niobiumRaman spectra from sing e-c y, b
=9.3 K the RRR is 22.4, 2h-25 cm, and t ic-(T, = . , e

ness =2000 A) are shown in Fig. 8. Note
weakness of the scattering in

' ' '
isin the vicinity of 2b, . This is

b th with the prediction of Fig. 5 and wkt t econsistent ot wi
of niobiumrelative y wea er1 ker Fermi-surface anisotropy o

compared to the 315 compounds Nb3Sn and V3Si.

3
D
:I

CJ

GG

O
(0
L

N

C
kA

0
0

C ~
0

0
&m
CL

25 35 45 55 65 75 85 95
Raman ShiFt (c:m )

Oo

(d/2Q

m) vs mf25 evaluated for the parame-FIG. 5. I,~(5~q»qll~~ vs m

bSe (b) Nb3Sn, (c)ters (see Table I) appropriate for (a) 2H-NbSe2 3

V3Si, and (d) Nb.

Lower two curves are at 40FIG. 6. Raman spectra of V3Si. Low
er curves are at 1.8 K. Symmetries are as follows:

top and bottom, ~ Eg; middle two, A i~+ 4

d b 1.0 countfs, middle two curves byhas been shifted upwar y . co
th solid curves are theoretical fits,0.5 countfs. Upper two smoo so

'

es of the data.lower two solid curves are three point averag



I (o

C
lA

0
0

I

4

I

25 35 45 55 65 75 85 95
Raman ShiFt, (cm

LA

I pj

I
C u

PJ
0
0

C
0 (f)

0

CL

l I

15 20 25 3G 35 40 45 50
Ramar ShiFt. c:m )

FIG. 7. R
K an

RBIIlan spccfra of V SR two CUrvcs arc 8t 40LoweI' tw
are at 1.8 K. S rnan 8 . . yMIIlctrics arc as fo110&s:

T
op~ A jg+Eg~ bottoIQ and0 A; third ffoIIl bottom

avc ccn shifted U

Top smooth-solid curve is a theoreticaT - '
curve is a theoretica fit, lower three 1'd

«n aver-ges of the data
So 1

A. Derivation

The results in E (2 ), , 4T '
qs. a), (3a), or 4

t quaslpartlcles.

same attractive int
e quaslparticles via. th

~ 0

ln clactlon rcs oQslbl
C

tivity, and also in 1 d n enc u c polarlzatlon
uc-

n n corI'ections due to the

G
om inteI action.

i'eeii s fiiiictioiis. ' e
cattering involves the discontinuit in a - ncs e iscontinuity in a four-vertex func-

rcqucncp variable 6)=
axis from above F'

=qo crosses the real
igure 9 shows the four

to I for noninteract 1 - nor-
ma, l metal. In a. su

ing e ectron-hole CXCltatIOQS IQ 8 QOI'-

a. superconductor these ba. su e ecome mixed with
cxcItations. Thc vcrtl

n uctlon-band Bloch s
1Q COQQCCt1011 %8th E
lntcl actions %'ith c

qs. (lb) and (lc .
c states as introduced

c). Electron-electron
carriers in the conduc

duce a finite width w t
n uctlon band v@11 pro-

Nyk to Bloch stRtc k ln band. 6.

BQl'e v8PtlC8$

FIG. 8. Ra,man sarnan spectra of Nb at 1.8 K.
0 ows: top CUI'vc )g+ —T ' b

ymmctries arc

Solid cu

as

CUI'vcs arc three
2g, ottoIQ CUI vc 2ES g

ec point averages of the data
2g'

0 I10
0—0 &, I 0

0 I 0
1 0 0 —1

2

I

/
/

/

ir bI

trlx clcn1cIlt Rt vcrtcx 3-4 Is pg =trix ex - is y'k =yk. The width w will
c . cncc, an/ changes ln f

uc Ivlty can be ne lec
k

e error. If the hot
SC

1 td th tt hne gaps in the denomin-c ot cband 8
I:ccomcs sln1 1

lna-

e reciprocal effective-mass tensor for

%'e use the N
'

re
tllc Q1atriccs

NRQ1bu splnoI' rc rcprcscntatlon that cGl 1GlP OYS

lv

TABLE II. 5o+o frOm fits tI s to Raman data, on V S .3 1~

ho+a. (Cm ')

20.0+2.4
21.2+ I.8
21.5%2.8

The vertex pair 1-2
ma

Glaf bC tlCRtCd RS 8 S

ay the vertex pair 3-4 (I"' . Then& the I' functionig. 10). T
er o

'
on ubble. " When th

2
er o a polarization "b

a is included th
' '

e e-c c+Lcctlve matrix clc-
is given by Eq. (lc) withls I . %'It11 6)& I'cplaccd bg

z p ace y coz+Ewbk. The effect e Iiia- )

FIG. 9. TThc foUr-vcrtcx dia I'8MsT 1agI'8Ms for nonlntcfacflng
c c - 8 1ons ln 8 nofmal Metal. Solid 11ncs rcf

es, as ed lines to ho
re er to

p. e; acts, and at vertices
an 4

acts. Thcsc four dlaglaMs are to be s
ve Iccs 2 and 3 operator ( p'eg

supplemented by a d'

and/or (3,4) are re 1

8 1agraMd, arc replaced by 8 siI10;1c vertex



THEORY QF RAMAN SCATTERING IN SUPERCQNDUCTORS

FIG. 10. The effective vertices appearing in Fig. 3.
FIG. 11. Diagrammatic form of the integral equation, Eq.

(6b).

The bare vertex yk now becomes the matrix

2. Interactions among particles; Uertex functions

Interactions between the quasiparticles are treated by
using, instead of y(k), the vertex function I"(k+,k ),
%vhich obcps thc vcrtcx equation

d k'
I (k~, k )=y(k)+ f r3G(k'+ )I (k', k'+ )

(Zn. ) i

~G(k' )~,D(k, k') .

In Eq. (6b) we have used four-vector notation: k = ( k, ko),
d k =d'k dko, and k+ =k+q/2 with q=(q, qo ——co), etc.
The interaction is denoted by D(k, k'). lt will be as-
sumed to be nonretarded. Equation (61) is shown di-
agrammatically in Fig. 11.

The polarization bubble with a corrected vertex I on
the left-hand side and a bare vertex y' on the right-hand
side will be denoted by 8r& (q). It is given by (Fig. 12)

d'k8r (q)= —f Tr[G(k+)I (k+, k )G(k )v3]yj, ,
(2n. ) i

(6c)

where I satisfies Eq. (61). The Raman intensity is ob-
tained by generalizing S(q, co) of Eqs. (la)—(le) to finite
temperature, for intermediate-state damping, and for ver-
tex effects using Kawabata's four-vertex function. The
gcncI'allzatlon ls given bp

S(q,o))~—[I+n( )]ra[8„,(q, +oIi0+)

8r, ( q, co —i 0+ )]/—m2'i,

where n (oI) is the Bose function. Equation (6d) represents

a generalization of the fluctuation-dissipation theorem for
Raman scattering. %'e assume T=O, making it unneces-
sary to interpret the frequency variables in Eqs. (61) and
(6c) as Matsubara frequencies. Eventually, we shall re-
place 8„, by 8~, [see Eq. (21)]. Results for a nonre-

tarded, factorizable interaction are given in Sec. III A 6.
The electronic Greens-function matrix appearing in

Eqs. (61) and (6c) is given by '

In writing G(k' q/2), which will be used in (61) or (6c),
%'e appl'oxlIDatc Ak+&y2 bp 4k and &k'+ l yp~

ek+ —,
' q. vk. We note that the strong k' dependence of

the integrands in Eqs. (61) and (6c) results from the expli-
cit dependence on ek, and treat it using the approximation
of Eq. (Al) in Appendix A. The only components of I
that are nonzero in the q =0 limit are those proportional
to r3 and to r2. We neglect the other component, which
ls proportional to %0, and write

I (k+,k )=I' '(k, q, co)~3+I'" '(k, q, o))I 2.

3. Results ofperforming ko and e' integrations

Integrals of the type appearing in Eqs. (6b) and (6c)
have been evaluated by Vaks et al. The results are ex-
pressible using the function

fI =f(Pk)=Pk '(I Pk) '"a«s—InPk

where

2 oI —(q vk)
&k=

Using their assumption of a k-independent cutoff frequen-
cy Qq, )we fIInd

d k'I' '(k, q, oI)=yk —f 5(ek)D(k, k')
(2n. )'

fp~co —( q ' v ~, )

—( q' vki)
I'(&)(k & ~

) I (2)(l & ~
)

k'
(10a)

d k' ~' —(q vk)', - I~fkI (k, q, oI)= — 5(ek )D(k, k') ln + 2 fk I' '(k'q, oI) — I' '(k', q, oI)
(2m)3 25k

d k8rr (q, co)=2
3 5(&k)

(2m )
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We now add the Coulomb interaction with matrix element

4&e
Vq= (k+qie'q'' ik) .

g

The intra-conduction-band matrix element obeys the estimate

(k+q i

e'q''
i
k)=1+8(qa) (1 lb)

where a is an interatomic spacing. Interband matrix elements of e'q'' are of order qa. Thus to lowest order in q we
treat only iIltI'aband processes and Usc

Tllc fllll vcrtcx fllIlctl011 A(k+, ko) obeys tllc cqllat1011 (Flg. 13)

d'k' d'k'
A(k+, k )=y(k)+ f r»G(k'+)A(k'+, k' )G(k' )rsD(k, k')+Vqr»i f Tr[r»G(k'+)A(k'+, k' )G(k' )] .

(2Ir)

We recognize the last integral in (12) as the polarization

d kBp(= — Tr + A +, 6
(2m) i

(13)

by comparing it with Eq. (6c), with y'k ——1. As pointed
out by Nambu, ' Eq. (12) takes the same form as Eq. (6b)
with the inhomogeneous term y(k) replaced by
y(k)+ VqBgl r 3.

The solution of Eq. (12) is

A= I + VqBp) I'(1),
where I (1) is the solution of Eq. (6b) with y(k)=r».
Hcllcc thc polarlza't1011 Bp 1 obeys

~I 1
(15)

e(q, ol)
'

where Brl is given by Eq. (6c) with yk=1, and where

Br~I~I is given by Eq. (6c) with y'k ——1 and with use of
I (1). The dielectric constant in Eq. (15) is

4m.e
(q, M) = 1 —"2 Br(I)I (16)

The polarization we want is B~ „which from Eq. (14)Ay~'
1s given by

=Br ~+BI I VqB„„,~/e(q, o))ly F(1)y

&1-~&1-(,)y~

BrII)I —q /(4we )

The gap equation is obtained from Eq. (10b) by setting

q, co equal to zero and I 2 ——Ak,

d'k' ~ -+ Q)~~k= —f » 5(ek )D(k k') ln
'

gk, . (18)
(2~)

I ~k
I

5. Expansion in Fermi-surface harmonics

We assume that D(k, k') may be written as a sum of
Separable terms»

D(k, k ')= —g VLel (k)eI, (k '),

where the eL (k) are "Fermi-surface harmomcs, " ortho-
normal on the Fermi surface,

(19b)

The notation (I) in Eq. (19b) denotes the Fermi-surface
avcI'agc of a fllnctloll Ek,

=N(0) 'f,5(&k)+k .
(2n. )

We anticipate the dominance in Eq. (19a) of the I. =0
term, where eo(k) has the full factor-group symmetry

(Al) under rotations of k and is nodeless on the Fermi
surface. We assume that Vo is positive and larger than
any other

~
Vl, ~. Neglecting admixtures of el with L&0

produced by the logarithm in Eq. (18), we find that the



solution of (18) with the largest
~

b,k
~

is

&g2 &(/2

1=G,[ln(co, /a) —&(lne, )eo &], {20c) where

(22a)

B =B (q, )= —2&(0)&yQy'&

—2N(0) g rL '&eL Qy'&

—2N(0)(ico/2b, ) g rr '&eL fy'/eo &,

G() =—X(0)V() .

To solve Eqs. {10a)and (10b) we make the expansions

fk~' —(q'vk)'
Q=Q»(q co)—=

co —(q vk)

Introducing

(221)

r(3)(k, q, ~)=y, + g r,"'e,{k),

I' '(k, q, co)=g r'L 'eL, (k), (211)

we rewrite Eq. (10a) as

—GL 'I
L

' = & yQeL & +i co/{25) Q I L, '&fet. et, /eo &

where I L
' and I P' are still functions of q and co. Equa-

tion (10c) then gives and Eq. (101) as

++I L", &QeL, eL & (23b)

GL 'rt '=Q I L'& Iin[co, l{beo)]+[co —(q v) ]f/(452eo)Iel eI &

(tco/2b, )&f—yeL /eo& (tco/2b, ) Q—I I '&fet eL /eo& . (23c)

The most important contribution to Eqs. (22), (231),
and (23bc) comes from the I. =0 and I.'=0 terms. We
initially restrict ourselves to just such terms by writing
(V= V())

D(k, k ') = —Ve()(k)e()(k ') . (24a)

r(3)(k, q, N) =yk+ro(')eo(k),

r("(k,q, co)=I ()"e()(k) .

{24b)

(24c)

With e()(k )+const, this amounts 'to an anlsotloplc BCS
model. We continue to assume that eo(k) is nodeless on
the Fermi surface and has full factor-group symmetry
under symmetry operations on k. The vertex functions
take the simple forms

N(0) VA (y—e() )

1+%(0)VA (e() )
(25a)

and

I (2)
EQ)

25
&fy & ro" &f—eo&—

(25c)
& [1 (q. v /co ) ]f&-

The functions f=f» and Q=Q» are defined in Eqs. (9)
and (221), respectively. We then find from Eqs. (22a) and
(25) that the polarization originally defined in Eq. (6c)
obeys

where an abbreviated notation has been introduced for the
following average of functions gk and hk.

A (gh)= &Qgh &- (25b)
&[1—(q v/co)2]f &

Brr ———2N(0) A(y, y')—X(0)VA(yeo)A (y'e() )
(26)

1+% (0)VA (e() )

6. Solutions

The anisotropic BCS model, with interaction given by
Eq. (24a), has been shown above to lead to solvable equa-
tions (231) and (23c) for the vertex function. That func-
tion may be written in the matrix form [Eqs. (5), (8), (21a),
and (21b)j

I (k+,k )=[yk+I'() 'eo(k)]F3+1() 'eo(k)r2 .

The solutions for the coefficients I"o ' and I 0
' are

~=&k(q ~)=fk[1—(q vk/~)'j . (271)

Equation (17) then gives for the Coulomb-corrected polar-
ization

We shall neglect the second term of Eq. (26). It pro-
duces Fermi-liquid-like corrections to the first term, but
does not add any qualitatively new effects. Thus we write

Brr ———2N(0)[&Qyy'& —
&fy & &fy'&/&I' &], (27a)
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(28a)

qpr ——8~%(0)e (28b)

is the square of the Fermi-Thomas (FT) wave vector. We expect qFTa & 1, where a is a nearest-neighbor spacing. In
most of what follows we shall neglect the q term in the denominator of Eq. (28a) since the other terms in the denomina-
tor will usually be of order unity.

If the q term in the denominator of Eq. (28a) is neglected, 8, vanishes if y» ——const. This is a consequence of the

Coulomb polarization correction, .which completely screens the effect of (y ) in Br ~. ' Thus if we writeI"y'

y»=5y»+ &y &

we obtain, from Eq. (28a),

[(Q5y) —&f5y &(f) &&l') ][&Q5y* &
—&f5y*)(f)&&l')]

pr+ Y Y Y [(Q &
—&f )'&&l'&]

(28d)

Each factor in square brackets in Eq. (28d) has a pole at the zero of (P)„but that pole is actually removed, because

Eq. (28d) can be rearranged into

~, *=—»(0)&g I5y I'&+, [&5yg&&5y*g)&l')+(Q)(f5y&(f5y*)Wy'

—(5yg & & 5y*f & &f &
—(5y'Q & (5yf & &f & ] (29)

This removable pole is that of the well-known Bogoliubov-Anderson collective mode, ' for when P» is much less than
unity, we obtain from Eqs. (9a) and (27b), assuming cubic symmetry,

0= (P) =1 qu~/3—aP,

UF=(U») .
As 1s well known, t4c Coulomb corrections Ilayc removed thjs pole. Qnc can show by peeping thc q2 term 1n thc denom
inator of Eq. (17) that the pole has been pushed up to the plasma frequency. [See Eq. (32a).2']

B. Simplifications and discussion

1. Leading approximation

If we approximate Ba, by the first term of Eq. (28d) or Eq. (29), we obtain for the zero-temperature generalization of
S(q,ai), as expressed by Eq. (6d),

2

S(q,ai)=2K(0)n. '
I5y» I

zlmf(P»+i0+)
ai —(q'v») k

I y» I'~»

[.2 {,, )2]3/2[.2 {t).„)2 „,.]I/2 ), (30)

We note that Eq. (30) is Eq. (3a) with y» replaced by 5y».
S(q,oi) can also be written in the form of Eq. (A10e)
with pk rcplaccd bY 5/I . Thc rcmMnlng tcITIls 1n Eq.
(28d) or (29) contain factors such as (f»5y» ) or
(Q»5y» ). Since (5y» ) =0, such factors will be nonzero
only to the extent that the fluctuations 5y» are correlated
with the k dependence of f» or Q». These in turn occur
via the k dependence of 5» and, for finite q, via the k
dependence in ( q v» ) . It is difficult to draw any general
conclusions about the role of these factors in the generali-

zation of S(q,co). One hopes, of course, that they can be
neglected. %'e now discuss three special cases in more de-
tail.

The first case is that of a normal metal. Letting
5» —+0, we see from Eq. (9b) that P»~+ ao. By Eq. (9a)
we have f»~0. By Eq. (27a) we then find with



Qk(q, ~)= —(q.vk)'/[~' —(q vk)']

ykyk(q'vk)
8rr ——8rr ——2N (0)

co —(q vk )

(31a)
co& ——8m%(0)e uz/3 (32b)

is the square of the plasma frequency. Equation (32a)
gives no imaginary part to 8„,at low frequencies where

Ay
it is valid.

Note that no vertex corrections appear in Eq. (31a). Use
of Eq. (17) with the q term in the denominator dropped
leads to the result

s „=zv(o) '1'"'* ~ ~'),
Ay

co —(q v)

4. I'MQQ8Plcl8$ AXIOM to f68 gdp; sprtlel8trg orgQNl88ts

The third case occurs when co&25»quF. This q=O
limit is the one of most interest, since, according to the
discussion at the end of Sec. II, it should be valid when
5&g and 5 '&(q~~+ql)' . Then Qk=fk, and we may
neglect the q dependence of fk. Equation (27a) then gives

with a similar expression for 5yk, . Equation (31b) sug-

gests that 8, vanishes in the small-q limit where

(qUF) ((CO .

8ry = —2&(0)[&fyy'& —&fy&&fy'&/&f &]

=-»(0)[(f5y5y )-(f5y)(f5y &/(f)] .

The Coulomb polarization correction of Eq. (17) gives

{33)

3. Lo1Ufrequencies

The second case to be considered is co-quF ((28k.
Then, Eqs. {9a) and (9b) give fk =1, and Eq. (22b) gives

Qk =1. The Coulomb-corrected polarization is, from Eq
(28) after some rearranging,

8, .=—2N(0)(
) 5y )

') +2 2N(0)
f (y) [2q ug/3

Ap co —1/3q Up —co&

since for the Coulomb vertex, 5y=0. Thus the polariza-
tion we want obeys

8„,.=8„,.= —2X(0)[&f
~
5y ~')

&f5y)(f—5y'&/& f&] . (34a)

Since the gap hk is an even function of k, fk is also even
ln tllls 111111t of q =0. Tlllls only the even, k parts of 5yk
and 5yk, are needed in the second term of Eq. (34a). If
we separate yk as given by Eq. (lc) with width tubk added
into a sum of parts symmetric y$ and antisymmetric yk
under interchange of polarization vectors e,. and e„where

[(k [p, (
bk)(bk [p; [ k)+(k [p; [ bk)(bk (p, ( k)](« —ebk)

y =(e; e, )+
b m [(e—6bk ) —(Col +itubk ) ]

{34b)

[(k Ip Ibk)(bk
I p. Ik) (k lp, I

bk)(b—k ]p; [ k)](,+ „)
yk

b m f(« —ebk) {col+~ub—k) 1' (34c)

then it is easy to see that under the usual assumption that

~

k)*=
j
—k), etc., that yf, is even and yk is odd under in-

version in k space. %'e note that

&yk&=&fkyk&=o

&fk5yi & = &fk5yk &

where 5yk is the part of 5yf that is fully symmetric under
factor-group operations on k. This allows us to write Eq.
(34a) in the form

8A, ——8„;= —2&(0)(&fk[
I 5yf I'+15yk I']&

(f5y")(f5y"')/(f)) . —(34d)

may write Eq. (34d) as

=8„,= —2N(0)[(f
~

5y"
~

'}

—2%(0) g (f
~

5yr ~2) .

T»s « i««ucible compo nents except the fully symmetric
one require corrections. The importance of the second
term in Eq. (34e) is not expected to be large. If we neglect
that term, then Eq. (6d) gives

4~(0) ~n 6'Pr(h)dhS(q~0,co)=
co o (~2 4+2)1/2

If we further express 5yk as a sum of irreducible tensor
components 5yk with respect to the indices i and s, we Pr(~) = &

I 5yk I
'5{~k—~) &
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is a symmetry-weighted distribution function for the gap.
Dierker et al. used Eqs. (34f) and (34g) to fit their data on
Nb3Sn and V3Si with the use of Gaussians to model
l'r(&) for I'=A |g, Ee, and T2g.

' The data and theoreti-
cal fits for V3Si are shown in Figs. 6 and 7.

Another case of interest, namely, quy »rp & 2b„has al-
ready been discussed by Abrikosov and Genkin, who used
an expression equivalent to Eq. (30). The important con-
tributions come from bands on the Fermi surface where
vk. q=0. Integration on the Fermi surface in the direc-
tion perpendicular to the bands gives a contribution simi-
lar to Eq. (B2) in Appendix B. This must then be in-
tegrated along the bands.

C. Excitons

The notion of an exciton in a superconductor refers to
the bound state of quasiparticle pairs at an energy of less
than 2b, . ' If the attractive interaction is of the aniso-
tropic BCS type given by Eq. (24a), the only such exciton
is the Bogoliubov-Anderson collective mode, and the
Coulomb correction eliminates that from influencing the
low-frequency response. With the more general, attractive
interaction of Eq. (19a) the presence of each extra term
—VLeL(k)eL(k ') for L&0 gives a new exciton state. We
now investigate the importance of such states for Raman
scattering and argue that they are probably unimportant.

The eneral task of solving Eqs. (23b) and (23c) for I L
'

and I L
' to be used in Eq. (22a) is greatly complicated by

the coupling terms having L&L'. Such coupling is re-

duced if we go to the q =0 limit, which we do now. We
expand

yk = &y &+5yk+ & &yeL &eL«) .
L&0

(35)

(epeL ) =0,
but also

(36a)

(fer ) =0, (feper ) =0, (feL«0) =0. (36b)

We further assume, for L&L' with L and L'j0, that not
only

(eLeL') =0,
but also

(37a)

(ferer lep)=0 (ferer )=0, (feLer lep)=0.
(37b)

The sums over L' on the right-hand side of Eqs. (23b) and
(23c) then involve only L'=L, and those equations may
readily be solved for I L' and I L'. Equations (22a) and
(34e) then give

We further assume that the L&0 terms of Eqs. (19a) and
(35) involve Fermi-surface harmonics eL(k) which are
non-s-like (i.e., orthogonal to A&e). Thus exciton effects
will modify the last term in Eq. (34e). We assume that
not only

8,= —2N(0)[(f I5y"
I

) —(f5y")(f5y ')l(f)]

—2N(0) y 1&yeL & I'
L~O

(feL ) LgL(ro i4~ )[(fL «0) (feL ) (feL i 0) ]

1+&feL &Gr. gr&f—eL2«. o & Gr gr. [&feL«— & &fer. &
—&feL2«0 & ]

4A 4h

(38a)

where

gr. —:Gr. Gp I(Gp GL ) . — (38b)

When GL (and gr ) equal zero, the expression in large parentheses in Eq. (38a) simplifies to (fer ), and Eq. (38a) becomes
consistent with Eqs. (34f) and (34g) if we identify the irreducible representation I &A with the Fermi-surface harmonic
L+0 and note that

l'r(~) =PL(~) =
I (yer. &

I
'&eL«)'5(~k ~) & .

For an isotropic gap, we have ep(k) = 1 and an f which is independent of k. Equation (38a) then simplifies to

&~ g ——8~ *———2N (0)f(
I
5y"

I ) —2N (0) g I &yeL& I'f
L~o 1 f[~'gL i(4~') G—r.]—

The Lth term in Eq. (39) has a pole at coL (25, corresponding to an exciton of symmetry eL(k) when

PLgL Gr, =(fL)—'2 —I

where fL =f(pL ) and where pL ——coL /(2h). Equation (40) is equivalent to Eq. (4.7) of Bardassis and Schrieffer.
We obtain for the spectrum the result

—ImB, =2N(0) g I (yeL) I
(2b, )~SL5(co roL)+ +2—N(0)(

I
5y"

I
) mf,

L&0 I
1 f(P'gL —Gr, ) I'—

(38c)

(39)

(40)

(41a)



6, =0.305, —0.679 .
Equation (48b) then gives

S~ =0.256, 0.690, (43b)

respectively. Thus the repulsive interaction gives a
strength to the exciton peak almost as strong as that (m/4)
for the GL ——0 case.

Figure 14 compares the prediction of Eq. (41a) for a
single nonzero GL ———0.679 with that for Gl. ——0. In the
latter, case, the Es-weighted gap distribution, in the sense
of Eq. (38c},was assumed to be a Gaussian with a =20%
lower mean and a width used to fit the Eg Raman spec-

where SL is the strength of the exciton pole and obeys

SL, =2PI.gI. +(A,gL G—s. )
—I= dlnf

P=PL,

The integrated contribution of the first term in large
parentheses in (4la) is 2hmSL, . It should be compared
with

Im co=2 mm 4, 42

which is the integrated contribution of the second term
when gl and Gl tend to zero. %hen gl and GL are
nonzero, the presence of f in the denominator of the
second term of (41a) removes the singular peak from the
numerator Rt 6)=26 and reduces the 1ntegrated contr1bu-
tion below that given by (42}.

~e no%' discuss the poss1b111ty that the Eg Raman gRp
peak observed by Dierker et al. ' is due to an Eg-
symmetry exciton rather than to gap anisotropy. Since
the Es peak is about 20'1/o lower in energy than the A it
and T2g peaks, we set PL

——0.8. We assume Gc ——0.4 and
find that Eq. (40) has two solutions for GL, , namely

trum of Nb&Sn by Dierker et al. In both cases the
theoretical expression was convoluted with a Gaussian to
mimic the spectrometer response function. The double-
peaked —exciton case is seen to be a bad approximation to
the curve that fits the data wdl. We can exclude the pos-
sibility that the Es spectrum in NbsSn is due to an exciton
with an isotropic gap.

In the case of an exciton with an anisotropic gap, Eq.
(38a) must be used, and modeling is difficult. The singu-
larity of f at el=26 is smeared out considerably for nl
within the range of 25k. For a given value of GL, gap an-
isotropy will shift the exciton resonance frequency col. up-
ward and weaken SL, . The resonance will acquire a finite
width if coL lies within the range of 26k, and for small

~
GL, ~, the resulting spectrum will not differ much from

that of a model with an anisotropic gap and no excitons.
A small excitonic effect cannot be excluded, but we con-
clude that the main reason for the downward shift in the
Es Peak ls gaP aillsotloPy.

As discussed 111 tllc 111troductlon, the cxpcrllilcil'ts of
Sooryakumar and Klein ' suggest that in 2H-NbSez the
superconduct1ng gap exc1tat1ons Rcqulre 'their RRIDan Rc"
tivity by couphng to Raman-active amplitude modes of
the CD%. I'he Raman activity of the latter can, in turn,
be related to the strong two-phonon scattering in the nor-
mal phase of those phonons that ultimately condense to
form the CDW. We therefore assume that the direct
Raman activity of the gap excitations in 2H-NbSC1 as
described in Secs. II and III is weaker than that acquired
via the CDW phonons. We need to calculate the phonon
Green's function in the presence of coupling to the super-
conducting dectrons. If the CDW phonon behaves as or-
dinary q -0 optical phonons, the interaction will take the

where now

In Eq. (44b), gk is the matrix dement for an electron
which scatters from k to k+q, and b» is the phonon's
destruction operator. In the Nambu representation Eqs.
(44a) and (44b) are equivalent to a bare electron-phonon
vertex of the form

The full vertex function A corresponding to (44c) will
obey an equation such as (12) with y(k) replaced by g(k).
We shall denote this by A(g). The resulting polarization,

O5 )O II(q, nl ) =8~( ~ (q, nl ),
FIG. I4. S,~(q =O,u) vs u/26 for a single exciton at

ml. /26=0. 8 (solid line) compared anth the prediction of Eqs.
(41f) and (4lg) (dashed line) which fits the Es Raman spectrum
of Nb3Sn by Dierker et 0L (Refs. 13 and 15) meB.

is the phonon self-energy as corrected for the residual
electron-electron interaction and as screened by the
Coulomb interaction.

We go to the q =0 limit and obtain from Eq. (34C)
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11(O,co)=—2Ã(0)[(f
~

5g"
~

'& —
&f5g" & &f5g"*&/&f )]

—2X(0}g (f (
5g" )'), (46a}

I ~A

where 5gk =—gk —(g ) and where 5g" is that part of 5g be-
longing to iffcduciMC I'cpI'cscntatlon I . FGI' RQ lsotIoplc
gap Eq. (46a) further simplifies to

II{0,co)= —2N(0)( ~5g ~
)f,

where f is given by Eqs. (9a) and (9b) as

f=P-'(1 —P')-'"sin-'P, P=~/(2~} .

In their theory of the coupling of the 2b, gap excitations
to CDW phonons, Balseiro and Falicov used the coupling
in Eqs. (44a) and (44b) with q =0 and gk ——g, a constant. "
They used the bare vertex and obtained the result

II(o,co)= —2N(0)g f . (46c)

When used to calculate the phonon Green's function
D(q, co) via

co —coo(q)2
[D (q, co)] '= —II(q, co),

2coo(q)
(47a)

Eq. (46c) gives a pole in D(o,co} at a frequency co~ &26,
ObCylng

sin '(co~/2h)
co~ =co() 4copW(0)g—4h

co& (4h —co& )
'~ {47b}

Here coo is the unrenormalized phonon frequency at q =0.
As pointed out by Littlewood and Varma, ' this mc)del

cannot be used as is, because vertex (and Coulomb) correc-
tions &ill coIHplctcIy screen thc constant electron-pllonon
interaction g. We see, however, from Eq. (46b), that if gk
is anisotropic on the Fermi surface, then the Balseiro-
Falicov calculation of II(o,co) and others based on it may
be generalized if their parameter g is reinterpreted to be
( ~5g

~
). The rough fits to the experimental data re-

Ulf C

microscopically a coupling of the type considered by Lit-
tlemood and Varma. ' A slmllar but independent calcula-
tion hss bccn done by Kurlhara.

It is also of interest to correct the vertex I'(k+, k ) for
both phonon and Coulomb polarizations. Let Q(k+, k )
denote this corrected vertex. It will obey an equation such
as (12) with the following additional term on the right-
han«i Sl«iC:

(49)

where I (g(k)) is the corrected vertex for I.3g(k). From
Eq. (50) one can form the polarizations 8n, and 8 „and
solve the resulting two equations for them. One can then
form the polarization 8n, from Eq. (50) and obtain after

Ay
some 1caffRngcmcnt

8n =8~ +8~*D{q }8~()~ . (51)

HcI'c 8A ~ ls the Coulomb-corrected polarization glvcn by

Eq. (17),8A, is given by Eq. (17) with y' replaced by g',
and 8. . . is given by Eq. (17) with I replaced by I'(g).

A(g)y
D(q, co) obeys Eqs. (47a) and (45).

When the "imaginary part" of 8, is calculated, fol-
Qy+

lowing the prescription of Eq. (6d), the second term in Eq.
(51} gives both phonon Raman scattering [from
Re(8+,8&~ ), )ImD (q, co)] and electronic Raman scatter-

ing [from RCD(q, co)Im(8A, 8A& ), )]. The latter contri-

bution will, in general, interfere with Im8+, from the

first term in Eq. (51). Because of the complicated band
structure of transition metals and transition-metal com-
pounds, the phonon contribution must include the intef-
band gencfsllzatlons of 8A g and BA( )Ag A(g)y

where Do(q, co) is the bare phonon Green's function. The
formal solution for 0 is

A=I + Vq81111 (1)+Do(q,co)8„,I (g(k)),

E(0)( ~5g ~
)=0.1)5co (48)

One expects an anisotropic gk in the CDW state, with the
largest

~ gk ~

's on those parts of the Fermi surface affect-
ed most by the formation of the CDW.

Littlewood and Varma pointed out that another type of
coUpllng Should bc cxpcctcd between qusslpartlclc pMfs
and COW amplitude modes. ' They argued that on those
parts of the Fermi surface most affected by the CDW, the
amplitude mode of thc CDW %'ill Q1odulatc thc local
value of the electronic density of states and hence the gap
via quatlons such Rs our (20c) Rild (20b). Tllc resulting
vcftcx 18 PfoPoftional to Nambus v~. Such a coUPllng
gives rise to another collective mode with frequency 26/))I
at q =0, which becomes damped at finite q,

' and whose
dispersion was calculated (for superfluid He ) by Brusov
Snd Popov.

Recently, Browne and Levin have treated the CDW and
superconductivity self-consistently within a random-phase
approximation, Treating the CD& vnthin a one-
dimcnsional appI'oxlInatlon, they succcc«icd 1Q «icfivlng

We have derived general expressions such as Eq. (28d)
which, in principle, allow a calculation of the Raman
spectral function [by use of Eq. (6d)] for finite wave-

vector transfer q and with inclusion of coupling constant
Rn«i gsp Rnlsotfopy Rn«i vcftcx Rnd Coulomb-polsfization
cof1cctlons. Useful cxpI'csslons Rnd numerical fcsults
were obtained only by giving up full generality, namely
for finite q and no anisotropy (Appendix B and Ref. 18) or
for anisotropy, but with q-0 [Eqs. (34f) and (34g)]. For-
tunately, the study of the q dependence in Appendix B and
in Ref. 18 gives us confidence that the q-0 limit applies
almost literally for wave-vector transfers equal to g

' or
less and optical penetration depths equal to g or larger.
Thus it applies well for 2H-NbSez, Nb3Sn, VSSi, and to
other clean supclconductoI'8 that hRvc Short coherence
lengths g. Such a superconductor should have an almost
singular peak in the Raman spectrum at co=&,. For
good plsctlcal I'csults, thc Ramsn matrix element mUst
also be anisotropic so that (

~
5yk

~
) will be large. Since

tllc RRInall 11ltcllslty is proportlollR1 'to X(0), those sllpcr-
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conductors with a large density of states will be favored in
a Raman experiment.

Similar conditions [qg & 1, large N(0)], in addition to a
large value of the coupling constant (

I 5gk I ), favor a
strong peak below 2b, in the spectral function of an opti-
cal phonon.
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APPENDIX A: FURTHER EVALUATION
OF EXPRESSION FOR S(q, co)

The integrand in Eq. (2a} makes a contribution only for
k near the Fermi surface. Its only rapid k dependence is
through its dependence on the energy eI„as long as the
group velocity UI, is not so small as to give a rapidly vary-
ing density of states N(e} near @=0. Excluding this pos-
sibility, we may write, for F(ek, k), the integrand in Eq.
(2a),

f d'kF(ek, k)= f d'k f 5(ek e)F(—e, k)de

eI, F ek de. A1

In addition, we may consider E of Eq. (2b) to be the in-
tegration variable by using the identity

and obtain

(co—E11)(E1'1—&k)' '

I
sEo(q'vk}+(Ep ~k}'"

I

(A6)

8'=—m —2EO . (Agb)

From Eq. (A5) with E=Ep and Q=co, we find that W
obeys

2

2(q. vk)s

' 1/2

2 4
+ —4k =co JY—( q v k )

(A9a)

I'his may be solved for W, giving

Using Eqs. (A2), (A3), (A4), and (A6) in Eq. (2a), we ob-
tain

d k
&(q,~)= l g f ",5(~k)

I rk I'
(2n)'

fEo(co Eo—)+b k
—ee']s

X
I sEo( q 'v k )+~(Eo

(A7)

By the use of Eq. (A5} we obtain, for the expression in the
denominator of Eq. (A7),

2 ~
~
~ 2

I'Eo(q vk)+~«o —~l }
I
=sW, (Aga)

2 2 1/2

2I q. vk I

where

EsE E
p (E2 g2 )1/2

(A2a)
II'=

I q vk
I
[~'—(q vk}'—4~k]'"

x [ 2 —(~' v )2] 1/2 (A9b)

where s =sgn(e). By defining

Q(E)=E+E'(E),
where

E'(E)=[E +2e(q v„)+(q.v„) ]'

(A3a)

(A3b)

Using e'=@+(q vk), we find, from Eq. (A3c),

ee'=s(E —bk)'/ [s(E hk)'/ +(q —vk)] . (A10a)

We eliminate s (E b,k
)'/ by use o—f Eq. (A5) and obtain,

from (A10a),

with

e=s (E' Sk)'", —

we have

ke'=[(coW) —(q.vk) ]/4(q vk)

(A3c) Use of (Agb) gives

E11——( W — )/2

(A lob)

5(co E E') =5(co——Q(E—) }=5(E—E11)
dE
dQ

and

Eo (~+ W)/2 —. —

where Eo is the value of E that satisfies
(A4a) Thus

Ep(co Ep) =(co 8' )/—4 . — (A10c)
co=Ep+E'(Ep) .

We find that

2( q.Vk )s(E' —b k )
' '= Q' —2QE —( q Vk )' .

(A4b)

(A5)

We differentiate both sides of Eq. (A5) with respect to Q

Equations (A10b) and (A10c) together with (A9) then give

Ep(cp —E11)+6k e&'=2' bk[p3 (q—'vk)'] ' . (A10—d)

Use of Eqs. (A10d), (A8a), (A9a), and (A9b) in (A7) then
gives

d k 5(ek)
I }k I ~kS q, co =4p)

(2~)3 [ 2 (~~ )2]3/2[ 2 (~~ )2 4g2]1/2
(A10e)
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APPENMX 8: EVALUATION GF S(q,u)
FOR THE ISOTROPIC SCS CASE.

qU COSH

(~2 4g2)1/2
(81a)

we find from Eq. (3) for b,k=5, yk ——y, and
~

vk
~

=u,
and for a spherical Fermi surface,

2 252 dz
S(q,m)=2M(D)y Iquco ' (1—mz ) (1—z )

At co=26, S(q, co) jumps discontinuously from zero to
y 2N(0)b, (qu) '(Ir/2), which is Ir/2 larger than the
normal-metal value N(0)y co(qu) '. S(q, co) rises as co in-
creases. When co=(4b, +(qu) )'/, there is a sharp
discontinuity in slope.

When co & {4h, (qu) )'/, we have zo qu/——(co 4b, —)'/,
RMi 1I1tI"odUc1Qg the 1IlcompIcte clllptjc mtegI'sl»

E(piet)= I (1—sin ctsin 0)'/ dg, (83a)

(83b)

(8 lb) we find

z11
——min 1, , m=1 —4h /co' (~2 4g2)1/2

(81c)

S(q,co)=N {0)y E(/get)
QU

2
q 2u 2)1/2

When (4h + (qu) ) '/ & co & 2b., we have zo —1, and the in-
tegral is expressible in terms of complete elliptic integrals,

This is a decreasing function of co, unlike Eq. (82), which
gives all lllcl'easlllg fullctlon.

When q ~0, we obtain, from (84),

S{q,co) =N(0)y E(1—44 /--co )
gU

h

2N(0)y co
& E co

qu 2 co

26co co —26
N+26 &+26

(82)

2N(0)y 26S(q~0, co)=
(co —4b, ) co

which may also be obtained directly from Eq. (3c). The
behavior of S(q, co) is shown in Fig. 1 for qua=0. 1, 0.5,
1.0, 2, 4, and 8 where g'=u(25) ' is the coherence length.

'Present addx'ess: AT8rT Bell Laboratories, Murray Hill, New
Jersey 07974.
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