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The electronic Raman scattering by pairs of quasiparticles is calculated at zero temperature, gen-
eralizing previous calculations that were based on the Bardeen-Cooper-Schrieffer model of a super-
conductor. Analytical and numerical results are presented for the spectrum as a function of wave
vector d, and an integration is performed over g, to include the effect of a finite optical penetration
depth. Allowing for gap anisotropy, we correct the results for vertex and Coulomb polarization ef-
fects. The theoretical results for finite g are used to calculate spectra for NbsSn, V;Si, and Nb,
neglecting gap anisotropy. Experimental data are presented for V;Si and Nb. The data for V;Si are
fit to a zero-g theory that includes gap anisotropy, with results similar to those presented earlier for
Nb;Sn. The role of possible excitons on the Raman spectra is examined. These theoretical results
are then used to discuss the self-energy of a Raman-active optical phonon in a superconductor.

I. INTRODUCTION

At very low temperature the presence of the energy gap
A in a superconductor prevents the conduction electrons
from being excited unless the energy transferred exceeds
2A.' There should, therefore, be no electronic Raman
scattering for energy transfers below 2A. Early calcula-
tions of the electronic Raman effect in superconductors
neglected anisotropy in A and in the attractive electron-
electron interaction, and were made in the limit of large
wave-vector transfer ¢.>~® In a metal the relevant value
of g is 81, where § is the optical penetration depth, and
“large ¢ means that 6 is small compared with the coher-
ence length £=7#vz(2A)~}, where vy is the electron veloci-
ty at the Fermi surface. In this limit the calculations
predicted that at zero temperature the scattered intensity
would discontinuously turn on at 2A to a value above that
of a normal metal, and for increasing energy transfer it
would rise, but gradually approach the normal-metal
value from above.>~> The first reported attempt to see
structure near 2A in a Raman-type experiment was per-
formed on Nb;Sn.” Given the recent results to be dis-
cussed below, one can probably characterize this attempt
as unsuccessful. The first clear evidence of Raman
scattering by gap excitations was the observation of 2A
peaks in 2H-NbSe,.®~!® The small-g limit characterizes
this layered compound, which also undergoes a phase
transition to a charge-density-wave (CDW) state at a tem-
perature above the superconducting transition tempera-
ture. Studies of the Raman spectrum in a magnetic
field®® and use of impurities to quench the CDW (Ref.
10) strongly suggested that the Raman peaks at 2A owed
their Raman activity to coupling of the electronic excita-
tions to Raman-active amplitude modes of the CDW.
Two theories of this coupling have been published.!"!?

The second clear case of evidence of Raman scattering
from gap excitations was provided by simultaneous re-
ports by two groups of the observations of peaks near 2A
in NbsSn and V;Si.*~!7 The samples studied in most de-
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tail underwent a cubic-to-tetragonal martensitic transfor-
mation at temperatures above the superconducting transi-
tion temperature; nevertheless, it is convenient to describe
the Raman symmetries as though the samples remained
cubic. In a transforming sample of Nb;Sn, peaks near 2A
were seen in Ay, E,, and Ty, symmetries.>~'° The E,
peak was about 20% lower in energy than the other two
peaks.'>!> In a nontransforming sample of V;Si a peak
was seen in E; and 4, symmetries, but the 4, peak was
too weak to analyze.'*!> The temperature dependence of
the E; peak in transforming V3Si was studied in some de-
tail and the data were presented on the E; peak in a non-
transforming sample of Nb;Sn by Hackl et al.'6!” There
is also some evidence of a 2A peak in Nb.!?

Dierker et al. fitted their Nb;Sn results with a theoreti-
cal expression derived using Bardeen-Cooper-Schrieffer
(BCS) theory! in the limit g—0.'3~15 They assumed that
the peaks near 2A were due to direct Raman scattering
from quasiparticle pairs without the intervention of in-
direct coupling via phonons. This assumption appears
justified (1) in the case of the 2A peak of 4, symmetry by
the absence of any Raman-active phonon of 4, symme-
try, (2) in the case of the 2A peak of T,, symmetry by the
weakness of the Raman scattering from the T, phonon,
and (3) in the case of the 2A peak of E, symmetry by the
fact that the CDW-like E; optical phonon in Nb3;Sn has a
frequency of about 7A/#, too far from 2A/# for strong
admixing (whereas the CDW phonons in 2H-NbSe, have
frequencies of about 4A /7). Dierker et al. attributed the
lower value of the E, gap peak frequency in Nb;Sn to an-
isotropy of the gap Ay as a function of wave vector k on
the Fermi surface combined with different weighting of
the Ag’s in the different Raman symmetries.

In the present paper we develop the theory in some de-
tail for zero temperature using an anisotropic, nonretard-
ed, attractive electron-electron interaction. We will
correct the “bare” Raman matrix element for the effects
of final-state interactions (vertex corrections), to make the
theory gauge invariant, and we will correct for screening
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of the vertex by the Coulomb interaction. In the ¢—0
limit either of these corrections essentially subtracts the
Fermi-surface average of the Raman matrix element from
that matrix element,’ apart from small Fermi-liquid-like
corrections.

In Sec. II we derive the Raman spectral function for a
superconductor using results from second-order time-
dependent perturbation theory. More attention is paid to
the wave-vector dependence than is found in previous
treatments.2~® Some details of the derivation and evalua-
tion for finite ¢ are given in Appendixes A and B.
Derivations and numerical results for the Raman spectral
function after integration over the component of ¢ perpen-
dicular to the interface, are presented elsewhere.

Section III is devoted to the effect of vertex and
Coulomb corrections. In addition, we examine the possi-
bility that the observed E;, Raman peak in Nb;Sn might
be due to an “exciton” of that symmetry rather than gap
anisotropy. In Sec. IV the results of Sec. III are applied to
the polarization operator (self-energy) for an optical pho-
non. Results are summarized in Sec. V.

II. PERTURBATION THEORY

Electronic Raman scattering can be treated by consider-
ing the perturbation Hamiltonian

2

H =—— —_ :
5 %pj , (1a)

2m

— e

J

where K(i}) is the vector potential of the optical fields
acting on the jth electron and P; is that electron’s momen-
tum. The term in Eq. (1a) second order in A4, used in the
first order of perturbation theory, combines with the term
first order in A used in the second order of perturbation
theory. More precisely, the P j'K(f’j) term in Eq. (1a) in-
duces transitions from the conduction-band states, denot-
ed by | k) to higher or lower band states | bk) of energies
€ and €, respectively. The photon scattering vertex is
then given by the densitylike operator

~ t
Pe= 2t q.o T (1b)
k,o

where’

[7i | *A%
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and where ¢ is the annihilation operator for an elec-

k,o
tron of wave vector k and spin o in the conduction band,
and we use units in which #i=1. The quantities €; and €,
denote polarization unit vectors for the incident and scat-
tered photons.

The “internal” photon cross section per unit volume
(which neglects reflection losses at the surface) is then
given by

=ro§(q¢0) ’ (ld)

where r, =e2/mc? is the Thomson radius, and where
S@e)=em" [ drexp(—ion (5o 04(1) . (1o

S(q,®) has been calculated for zero temperature for the
BCS model of a superconductor by Abrikosov and
Fal’kovskii,? and by Tong and Maradudin® with y; given
by the first term of Eq. (1c). The use of the full Eq. (1c)
can be accounted for in their result by inserting a factor of
| vx | 2/(€;-€,)? into the final sum over the wave vector,
giving

. dk

5(q,0)= 8w—E—E'

(q,0) (2m)? (o )
EE'—ei€; + A2 )
e JI7El @

Here A is the gap parameter, assumed to be slowly vary-
ing near the Fermi surface, and €;=€x ,~€+q V.
The zero of energy for € is assumed to be the Fermi ener-
gy. The quasiparticle energies E and E’ obey

E=(e,+A)\?, E'=(el.+A})2. (2b)

The factor (EE'—ezex+A%)/(2EE’) in Eq. (2a) is the
BCS coherence factor for a type-I excitation.

Equations (2a) and (2b) are rearranged in Appendix A
to give

§(q,w)=4N(O)w2<

where N (0) is the density of states for one spin, where for
a function F (k) we define a Fermi-surface average by

d3k

F(k)b(ey) , (3b)
(2} k
and where the prime means that the integral in Eq. (3b) is
restricted to those values of k such that

NOXF(k)) = [’

[mZ_(-ank )2]3/2[m2_(q,vk )2_4Ai]1/2

>' , (3a)
k

|
@ >4A2 +(G-V, )2 . (3¢)

We may evaluate Eq. (3c) further assuming a constant
gap Ap=A, a constant scattering vertex y;=v, and a
spherical Fermi surface where |V, |=vp is a constant.
This is done in Appendix B. Some numerical results for
Sred(g,0)=S(g,0)[N (0)y*]~! are plotted in Fig. 1.
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=8(g,0)[N(0)y*]~! vs ©/(2A) for g£=0.1, 0.5, 1.0, 2.0, 4.0,
and 8.0 where £=vr/2A is the coherence length.

Actually, only q),, the component of g parallel to the
interface, is well defined in a Raman experiment in met-
als.”” The perpendicular component g, has both real
(=gq,) and imaginary components (=8""), where 8 is the
penetration depth for the incident optical intensity, and
must be averaged over. The ratio of scattered to incident
intensities is proportional to

© dqz

—_ 1
1Gaugper=r [ e
z

XSlg=(g;+q7)"%0). (42

This result depends only on the magnitude g, of q.
Equation (4a) generally requires numerical evaluation;
however, in certain cases analytical expressions can be
found which semiquantitatively display the behavior of
the function. This was done in detail in Ref. 18, and we
display some results here.

In Figs. 2—4 we have plotted

Ired(S,qL,qn,w)EWI(S,qL7‘]||,CD)[N(0)‘}/25]_1

from (4a) versus @/2A in the near-gap region for the di-
mensionless ratio 7, =0.1—10.0, where

LI SN (4b)
To="5x 579,
and
E=vp/2A (4c)

is the coherence length. We similarly define 7, =¢q, £ and
r=q§. The curves for ro <0.1 are equivalent to those
for r,=0.1. Figures 2, 3, and 4 correspond to

nE(r£+rf)l/2/r0=O.l, 0.5, and 2.0, respectively, while
I

This is a good approximation to I for 7, <1 and 7 <1; the
main effect of finite ¢, and g/ is to remove the singularity
very near to ®=2A. For 7, >1 and 7| >>r, the scattering
near o=2A is strongly suppressed, the curves becoming
rather featureless. For r, > 1 and F||>>F, a cusp appears
at @=2A(1+r7)'% The sharpness of this cusp is a result
of our assumptions in Appendix B of a spherical Fermi
surface, and it will be rounded for an anisotropic Fermi
surface.

We feel that in the general case when Ajs4const and
when ys~const, it will still be true that a good approxi-
mation to the frequency dependence of 7I(8,g 1:9),@) will
be given by 8S(g =0,w) with an appropriate weighting of
Ay’s , as long as the penetration depth is of order of or
greater than the coherence length and (q|2' +g3)172 < 5L

As discussed earlier, experimental results now exist for
Raman_ scattering by gap excitations in 2H-NbSe,,~!°
Nb;Sn,*~17 v,8i,1*~17 and Nb."* In Fig. 5 we have plot-
ted I,.4(8,9,,9),@) for each of these materials using the
parameters &, 7,, r;, and r|| tabulated in Table I. The
small 7, values for 2H-NbSe,, Nb;Sn, and V;Si make
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FIG. 3. I.4(8,9.1,9),0)=71(8,q:,q),®)[N(0)y*]~! vs w/
2A.
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I,.4(8,9,,q,0) differ little from an inverse square-root
singularity, as discussed in Ref. 18. Note the drastic ef-
fect of the large coherence length of niobium in reducing
the scattering intensity at 2A compared to the other ma-
terials.

In Figs. 6 and 7 we show Raman spectra from a sample
of V;Si [T,=16.85 K, the residual resistivity ratio (RRR)
is 15, and 2A ~41 cm '], which is not believed to undergo
a martensitic transformation, taken at 1.8 and 40 K. The
peaks near 45 cm ™! represent scattering from gap excita-
tions. They appear in both E; and 4, symmetries. The
smooth solid lines through the peaks are fits to the data
based on Eq. (B5), convoluted with a Gaussian distribu-
tion of A in the manner of Egs. (34f) and (34g) in order to
mimic gap anisotropy, and then convoluted with a Gauss-
ian to mimic the spectrometer response function. The fits
clearly describe the data well; the results are given in
Table II. Although the 4, gap peak is too weak to isolate

Ired (S,q_l_,q”,w)

| | |
% I 2 3 4 5

w/2A

FIG. 5. I..4(8,9,,9|,0) vs ®/2A evaluated for the parame-
ters (see Table I) appropriate for (a) 2H-NbSe,, (b) Nb;Sn, (c)
V,Si, and (d) Nb.
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TABLE 1. Dimensionless real wave-vector transfers r,,7| in
2H-NbSe;, Nb3Sn, V3Si, and Nb normalized by the coherence
length £ compared with the normalized imaginary wave vector
.

Sample & (A) 7o 7L |
2H-NbSe, 232 0.114¢ 0.206 0.026
Nb;Sn 73b 0.468° 0.313 0.084
V,Si 87° 0.710¢ 0.465 0.010
Nb 450° 3.35f 3.05 0.513

*The value of £ perpendicular to the layers is given. P. deTrey,
S. Gygax, and J. P. Jan, J. Low Temp. Phys. 11, 421 (1973).

*T. P. Orlando, E. J. McNiff, S. Foner, and M. R. Beasley,
Phys. Rev. B 19, 4545 (1979).

°G. W. Crabtree, D. H. Dye, D. B. Karin, and J. B. Ketterson,
in Superconductivity in d- and f-Band Metals, edited by H. Suhl,
and M. B. Maple (Academic, New York, 1980), p. 113.

9Optical constants from R. T. Harley and P. A. Fleury, J. Phys.
C 12, L863 (1979).

‘Optical constants from S. B. Dierker and M. V. Klein (unpub-
lished).

fOpf:ical constants from J. J. Carroll, S. T. Ceyer, and A. J.
Melmed, J. Opt. Soc. Am. 72, 668 (1982).

by subtraction as Dierker et al.'>! have done for Nb;Sn,
one can infer from the increase in A in going from E, to
Ag+E,; to Alg-}-%Eg that the E, gap peak frequency in
V3Siis >10% lower than the 4,, gap peak frequency.
Raman spectra from single-crystal, thin-film niobium
(T.=9.3 K, the RRR is 22.4, 2A~25 cm™~!, and thick-
ness ~2000 A) are shown in Fig. 8. Note the extreme
weakness of the scattering in the vicinity of 2A. This is
consistent both with the prediction of Fig. 5 and with the
relatively weaker Fermi-surface anisotropy of niobium
compared to the 415 compounds Nb3;Sn and V,Si.

4 5 6 7
<

w
w

o
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3

I\ A \ \ . o
25 35 45 55 65 75 85 g5
Raman Shift (cm™b

FIG. 6. Raman spectra of V3Si. Lower two curves are at 40
K, and upper curves are at 1.8 K. Symmetries are as follows:
top and bottom, %Eg; middle two, 4,+ %E3+ng. Top curve
has been shifted upward by 1.0 count/s, middle two curves by
0.5 count/s. Upper two smooth solid curves are theoretical fits,
lower two solid curves are three point averages of the data.
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FIG. 7. Raman spectra of V3;Si. Lower two curves are at 40
K and upper curves are at 1.8 K. Symmetries are as follows:
top and third from top, 4,+ Eg; bottom and third from bottom,
Ty. Top two curves have been shifted upward by 1.5 count/s.
Top smooth-solid curve is a theoretical fit, lower three solid
curves are three point averages of the data.

III. VERTEX AND POLARIZATION
CORRECTIONS

A. Derivation

The results in Egs. (2a), (3a), or (4a) apply to nonin-
teracting pairs of BCS quasiparticles. We now take into
account the interaction between the quasiparticles via the
same attractive interaction responsible for superconduc-
tivity, and also include polarization corrections due to the
long-range Coulomb interaction. We do this using
Green’s functions.’®?!  Intraband electronic Raman
scattering involves the discontinuity in a four-vertex func-
tion F as the frequency variable w=q, crosses the real
axis from above.”? Figure 9 shows the four contributions
to F for noninteracting electron-hole excitations in a nor-
mal metal. In a superconductor these become mixed with
quasiparticle-pair excitations. The vertical lines b and b’
refer to non-conduction-band Bloch states as introduced
in connection with Egs. (1b) and (1c). Electron-electron
interactions with carriers in the conduction band will pro-
duce a finite width wyy to Bloch state k in band b.2

1. Bare vertices

The vertex pair 1-2 may be treated as a single vertex, as
may the vertex pair 3-4 (Fig. 10). Then, the F function
has the character of a polarization ‘“bubble.” When the
A? term from Eq. (1a) is included, the effective matrix ele-
ment at vertex 1-2 is given by Eq. (1c) with @; replaced by
; +iwy, and oy replaced by w; +iwp;. The effective ma-

TABLE II. Ayto from fits to Raman data on V,Si.

Agto (cm™!)

E, 20.0+2.4
Aig+E, 21.2+1.8
Aig+5E, 21.5+2.8
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FIG. 8. Raman spectra of Nb at 1.8 K. Symmetries are as
follows: top curve, 4 1g+§—T28; bottom curve, 2E,+ %ng.
Solid curves are three point averages of the data.

trix element at vertex 3-4 is ¥y =7%. The width wy, will
be typically —_f; eV or greater.”> Hence, any changes in 7,
due to superconductivity can be neglected, and we can set
w;=w; with little error. If the photon energies are
neglected with respect to the band gaps in the denomina-
tors of Eq. (Ic), Y becomes simply [m/m*(k)];,, the
scalar product of the reciprocal effective-mass tensor for
wave vector k with €; and €,.}

We use the Nambu spinor representation®! that employs
the matrices

10 01
=10 1| T (1 0|’
(5)
|0 -1 1 0
=1 o0 |0 BT o —1
L 7 7
\ / \\ /
2 3 2 3
b b’ b b’
I 4 I 4
// \ / \
@ SRS
R\ /ﬂ R\ 7
g2ty P
// AN // \\
(c) (d)
FIG. 9. The four-vertex diagrams for noninteracting

electron-hole excitations in a normal metal. Solid lines refer to
electrons or holes, dashed lines to photons. At vertices 1 and 4
the operator (P-€;) acts, and at vertices 2 and 3 operator (P -€;)
acts. These four diagrams are to be supplemented by a diagram
where vertices (1,2) and/or (3,4) are replaced by a single vertex
where (€;-€;)p, acts.
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3,4
FIG. 10. The effective vertices appearing in Fig. 3.

The bare vertex y; now becomes the matrix

Y(K)=viz3 . (6a)

2. Interactions among particles; vertex functions

Interactions between the quasiparticles are treated by
using, instead of y(k), the vertex function L[(k,k_),
which obeys the vertex equatlon

Lk, ,k_) y(k)+f

136Gk’ )Lk k',)

XQ(kL)z;D(E,E’). (6b)

In Eq. (6b) we have used four-vector notation: k =( E,ko),
d*k=d’k dKo, and ki =k +q/2 with ¢=(q,qo=0), etc.
The interaction is denoted by D(E,E'). It will be as-
sumed to be nonretarded. Equation (6b) is shown di-
agrammatically in Fig. 11.

The polarization bubble with a corrected vertex I on
the left-hand side and a bare vertex ¥’ on the right-hand
side will be denoted by Br,(q). It is given by (Fig. 12)

d‘k ,
Br,(q)=— f mTr[Q(k+ )Lk k)G (k_)T3l7k »

(6¢)

where I satisfies Eq. (6b). The Raman intensity is ob-
tained by generalizing S(q,w) of Egs. (1a)—(le) to finite
temperature, for intermediate-state damping, and for ver-
tex effects using Kawabata’s four-vertex function.?? The
generalization is given by

8(q,0)— —[1+n(@)][Bpx(G,0+i0%)
Brr*(fi,w——iO“")]/Zﬂi, (6d)
where n () is the Bose function. Equation (6d) represents
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L )4 L
T
C-C-@
1
Diagrammatic form of the integral equation, Eq.

FIG. 11.
(6b).

a generalization of the fluctuation-dissipation theorem for
Raman scattering. We assume 7'=0, making it unneces-
sary to interpret the frequency variables in Egs. (6b) and
(6¢c) as Matsubara frequencies. Eventually, we shall re-
place Bry* by B Ayt [see Eq. (21)]. Results for a nonre-
tarded, factorizable interaction are given in Sec. III A 6.
The electronic Green’s-function matrix appearing in
Egs. (6b) and (6c) is given by?!
Glk)= l(koIoz'*‘szzs'*-?ka) ' o
k 0— €k — Ak
In writing G(k'+q/2), which will be used in (6b) or (6c),
we approximate Agi,,n by Ap and €4y by
€+ +q V. We note that the strong k' dependence of
the integrands in Egs. (6b) and (6c) results from the expli-
cit dependence on €, and treat it using the approximation
of Eq. (A1) in Appendix A. The only components of T
that are nonzero in the =0 limit are those proportional
to 73 and to 7,. We neglect the other component, which
is proportional to 7, and write

Lk ,k_)=T%K,4,0)r;+ TPk, d0)1,. ®

3. Results of performing k¢ and €' integrations

Integrals of the type appearing in Eqs. (6b) and (6c)
have been evaluated by Vaks et al.?* The results are ex-
pressible using the function

fe=f(Br)=B¢ (1—B2)~arcsinBy , (9a)

where

2 (=2 )2
@*—(q V)
Bi=——7—

(9b)
4A%

Using their assumption of a k-independent cutoff frequen-
cy w., we find

- )2

3.0 N fk,a,l_(a.v_,' iofe
B)(k,q,0) a7k e D(K,K") | — KPR ,w)— o
Ve f (27) k w2_(q’.7k,)2 »q,@ @) A ,q,®) |, (10a)
7 d’k’ - o @*—(q-Vg)? o iofi

r(Z)(k)q; )——f 2 )3 5(€k )D(k,k ) In IA:,I 4A12c’ fk' F(Z)(k ,q,w)_ 2Ak ,’a ®) )

(10b)
d o> —(q-Vg)? - i

Bry(q w)= 2f S(Gk) fZJZ*(’qCOIVk’;Z I-\(3)(k’<—:l>’ y— 2}::‘ F(Z)(k, o) 7/;: . (10¢c)
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4. Coulomb interaction

We now add the Coulomb interaction with matrix element

4 iqT
V,= ”e (k+q|e’TT|k). (11a)
The intra-conduction-band matrix element obeys the estimate
(k+q|e'TT|k)=1+06(qa)?, (11b)

. . . . . 1 a
where a is an interatomic spacing. Interband matrix elements of e’ 9

treat only intraband processes and use

V,=4me/q*

-

T are of order ga. Thus to lowest order in g we

(11c)

The full vertex function A(kJr ,kq) obeys the equation (Fig. 13)

Alky k_ )—7(k)+f :Q k' Ak,

We recognize the last integral in (12) as the polarization

By=—[ (;’ﬂ’)‘ TGk Ak, k_)G(k_)z3]  (13)

by comparing it with Eq. (6¢c), with y;=1. As pointed
out by Nambu,?! Eq. (12) takes the same form as Eq. (6b)

with the inhomogeneous term y(k) replaced by
_I}:_(k)'i"VqBAII}

The solution of Eq. (12) is

A=L+V B, (1), (14)
where I'(1) is the solution of Eq. (6b) with y(k)=z3.
Hence the polarization B, obeys
Br, Bri

Bpy=Bri+V By Bray= = , (15)

Al ri+VeBa1Bran 1—V,Bray _ €(g,0)

where By, is given by Eq. (6c) with y; =1, and where
By1) is given by Eq. (6¢c) with y;, =1 and with use of

I'(1). The dielectric constant in Eq. (15) is
4 2
€(g0)=1—""—Br) . (16)

The polarization we want is B,
is given by

BAy"‘ =B1"'y* + VqBMBrmy*
=BF7* +Br1 VqBI“(l)y* /E(q,co)
BFlBr(l)y*
o Bp(m-qz/(4fre2) '

The gap equation is obtained from Eq. (10b) by setting
q,o equal to zero and I'y=Ay,

o which from Eq. (14)

=B (17)

FIG. 12. Polarization bubble, Eq. (6¢).

k' )G(k'_)riD(K,K")

VT3lf

Tr['r3G(k+)A(k’+, )G(k)] .

(12)

D¢

| A |

370
Ae=—[ (%;k)?%k')D(k,k') In Ay . (18)

5. Expansion in Fermi-surface harmonics

We assume that D(k,k’) may be written as a sum of
separable terms,

D(K,K)==3 Vie (Kle, (k") (19a)
L

where the e; (k) are “Fermi-surface harmonics,”? ortho-
normal on the Fermi surface,

(19b)

The notation (F) in Eq. (19b) denotes the Fermi-surface
average of a function Fy,

(FYy=(F,)=N(0)"! 2 8(ex )Fy,

(epep)=8p .

N [ LR, (19¢)

(27 )3

We anticipate the dominance in Eq. (19a) of the L =0
term, where eo(l—f ) has the full factor-group symmetry
(4;) under rotations of K and is nodeless on the Fermi
surface. We assume that ¥ is positive and larger than
any other | V7 |. Neglecting admixtures of e, with L+#0
produced by the logarithm in Eq. (18), we find that the

C - C G OMC

FIG. 13. Diagrammatic form of the integral equation, Eq.
(12).
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solution of (18) with the largest | Ay is

A =Aey(k) , (202)
where

A=(AZ)1? (20b)
obeys the equation

1=Go[In(w,/A)—((Ineg)e3 )], (20c)
where

Go=N(0)V, . (20d)

To solve Egs. (10a) and (10b) we make the expansions

I, q,0) =y + 3 TPe (K) , (21a)
L

r(k,g,0)=3 TP (K), (21b)
L

where ' and T’ are still functions of § and w. Equa-
tion (10c) then gives
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Bry =Br,(g,0)=—2N(0)yQy")
—2N(0) 3T e, Q7")
L

—2N(0)iw/2A) 3 TP e, fy' /eo) »
L

(22a)
where
Q=Qk(6,w)5&?—2:m (22b)
@*—(q-Vy)?
Introducing
G,=NO)V, , (23a)

we rewrite Eq. (10a) as

—G TP =(yQer ) +iw/(2A) 3 TP fep e /eg)
<

G 'TP =3 I {In[w, /(Ae)]+[0?—(G-V)?1f /(4A2%3)}eser)
<

—(lw/2A)<f’)/eL /eo> —(iw/2A) 2 I“(L3')<feL'eL /80> .
T

The most important contribution to Egs. (22), (23b),
and (23bc) comes from the L =0 and L'=0 terms. We
initially restrict ourselves to just such terms by writing
(V="v,)

D(K,K")=—Vey(K)eg(K ") . (24a)
With eO(E);ﬁconst, this amounts to an anisotropic BCS
model. We continue to assume that eo(f) is nodeless on
the Fermi surface and has full factor-group symmetry
under symmetry operations on K. The vertex functions
take the simple forms

IOK,§,0) =y +T5eo(K) , (24b)

I'2(K,q,0)=TPeo(X) . (24c)

6. Solutions

The anisotropic BCS model, with interaction given by
Eq. (24a), has been shown above to lead to solvable equa-
tions (23b) and (23c) for the vertex function. That func-
tion may be written in the matrix form [Egs. (5), (8), (21a),
and (21b)]

Lk k) =[ye +T§eo(K)z3+ T eo(K)z, .

The solutions for the coefficients I'y) and T’ are

+31P(Qeper ) (23b)
<
and Eq. (10b) as
(23¢)
[
—N(0)VA
- —N VA e, (252)

T 14+N(0)VA(ed) ’

where an abbreviated notation has been introduced for the
following average of functions g and h:

(fg){fh)
([1—(G-V/w)*1f)

A(gh)={(Qgh)— (25b)

and
ioT _ —{fy)—=T feo)
2A ([1—(§-V/0)?1f)

The functions f=f; and Q=Q; are defined in Egs. (9)
and (22b), respectively. We then find from Egs. (22a) and
(25) that the polarization originally defined in Eq. (6¢)
obeys

(25¢)

N(0)VA(yey)A (y'ep)
1+N(0)VA(ed)

Br,=—2N(0) |A(y,y") (26)

We shall neglect the second term of Eq. (26). It pro-
duces Fermi-liquid-like corrections to the first term, but
does not add any qualitatively new effects. Thus we write

Bry=—=2NO)[(Qyy")—{fy){fy')/{P)], (27a)
where
P=P(q,0)=fr[1—(4-Vi/@)?] . (27b)

Equation (17) then gives for the Coulomb-corrected polar-
ization
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_ 2y * o) =IO /(PILQY* ) = fY* IS /{P)]
B, «==2N(0) |[{Q |7 |*)—{fy){fr*)/(P)] () — )2/ \P)+a*/abe ,  (28a)
where

qr=87N (0)e? (28b)

is the square of the Fermi-Thomas (FT) wave vector. We expect grra > 1, where a is a nearest- nelghbor spacing. In
most of what follows we shall neglect the g2 term in the denominator of Eq (28a) since the other terms in the denomina-
tor will usually be of order unity.

If the g2 term in the denominator of Eq. (28a) is neglected, B Ayt vanishes if y; =const. This is a consequence of the

Coulomb polarization correction, which completely screens the effect of {y ) in BFY* >22 Thus if we write

V=87 +<(7v), (28¢)
we obtain, from Eq. (28a),

[€Q8y)—(foy){f)/(PYIKQ8y* ) —{fEy*){f)/(P)]
[{Q)—(f)?*/(P)]

B, »=—2N(0) |[{(Q |8y |*)—(f8y){foy*)/{P)]—

(28d)

Each factor in square brackets in Eq. (28d) has a pole at the zero of (P ), but that pole is actually removed, because
Eq. (28d) can be rearranged into

By = =2V (OKQ |87 |2) 4 5 s P s 107051 0) (PY 440 (for Y sy

(QX(PY—(f
— By (Y )Y — (@) (By )] . (29)

This removable pole is that of the well-known Bogoliubov-Anderson collective mode,?®?’ for when 82 is much less than
unity, we obtain from Egs. (9a) and (27b), assuming cubic symmetry,

0=(P)=1—q%}/30?,
where
vE=(v?) .

As is well known, the Coulomb corrections have removed this pole. One can show by keeping the g2 term in the denom-
inator of Eq. (17) that the pole has been pushed up to the plasma frequency. [See Eq. (32a).!]

B. Simplifications and discussion

1. Leading approximation

If we approximate B Ar* by the first term of Eq. (28d) or Eq. (29), we obtain for the zero-temperature generalization of
S(q,w), as expressed by Eq. (6d),

w2

_(—»——» 2

§(3,w)=2N(0)ﬂ—1( 874 |21mf(Bk+10+)>

(5]

(0]
| 8v | *Ak >
[mz_(—q.vk)2]3/2[02_(a.7k)2_4Ai]1/2 ko

=4N(0)a)2< (30)

r

We note that Eq. (30) is Eq. (3a) with 7, replaced by 8y;.  zation of S(g,w). One hopes, of course, that they can be
S(q,») can also be written in the form of Eq. (A10e) neglected. We now discuss three special cases in more de-
with ¥ replaced by 8y;. The remaining terms in Eq. tail.
(28d) or (29) contain factors such as (f;dyx) or
(Qw8yr ). Since {8y, )=0, such factors will be nonzero

only to the extent that the fluctuations 8y are correlated

with the k dependence of fj, or Q. These in turn occur

via the k dependence of A, and, for finite ¢, via the k The first case is that of a normal metal. Letting
dependence in (q-V;)? It is difficult to draw any general ~ A;—0, we see from Eq. (9b) that 82—+ «. By Eq. (9a)
conclusions about the role of these factors in the generali-  we have f; —0. By Eq. (27a) we then find with

2. Normal metal
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0(d,0)=—(G-V)*/[?*—(G-V,)*],
(31a)

2

V¥V ) )
(0] —(ﬁ'-Vk )2

Bry =By =2N(0)(

Note that no vertex corrections appear in Eq. (31a). Use
of Eq. (17) with the g2 term in the denominator dropped
leads to the result

= 2Q~ Qs %
B, ,.,=2N(O)<( vyoy8 ) (31b)
Y a)Z_(‘—j.V)Z
where
_ (G-v)%y >< (G-v)? >—‘
57, =5y —< . (10
Tk , @?—(q-V? 1\ 0?—(G-¥)?

with a similar expression for 87, «. Equation (31b) sug-
gests that B Ar* vanishes in the small-g limit where
(qup)? << 0

3. Low frequencies

The second case to be considered is o ~qup <<2A.
Then, Eqs. (9a) and (9b) give f; =1, and Eq. (22b) gives
Qi ~1. The Coulomb-corrected polarization is, from Eq
(28) after some rearranging,

2N(0) [y ) | g%} /3

0*—1/3¢f -0} '

B, .=—2N(0) |6y |+

(32a)
where
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wp =87N (0)e?v7 /3 (32b)

is the square of the plasma frequency. Equation (32a)
gives no imaginary part to B Ap* 8t low frequencies where

it is valid.
4. Frequencies close to the gap; symmetry arguments

The third case occurs when o >2A >>qup. This ¢=0
limit is the one of most interest, since, according to the
discussion at the end of Sec. II, it should be valid when
8>¢ and 8”Z(q|2| +¢3)'72. Then Qi ~fi, and we may
neglect the ¢ dependence of f,. Equation (27a) then gives

Bry =—=2NO)[{fyy" y—={fr){fv')/{f)]
=—2N(O)[{foydy" ) —(fOy)(foy')/{f)]. (33)
The Coulomb polarization correction of Eq. (17) gives

BAY* = r,y* ’

since for the Coulomb vertex, 8y =0. Thus the polariza-
tion we want obeys

By =B =—2N(O[(f |8y )
—{foy IS8y AT

Since the gap A; is an even function of k, f; is also even
in this limit of ¢ =0. Thus only the even k parts of 8y
and 8y, « are needed in the second term of Eq. (34a). If
we separate Y as given by Eq. (1c) with width wy; added
into a sum of parts symmetric y% and antisymmetric v}
under interchange of polarization vectors €; and €;, where

(34a)

[(k | py | BK)(bK | p; | k) +(k | p; | BR)BK | pg | K)](€x —e€n)

rE=(€E)+ 34b
g m[(€—€p)* —(o; +iwp )*] (340)
and
[(k | p; | bk)bk | ps | k)—(k | ps | BE) DK | p; | K))(@; + iwp )
ri=3 | 12, |KYOK i ) =, (340)
b m (€ —€p )*— (; +iwpy )*]
T

then it is easy to see that under the usual assumption that  may write Eq. (34d) as
| k)*= | —k), etc., that y% is even and y} is odd under in-
version in k space. We note that BAy"‘ =B ry* = —2N(O)[(f|8y*|?)

(YY={fry’)=0, —(fOy ) (for**) /{f)]
and that —2N(0) 3, (f|8yT|?). (34e)

g

(fidr%) ={fidvi)

where 8y7 is the part of 8§ that is fully symmetric under
factor-group operations on k. This allows us to write Eq.
(34a) in the form

Bpy=Bp,«=—2NO){fil | 8% >+ | 87E |°])
—(FOy Yoy ™) /(f)) .

If we further express 8k as a sum of irreducible tensor
components 8y with respect to the indices i and s, we

(34d)

Thus no irreducible components except the fully symmetric
one require corrections. The importance of the second
term in Eq. (34¢) is not expected to be large. If we neglect
that term, then Eq. (6d) gives

A2PL(A)dA

(w2—4A2)1/2 ’ (34f)

7 __4N(0) o/2
S(q—»O,a))—_w ?fo

where

Pr(A)=( |8y | ®8(Ax—A)) (34g)
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is a symmetry-weighted distribution function for the gap.
Dierker et al. used Eqs. (34f) and (34g) to fit their data on
Nb;Sn and V3Si with the use of Gaussians to model
Pr(A) for T'=A,,, E,, and Ty,."* The data and theoreti-
cal fits for V;Si are shown in Figs. 6 and 7.

Another case of interest, namely, qv 1 >>0> 2A, has al-
ready been discussed by Abrikosov and Genkm, who used
an expression equivalent to Eq. (30). The important con-
tributions come from bands on the Fermi surface where
Vi q=~0. Integration on the Fermi surface in the direc-
tion perpendicular to the bands gives a contribution simi-
lar to Eq. (B2) in Appendix B. This must then be in-
tegrated along the bands.

C. Excitons

The notion of an exciton in a superconductor refers to
the bound state of quasiparticle pairs at an energy of less
than 2A.2%%° If the attractive interaction is of the aniso-
tropic BCS type given by Eq. (24a), the only such exciton
is the Bogoliubov-Anderson collective mode, and the
Coulomb correction eliminates that from influencing the
low-frequency response. With the more general, attractive
interaction of Eq. (19a) the presence of each extra term
— VLeL(E)eL( k') for L0 gives a new exciton state. We
now investigate the importance of such states for Raman
scattering and argue that they are probably ummportant

The §eneral task of solving Eqs (23b) and (23c) for I'?
and T'{” to be used in Eq. (22a) is greatly comphcated by
the coupling terms having L+L’. Such coupling is re-

|

Brx=—2N(ON(f |8y *) = (f8y ") for**)/{f)]
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duced if we go to the ¢ =0 limit, which we do now. We
expand

Ye=(Y)+8vi+ 3 (ver Ve, (k). (35)
L0

We further assume that the L=£0 terms of Egs. (19a) and

(35) involve Fermi-surface harmonics e; (k) which are

non-s-like (i.e., orthogonal to 4g). Thus exciton effects

will modify the last term in Eq. (34e). We assume that

not only

(eper ) =0, (36a)
but also

(fer)=0, {feper)=0, {fer/ex)=0. (36b)

We further assume, for Ls£L’ with L and L’'540, that not
only

<eLeL'> =0 ’
but also

(feLeL'/eo ) =0 ,

(37a)

(ferer /ed)=0.
(37b)

The sums over L’ on the right-hand side of Egs. (23b) and

(23¢) then involve only L'=L, and those equations may

readily be solved for I'? and I'’). Equations (22a) and
(34¢) then give

(ferer)=0,

(fe?)— GLgL<w2/4A2>[<fez/e3><fe£> (fe? /eg)?]

—2N(0) 3 |{yer)|?
Lxo 1+{fef )G —gL—

where

gL EGLGO/(GO'—GL) .

4A2 <feL/eO> —GLer

4A2[<feL/e )(feL> (fet /eo)?]

(38a)

(38b)

When G (and g;) equal zero, the expression in large parentheses in Eq. (38a) simplifies to ( fe? ), and Eq. (38a) becomes
consistent with Egs. (34f) and (34g) if we identify the irreducible representation I's#4 with the Fermi-surface harmonic

L =40 and note that
Pr(A)=P(A)= | {yer) | (e (k)*8(Ar—A)) .

B, =B «=—2N(0)f(|8y*]|?)—2N(0) 3

BigL—Gr=(fr)""',

where f1
We obtain for the spectrum the result

—ImB, » =2N(0) 3 |(yer) | |28)mS 80 —wr)+

(38¢c)
For an isotropic gap, we have eg(k)=1 and an f which is independent of k. Equation (38a) then simplifies to
(yer)|?
|2 ver) | 2f ) (39)
L0 l—f[w gL/(4A )—GL]
The Lth term in Eq. (39) has a pole at w; <2A, corresponding to an exciton of symmetry e; (k) when
(40)
=f(B.) and where B, =w /(2A). Equation (40) is equivalent to Eq. (4.7) of Bardassis and Schrieffer.?®
Imf

+2N(0)( | 8y*|*)Imf , (41a)

1=/ B, —Gp) | vt

L£0
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where S} is the strength of the exciton pole and obeys

dinf
aB
The integrated contribution of the first term in large

parentheses in (41a) is 2A#S;. It should be compared
with

S '=2B.gr +(Bigr—Gyr) (41b)

B"‘-—"ﬁL

[, Imfdo=24m(7/4) 42)

which is the integrated contribution of the second term
when g; and G; tend to zero. When g; and G, are
nonzero, the presence of f in the denominator of the
second term of (41a) removes the singular peak from the
numerator at @ =2A and reduces the integrated contribu-
tion below that given by (42).

We now discuss the possibility that the E;, Raman gap
peak observed by Dierker ef al.'® is due to an E,-
symmetry exciton rather than to gap anisotropy. Since
the E, peak is about 20% lower in energy than the A
and T, peaks, we set B; =0.8. We assume G,=0.4 and
find that Eq. (40) has two solutions for G, namely

G =0.305,—0.679 . (43a)
Equation (48b) then gives
S =0.256,0.690 , (43b)

respectively. Thus the repulsive interaction gives a
strength to the exciton peak almost as strong as that (/4)
for the G; =0 case.

Figure 14 compares the prediction of Eq. (41a) for a
single nonzero G = —0.679 with that for G, =0. In the
latter, case, the E,-weighted gap distribution, in the sense
of Eq. (38c), was assumed to be a Gaussian with a ~20%
lower mean and a width used to fit the E; Raman spec-

T T T T T

(] 0.5 1.0 1.5 20 2.5 3.0

FIG. 14. S,4(g=0,0) vs w/2A for a single exciton at
@p /24=0.8 (solid line) compared with the prediction of Egs.
(41f) and (41g) (dashed line) which fits the E; Raman spectrum
of Nb;Sn by Dierker et al. (Refs. 13 and 15) well.
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trum of Nbs;Sn by Dierker ef al. In both cases the
theoretical expression was convoluted with a Gaussian to
mimic the spectrometer response function. The double-
peaked—exciton case is seen to be a bad approximation to
the curve that fits the data well. We can exclude the pos-
sibility that the E, spectrum in Nb;Sn is due to an exciton
with an isotropic gap.

In the case of an exciton with an anisotropic gap, Eq.
(38a) must be used, and modeling is difficult. The singu-
larity of f at @=2A is smeared out considerably for o
within the range of 2A;. For a given value of G, gap an-
isotropy will shift the exciton resonance frequency w; up-
ward and weaken S;. The resonance will acquire a finite
width if w; lies within the range of 2A;, and for small
| G |, the resulting spectrum will not differ much from
that of a model with an anisotropic gap and no excitons.
A small excitonic effect cannot be excluded, but we con-
clude that the main reason for the downward shift in the
E, peak is gap anisotropy.

IV. PHONON SELF-ENERGY

As discussed in the Introduction, the experiments of
Sooryakumar and Klein®~1° suggest that in 2H-NbSe, the
superconducting gap excitations acquire their Raman ac-
tivity by coupling to Raman-active amplitude modes of
the CDW. The Raman activity of the latter can, in turn,
be related to the strong two-phonon scattering in the nor-
mal phase of those phonons that ultimately condense to
form the CDW.*® We therefore assume that the direct
Raman activity of the gap excitations in 2H-NbSe, as
described in Secs. II and III is weaker than that acquired
via the CDW phonons. We need to calculate the phonon
Green’s function in the presence of coupling to the super-
conducting electrons. If the CDW phonon behaves as or-
dinary g ~0 optical phonons, the interaction will take the
form

H’'=p,b,+H.c. , (44a)
where now
o= ¢k +q0ko8k - (44b)

k.o

In Eq. (44b), g; is the matrix element for an electron
which scatters from k to k 4-g, and b, is the phonon’s
destruction operator. In the Nambu representation Egs.
(44a) and (44b) are equivalent to a bare electron-phonon
vertex of the form

g(k)=gk13 . (44c)

The full vertex function A corresponding to (44c) will
obey an equation such as (12) with y(k) replaced by g(k).
We shall denote this by A(g). The resulting polarization,

M(g,0)=8,,, +(g:0) , 45)

is the phonon self-energy as corrected for the residual
electron-electron interaction and as screened by the
Coulomb interaction.

We go to the ¢ =0 limit and obtain from Eq. (34¢)
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I1(0,0)=—2N(0)[{f | 88 |?) — (fog*) (fog** ) /(f)]

—2N(0) 3 (f|5gT|?), (46a)
T4

where 8g; =g, — (g ) and where 8gT is that part of 5g be-
longing to irreducible representation I'. For an isotropic
gap Eq. (46a) further simplifies to

I1(0,0)=—2N (0){ | 8g | 2)f ,
where f is given by Egs. (9a) and (9b) as
f=B"11-p"Y%in"!8, B=w/(2A).

In their theory of the coupling of the 2A gap excitations
to CDW phonons, Balseiro and Falicov used the coupling
in Eqgs. (44a) and (44b) with ¢ =0 and g =g, a constant.!!
They used the bare vertex and obtained the result

M1(0,0)=—2N (0)g2f .

(46b)

(46¢)

When used to calculate the phonon Green’s function
D(q,w) via

w2-wo(q)2

47
2&)()( q ) (47a)

[D(g0)]'= —I(g,0) ,
Eq. (46¢) gives a pole in D(0,w) at a frequency w, <24,

obeying
sin~ 1(wp /2A)

— (47b)
wp (42— )

0} =wh—4woN (0)g24A?

Here w, is the unrenormalized phonon frequency at g =0.

As pointed out by Littlewood and Varma,'? this model
cannot be used as is, because vertex (and Coulomb) correc-
tions will completely screen the constant electron-phonon
interaction g. We see, however, from Eq. (46b), that if g
is anisotropic on the Fermi surface, then the Balseiro-
Falicov calculation of II(0,) and others based on it’ may
be generalized if their parameter g2 is reinterpreted to be
(| 8g Lz ). The rough fits to the experimental data re-
quire!

N(0)( | 8g | %) =~0. 1%, . (48)

One expects an anisotropic g; in the CDW state, with the
largest | gy |’s on those parts of the Fermi surface affect-
ed most by the formation of the CDW.

Littlewood and Varma pointed out that another type of
coupling should be expected between quasiparticle pairs
and CDW amplitude modes.!? They argued that on those
parts of the Fermi surface most affected by the CDW, the
amplitude mode of the CDW will modulate the local
value of the electronic density of states and hence the gap
via equations such as our (20c) and (20b). The resulting
vertex is proportional to Nambu’s 7;. Such a coupling
gives rise to another collective mode with frequency 2A /#
at ¢ =0, which becomes damped at finite ¢,'* and whose
dispersion was calculated (for superfluid He?) by Brusov
and Popov.*!

Recently, Browne and Levin have treated the CDW and
superconductivity self-consistently within a random-phase
approximation.’? Treating the CDW within a one-
dimensional approximation, they succeeded in deriving
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microscopically a coupling of the type considered by Lit-
tlewood and Varma.!? A similar but independent calcula-
tion has been done by Kurihara.3?

It is also of interest to correct the vertex I'(k ,k _) for
both phonon and Coulomb polarizations. Let Q(k ,k_)
denote this corrected vertex. It will obey an equation such
as (12) with the following additional term on the right-
hand side:

g(K)z3BoDolg,0) , (49)

where D(q,w) is the bare phonon Green’s function. The
formal solution for Q is

Q=L+ Vqu_I:(l)+Do(q,w)Bng*_I_“_(g(k)) s (50)
where ['(g(k)) is the corrected vertex for I3g(E). From
Eq. (50) one can form the polarizations Bg; and Bng* and
solve the resulting two equations for them. One can then
form the polarization B ay* from Eq. (50) and obtain after

some rearrangement

Bﬂ‘y* =BAy* +BAg*D(q,Cl))B (51)

Algiy* °

Here B, . is the Coulomb-corrected polarization given by
Eq. (17), B« is given by Eq. (17) with v* replaced by g*,
and B Algiy* is given by Eq. (17) with T replaced by I'(g).
D(q,w) obeys Egs. (47a) and (45).

When the “imaginary part” of Bny* is calculated, fol-
lowing the prescription of Eq. (6d), the second term in Eq.
(51) gives both phonon Raman scattering [from
Re(B Ag*B Ay )ImD (q,w)] and electronic Raman scatter-
ing [from ReD(q,0)Im(B Ag*B Ayt )]. The latter contri-
bution will, in general, interfere with ImB, . from the
first term in Eq. (51). Because of the complicated band
structure of transition metals and transition-metal com-

pounds, the phonon contribution must include the inter-

band generalizations of B Ag* and B Ayt

V. CONCLUSIONS

We have derived general expressions such as Eq. (28d)
which, in principle, allow a calculation of the Raman
spectral function [by use of Eq. (6d)] for finite wave-
vector transfer g and with inclusion of coupling constant
and gap anisotropy and vertex and Coulomb-polarization
corrections. Useful expressions and numerical results
were obtained only by giving up full generality, namely
for finite ¢ and no anisotropy (Appendix B and Ref. 18) or
for anisotropy, but with g ~0 [Egs. (34f) and (34g)]. For-
tunately, the study of the g dependence in Appendix B and
in Ref. 18 gives us confidence that the ¢ ~0 limit applies
almost literally for wave-vector transfers equal to £~! or
less and optical penetration depths equal to & or larger.
Thus it applies well for 2H-NbSe,, Nb;Sn, V;Si, and to
other clean superconductors that have short coherence
lengths £. Such a superconductor should have an almost
singular peak in the Raman spectrum at w=2A. For
good practical results, the Raman matrix element must
also be anisotropic so that { |8y, |2) will be large. Since
the Raman intensity is proportional to N (0), those super-
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conductors with a large density of states will be favored in
a Raman experiment.

Similar conditions [g€ < 1, large N (0)], in addition to a
large value of the coupling constant { | 8gy |2), favor a
strong peak below 2A in the spectral function of an opti-
cal phonon.
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APPENDIX A: FURTHER EVALUATION
OF EXPRESSION FOR §(q,0)

The integrand in Eq. (2a) makes a contribution only for
k near the Fermi surface. Its only rapid k dependence is
through its dependence on the energy €, as long as the
group velocity v, is not so small as to give a rapidly vary-
ing density of states N (e) near e=0. Excluding this pos-
sibility, we may write, for F(eg,K), the integrand in Eq.
(2a),

J @k Flex, k)= [ d’k [ 8(ex—e)F(e,K)de
~[d%k8(e) [~ Flekde. (A1

In addition, we may consider E of Eq. (2b) to be the in-
tegration variable by using the identity

»  FsEdE

f_”dee=S=2ﬂ I, E_ADA (A2a)
where s =sgn(e). By defining

QUE)=E+E'E), (A3a)
where

E'(E)=[E?42e(q-V;)+(q-V,)?]'2 (A3b)
with

e=s(E*—A})'?, (A3c)
we have

80— E—E")=8(0— QE)=8(E — Ey) | 9= o

(Ada)

where E| is the value of E that satisfies

w=Ey+E'(E,) . (A4b)
We find that

2AGVi)S(E2—ADV2=Q?—20E —(G-Vi)*.  (AS)

We differentiate both sides of Eq. (A5) with respect to Q
I

dk 8(ex) | vi | 2A%

4989
and obtain
dE |  (0—E))Ej—Ap'? A6)
dQ |o_» |SEo(G-Vi)+(EZ—A})2|

Using Eqgs. (A2), (A3), (A4), and (A6) in Eq. (2a), we ob-
tain

§(ﬁ»w)=% 2 f

s=*1

d’k
= "_5(ex) 2
(277_)3 € |7/k|
[Eolo—Ey)+A2 —e€']s
|SEo(G-Vi) +o(E3—A3)/2|

(A7)

By the use of Eq. (A5) we obtain, for the expression in the
denominator of Eq. (A7),

@?—(q Vi )?

|SEo(q Vi) +o(E§—A})'? | =sW————— , (A8a)
2|G-Vi |
where
W=w—2E, . (A8b)

From Eq. (A5) with E=E, and Q=w, we find that W
obeys

172
o Wo W?

2AqGVids | =+, —AL | =oW—(G-Vi).
(A9a)
T'his may be solved for W, giving
W= |4 | [0 (Vi )44} ]2
X [@2—(G-Ve)?] 712 (A9b)
Using € =€+ (q-Vy), we find, from Eq. (A3c),
€' =s (E2— A [s(E*— A2 +(4V)] . (Al02)

We eliminate s (E2— A%)!/2 by use of Eq. (A5) and obtain,
from (A 10a),

€€ =[(@W)*—(q-Vi)*1/4(q-V)? . (A10b)
Use of (A8b) gives

Ey=(W—-w)/2
and

o—Ey=(0+W)/2.
Thus

Eoo—Eg)=(a*—W?)/4 . (A10c)

Equations (A 10b) and (A 10c) together with (A9) then give
Eolo—Eq)+ AL —e€' =20°A%[0®—(G-V,)?]~'. (A10d)

Use of Egs. (A10d), (A8a), (A9a), and (A9b) in (A7) then
gives

§(ﬁ,w)=4w2f'

(2m)3 [wz_(a_vk )2]3/2[w2_(q>,vk )2_4A2]l/2 :

(A10e)
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APPENDIX B: EVALUATION OF S(g,o)
FOR THE ISOTROPIC BCS CASE.

Introducing the angle 0 between ¢ and Vy, and defining
the variable z by

P cos@ ’
(w2__4A2)1/2

we find from Eq. (3) for A=A, yy=v, and |V, | =v,
and for a spherical Fermi surface,

(Bla)

2
§(q,w)=2N(O)y2:fw fozo(l__mzz)g;(l__zz)l/z )
(B1b)
where
Zo=min 1,752‘%5)17 , m=1—4A2/0?.  (Blc)

When (4A%+(qv)?)!/?> w > 2A, we have zy=1, and the in-
tegral is expressible in terms of complete elliptic integrals,

§(q,w)=N(0)72;’—vE(1—4A2/m2)

_2NOY? o, || e=24
) 2 w+2A
2Aw 0—2A

— B2

w+2A 0+24A B2)
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At o=2A, S(q,») jumps discontinuously from zero to
22N (0)A(qv)~X7/2), which is 7/2 larger than the
normal-metal value N (0)y%w(qv)~!. S(q,0) rises as w in-
creases. When w=(4A’+(qv)*)'/%, there is a sharp
discontinuity in slope.

When o > (4A%(qv)?)!/?, we have zo=qv/(0*—4A2)!7?,
and introducing the incomplete elliptic integral,

E(p\a)= f:‘ 1—sin’asin’0)12d6 (B3a)
where
#=sin"'z, and sin’a=m, (B3b)
we find
S(g,0)=N(0)y? ;’—UE(qi\a)— (wz(;:i;ugjf;)l/z
(B4)

This is a decreasing function of w, unlike Eq. (B2), which
gives an increasing function.
When g —0, we obtain, from (B4),

_ 29 A2
S(g—0,0)= 20247 (B5)

(@*—4A%) %0

which may also be obtained directly from Eq. (3c). The
behavior of S(q,®) is shown in Fig. 1 for ¢£=0.1, 0.5,
1.0, 2, 4, and 8 where £=v (2A)~! is the coherence length.
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