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Thermal conductivity of normal liquid 3He
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The thermal conductivity ~ of normal liquid 'He was measured along isochores for 7 mK ~ T & I
K a.nd for 0 ~P ~ 30 bars. The data, obtained using the standard steady-state heat-Aow method, are

based on the same temperature scale recently used for specific-heat measurements. They are —10k
smaller than earlier 1ow-tcmpcratulc results obtained near P=G. Extrapolations of thc data to
T=0 are in very good agreement with the s- and p-wave approximation if the most-recently-

determined quasiparticle effective mass is used. At very-low temperatures the data are consistent

with theory which predicts that at low-but-finite temperature 1/xT shou1d have the form a+bT.
However, contrary to the earIier measurements at P=O, the new results clearly indicate that
highex-ox'dex terms are also significant. %'ith the combination of thermal-conductivity and specific-

heat results, values of the scattering time g„were determined. By fitting 1/~„T to an expression of
the form a,+b T+c,T~ln( T/8 ) we found values of the characteristic temperature 8 which agree

well with those cxtractcd from the T 1nT correction to thc low-temperature spcc1flc heat.

I. INTRODUCTION

All of the thermodynamic and transport properties of
normal liquid He at low temperatures can be determined
given the scattering amplitude for two-quasiparticle col-
11slons. Moreover, thc 1ntcI'act1on between normal-state
quasiparticles can be directly related to the interaction be-
tween superfluld quaslpartlcles. Obviously then, a com-
plete theory of liquid He would provide a scattering am-
plitude, based on first principles, which accurately
predicted all of the measured properties. A more realistic
intermediate goal of theory is to relate the information
from thermodynamic measurements, i.e., the Landau pa-
rameters, to tfRIlspoft properties and thcfcby to make
inferences about the scattering amplitude. It is clear that
theoretical progress from this direction depends directly
on acculatc and pfcc1sc cxpcf1mcntal d8ta.

A serious problem from the experimental point of view
has been the controversy regarding the effective mass m 3
of the He quasiparticles, which is extracted from
normal-state specific-heat measurements. This is a cru-
cial quantity since it enters into the determination of all of
the I.andau parameters. Very recently, however, high-
precision specific-heat ( Cv) measurements' have been
made over a very large range of pressure and temperature,
and these data have been shown to satisfy several thermo-
dynamic checks. Because the new determination of the
mass differs from that used in most of the earlier theoreti-
cal calculations, some reanalysis and reevaluation is neces-
sary.

Another deficiency of the experimental situation is that
there have been few precise measurements of transport
properties. These measurements are generally more diffi-
cult, for various reasons, but given recent improvements
in experiInental techniques, high-quality data are certainly
feasible.

Of the transport-property measurements, perhaps the
measurement of thermal conductivity is most straightfor-

wRI'd s1ncc thcfc 1s llttlc amb1gu1ty of coIIlpl1cat10Il 1n thc
manner in which the conductivity is extracted from the
variables actually measured, namely temperat re and
power. This is in contrast to, for example, the viscosity as
measured using a vibrating-wire viscometer. The diffi-
culties in the measurement of conductivity at very low
temperatures arise mainly because of the thermal boun-
dary resistance. As the temperature increases, ihe prob-
lem becomes the rapidly decreasing thermal diffusivity„
which implies a rapidly increasing thermal relaxation
time. It is presumably for these reasons that few measure-
ments of the thermal conductivity of normal liquid
He have been made. Only one of these sets of data, at
I =0, extends below 30 mK.

In th1s papcf, thermal-conductivity data RI'c Icportcd
which have an order of magnitude greater precision than
any of the previous transport-property measurements on
normal liquid He. The I'esults span the temperature
range 7 mK —1 K and the pressure range 0—30 bars. The
extrapolations of the data to T =0 agree well with theory,
provided m3 from Ref. 1 is used in the calculations.
Even at the lowest temperatures the conductivity data
show deviations from I/T behavior. These deviations are
consistent with predictions for the leading finite-
temperature corrections, but show that higher-order terms
also contribute significantly.

II. EXPERIMENTAL DETAILS

A. Thcrxnal-conductivity cells

It was necessary to employ two different thermal-
conductivity cells in or'der to make high-px'ecision mea-
surements over the entire temperature range from 7 mK
to l K. Figure 1 shows the "low-temperature" cell used
only below 50 mK. Figure 2 shows the appar'atus used at
higher temperatures. Having the two very different
dcslgns was pI'cdlcatcd o11 thc rapidly charlglng boundary
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FI{G. 1. "Low-temperature" thermal-conductivity cell. This
apparatus %'as used to obtain data between 7 and 50 IDK.
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FIG. 2. "High-temperature" thermal-conductivity cell. This
apparatus was used to obtain data above 50 mK.

I'cs1stancc between thc normal 11qu1d Hc and 1ts coIl-
tainer, the rapidly changing thermal diffusivity of the
sample, and also the need for different types of ther-
Inometry 1Q the two temperature regimes. Ofhng to the
combination of a very large He specific heat and a small
thermal conductivity, at all but the very lowest tempera-
tures, both cell lengths merc kept short to prevent ihe
thermal time constants from becoming unmanageably
long. T4c tube 61amctcrs werc taken as a coIIlpromlsc be-
tween the conditions that the diameter be (i) small com-

pared to the tube length in order to promote a uniform

temperature in planes perpendicular to the tube axis, and
(ii) large enough so that the heat generated in the ther-
mometers themselves would not produce a significant
temperature gradient along the tube. Since the He quasi-
particle mean free path is of the order of micrometers at 7
mK, 1t d1d Ilot cntc1 1nto thc dcs1gn cons1dcI'atloIls. Thc
dimensions of the tubes and other physical parameters of
the two apparatuses are listed in Table I.

The upper end of the tube on the low-temperature ap-

TABLE I. Parameters for tllc thermal-conductivity cells sho% n 1n Figs. 1 and 2.

Tube material

"Low-T"' cell

Cu7o-Ni3o

"High-T" cell

Cu7o N13o

Tube length (cm)

Tube internal diameter (cm)

Tube-%all thickness (cIIl)

TRb spaclllg (center to ccntcI') (cm)

Surface area {m~): large exchanger
tabs
end plug
llcatcr disk

10

0.2
0.02

Hester resistances (Q): inside
outside

336.5
1007.6

342.4
906.2

'Room-temperature values.
"Measured at 100 mK.
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paratus joined into a heat exchanger with a surface area of
-20 m . Strong thermal contact between the silver body
of this chamber and the mixing chamber of a dilution re-
frigerator was made using a mechanical clamp (Fig. 1 of
Ref. 1). The temperature of the helium at the cold end of
the tube was therefore closely tied to the temperature of
the mixing chamber, making it possible to extend the
range of the data to near the limiting temperature of the
refrigerator itself. The Pt-W heater used to generate the
temperature gradient in the liquid was supported inside
and near the bottom of the tube by its superconducting
leads. It was wound around the perimeter of a disk
formed by a short thin-walled silver cylinder packed with
silver powder (225 cm ). The disk was intended to reduce
the temperature rise of the heater wire and also to pro-
mote a heat flow uniformly parallel to the tube axis.
Since the thermal conductance of the containment tube
was small compared to that of the helium sample, only a
small fraction of the heat had to flow across this helium-
metal interface. Nevertheless, because of the large
thermal boundary resistance at low temperature, and a)so
because of the power dissipated in the thermometers, spe-
cial care had to be taken to ensure that the temperature
measured on the outside of the tube accurately corre-
sponded to the abutting sample temperature. Therefore
each of the thermometer tabs soldered to the tube was
constructed with an inside surface area of -2 m . The
helium sample came in contact with the silver sponges via
ten 0.75-mm-diam holes drilled radially through the wall
of the tube. The temperatures of the tabs were measured
using He-melting-curve thermometers.

Because of the very long response times at the higher
temperatures, this apparatus was useful only below about
50 mK. The long times were primarily a consequence of
the large thermal mass of the He in the tabs and in the
melting-curve thermometers.

At higher temperatures, the apparatus shown in Fig. 2
had a much faster response time. This much simpler cell
could be used at these temperatures because of the much
smaller boundary resistance, and also because carbon-
resistance thermometry becomes reliable and possesses
adequate sensitivity. On this apparatus the thermometer
tabs were simply thin (0.4-mm-thick) copper disks soft-
soldered to the outside of the tube. The tube had a very
thin wall (0.05-mm-thick), and thus the correction for the
shunting effect of the wall conductance remained small
(See Sec. IID), and also, and more importantly, only a
small (0.2-m ) heat exchanger was needed to hold the
lowest portion of the sample and bottom end cap at nearly
the same temperature. The end cap was epoxied onto the
tube, but a heavy copper wire hard-soldered to both pieces
guaranteed that they were in good thermal contact. The
attachment of the wire to the tube was via a copper disk
which was positioned level with the top of the inside
heater assembly in an attempt to further reduce tempera-
ture differences between the sample and the warm end of
the tube. The guard ring also served to strengthen the
cell. Since nearly all of the heat had to flow across a
liquid-solid interface at the top of the tube, a much larger
surface area was needed here to prevent significant tem-
perature differences from developing. The top heat ex-

changer contained three sintered silver posts with a total
surface area of —10 m . Attached to the flange welded to
this heat exchanger were a calibrated germanium ther-
mometer, a superconducting fixed-point device, and a
cerium-magnesium-nitrate thermometer. These ther-
mometers were used to calibrate the carbon resistors on
the tabs. A thermally insulating support positioned the
cell below the mixing chamber of the refrigerator.
Thermal connection to the refrigerator was via a 10-cm-
long, 0.06-cm-diam copper wire. This weak link made it
possible to accurately control the temperature of the cell
at high temperatures. The heater wrapped on the outside
of the bottom end plug was used in measuring the conduc-
tance of the unfilled tube.

All the samples were confined to constant volume using
a valve also attached to the mixing chamber. The valve
and the conductivity apparatus were surrounded by a ra-
diation shield at the mixing-chamber temperature.

B. Thermometry

A description and cross-sectional drawing of the 3He-
melting-curve thermometers used on the low-temperature
cell (Fig. 1) are given in Ref. 7. However, pressure read-
ings were converted to temperatures using the corrected
P Trelation -from Ref. 1. This calibration of the melting
curve used, as partial input, the condition that the He
specific heat, measured using this type of thermometer, be
linear in T at very low temperatures. We now find that
this calibration also implies a He thermal conductivity at
our lowest temperatures which is well behaved and con-
sistent with qualitative theoretical expectations.

The two thermometers, which had a common filling
capillary above -0.7 K, were made as identical as possi-
ble and had very similar capacitance-versus-pressure rela-
tionships. The pressure calibrations were performed
simultaneously near 1 K using a dead-weight tester. The
reference capacitors used in the ratio-transformer —bridge
circuits were carefully shielded 20-pF silver-mica capaci-
tors kept in a liquid-nitrogen bath. With the cell heaters
turned off, the two thermometers registered the same tem-
perature to within 0.001 T, and showed no detectable rela-
tive drifts when monitored for periods of several hours.
At a bridge excitation of 2 V rms, the power dissipated in
each of the thermometers was 2&&10 " W. This power
level was always less than -0.1% of the power used to
generate the temperature gradients along the cell. This
power level also caused an estimated temperature differ-
ence across the helium-silver boundary in the tabs of
about 1 pK at 7 mK.

The melting-curve thermometers have sufficient resolu-
tion to measure temperature differences of -0.06T to
within a precision of better than 0.2%. The scatter in the
data is somewhat larger at very low temperatures because
of difficulties in regulating the temperature at a level of
the thermometer resolution. Between roughly 20 and 50
mK, additional uncertainty is attributable to the very long
thermal time constants in the low-temperature apparatus;
near 50 mK it was necessary to wait 5 or 6 h for a steady
state to be reestablished after switching the heater on.

The carbon-resistance thermometry used on the high-
temperature cell is similar to that described in Ref. 8. In
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the present experiment the thermometers were 220-0,
0.5-W Speer resistors which were ground to a thickness of
about 0.25 rnm. The reference resistors were 10-kQ
metal-film resistors also varnished onto the copper tabs.
Below 200 mK the bridge driving voltage was 250 pV,
which gave a temperature resolution of better than
2&10 T. At higher temperatures the driving voltage
was increased to 630 pV. The power dissipated in the
thermometers and reference resistors was always negligi-
ble compared to that dissipated in the cell heater.

C. Measurement of thermal conductivity

The thermal-conductivity measurements were made us-
ing the conventional technique: Heat was forced to flow

through the sample by dissipating power Q in the resistor
located very near the bottom of the sample. The resulting
equilibrium temperature difference b, T between the two
tabs was then measured and related to the thermal con-
ductivity a at the mean temperature via the expression

Q= aAb, T/—M .

Here 2 is the cross-sectional area of the sample and hx is
the spacing between the thermometers. The heat was
forced to flow upward because of the negative expansion
coefficient of normal liquid He at low temperature; heat-
ing from the top would have easily caused convective
flow.

Because the conductivity cells (Figs. 1 and 2) are rela-
tively short and the thickness of the thermometer tabs is a
sizable fraction of their separation, special attention has to
be given to the determination of the effective thermometer
spacing. On the high-temperature cell the tabs are copper
disks soft-soldered to the outside of the tube. Although
copper has a high conductivity, the tabs do not shunt the
flow of heat in Cu-Ni tube because of the thermal separa-
tion provided by the ring of soft solder. The temperature
of each disk should then be very close to the average tem-
perature of the abutting section of the tube. Thus, to a
good approximation, hx for this cell is equal to the
center-to-center spacing of the tabs.

For the low-temperature cell the situation is more com-
plicated. Since the helium sample now extends into the
tabs, there is an increase in the effective cross-sectional
area of the sample at the level of the tabs. Moreover, in-
side the main body of the tabs the helium is forced to be
of a nearly uniform temperature, which also increases the
apparent conductance of the sample. The use of the
center-to-center spacing of the tabs would thus yield a
conductivity which would be too large. The effective
value of M for the low-temperature cell was deterlnined

by normalizing the data in the region of temperature over-
lap to agree with those obtained using the high-
temperature cell. The effective spacing was found to be
-6%% shorter than the center-to-center distance. The
magnitude of the correction seems reasonable bearing in
mind that the diameter of the radial holes drilled into the
tabs is -20% of the spacing. We also found, to within
the precision of our data, that the normalizing factor was

independent of density, even though the helium conduc-
tivity changed by a factor of about 2. Presumably, then

D. Empty cell: Thermal conductivity of Cu70-Ni30

Before admitting He to the high-temperature cell (Fig.
2), the thermal conductance of the Cu-Ni tube was mea-
sured. The density (8.94 g/cm ) and the measured mass

I I I I I I I I I I I I I

I I I I I I I
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FIG. 3. Conductivity of Cu7o-Ni30. Comparison is made with
the work of Fairbank and Lee (Ref. 9).

any temperature dependence of the effective thermometer
spacing is also very small.

For the low-temperature ce11, the temperature-
difference measurements were made by recording the
thermometer-bridge ratios first with Q =0 and then again
with the heater current set to cause a bT of roughly
0.06T. Both pairs of readings were obtained with the
colder tab being regulated at the same temperature, using
the thermometer on the cold tab and the heater located on
the large heat exchanger (Fig. 1) in the control loop. The
temperature difference between the tabs is then simply

Tb,«, (Q) —Tb,«, (0), which is insensitive to small
differences in the temperature calibrations of the two
thermometers. Approximately 90 min were required to
regain a steady-state condition near 7 mK after changing
T or Q. This time grew to several hours at 30 mK. Be-
tween 30 and 50 mK some of the data were obtained us-
ing an alternate procedure: The temperature of the large
heat exchanger (rather than the cold tab) was maintained
constant for each pair of readings. The b T generated by
the heat flow was then b, Tb,«0 b, T„p, and—the mean

temperature was T„~(Q)+ , b, T. —
All of the data for the high-temperature cell were ob-

tained using this second method. The heater powers were
now adjusted to cause a b, T/T of -0.12. With this ap-
paratus, approximately 1 h was required to establish
steady-state conditions over the complete temperature
range.
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data is a few tenths of a percent.

0.4 —p~o
——P~ 50 bars

per unit length of the tubing determined the cross-
sectional area of the metal sample. Figure 3 shows the
conductivity plotted on log-log scales. Below 200 mK, ~
is approximately proportional to T; at higher tempera-
tures the conductivity grows at a faster rate. The straight
line associated with these higher-temperature data corre-
sponds to the expression used by Fairbank and Lee to
describe their results between 0.3 and 4.0 K. The agree-
ment in both magnitude and temperature dependence is
excellent.

Empty-cell conductivity measurements could not be
made using the low-temperature cell. This is because of
the extremely long thermal time constants resulting from
the coupling of the small conductance of the tube and the
large thermal masses' of the melting-curve thermometers.
However, the helium conductivity data for this cell could
be accurately corrected for the shunting effect of the
cylinder walls since the bodies of both cells were cut from
the same length of Cu-Ni tubing. It was assumed that the
z remained linear in T down to the lowest temperatures.

The deviations of the Cu-Ni data from a least-squares
polynomial fit (six terms) are plotted in Fig. 4 to show the
precision of these measurements. Figure 5 shows the frac-
tion of heat flowing through the cylindrical walls of the
two cells for helium densities corresponding to P=0 and
30 bars.

III. RESULTS AND DISCUSSION

A. General results

The thermal conductivity of pure normal liquid He
was precisely measured for several molar volumes (listed
in Table II) as well as over the temperature range from 7
mK to the temperature at which the expansion coefficient
becomes positive. For I'=0 bars this occurs near 0.5 K
and for P =30 bars near 1.3 K. Because of the experi-
mental considerations discussed in Sec. IIA, the measure-
ments were made using two different conductivity cells.
The low-temperature cell was used to a maximum tem-
perature of 50 mK; the high-temperature cell to a
minimum temperature of about 40 mK.

All of the conductivity data are plotted in Fig. 6 with
the different symbols referring to the two apparatuses.
Consistent with theoretical expectations for this Fermi
system, each string of data tends towards a T ' tempera-
ture dependence at low temperature and roughly towards
a T'~ dependence at high temperature. It is also ob-
served that as the density increases the conductivity de-
creases. Figure 7 shows the data below 60 mK plotted on
linear scales.

The pioneering work directed toward an understanding
of the transport properties of normal liquid 3He at T =0
is that of Abrikosov and Khalatnikov, ' who derived the
quasiparticle transport equation based on Landau Fermi-
liquid theory. In doing so they also demonstrated that the
quasiparticle interaction function does not appear explicit-
ly in the equations and thus that the transport problem in
the Fermi liquid is formally identical to that of the Fermi
gas. The transport coefficients were given in terms of
solutions to integral equations which were later solved ex-
actly by Brooker and Sykes" and also by H@jgaard Jensen
et al. ' The problem therefore reduces to determining the
scattering amplitude for pairs of quasiparticles with mo-
menta on the Fermi surface.

The solution for the thermal conductivity can be writ-
ten in the form analogous to that from simple kinetic
theory,

a = —,
'

(CI /V)UFV„.

TABLE II. Molar volumes of the He samples.

O
O

~ Q
0.2—

2
I

O
~ Qf

O.I—

low —T cell high —T cell
Sample

Pressure
at 0.1 K

(bar)

0.12
4.60

10.16
20.23
29.29

Molar
volume
(cm )

36.675
32.826
30.333
27.650
26.273

Temperature
range

(K)

0.007—0.05
0.007—0.05
0.007—0.05
0.007—0.05
0.007—0.04

O.OI O. I I.O

T(K)
FIG. 5. Fraction of heat flowing through the Cu-Ni cylindri-

cal walls of the two conductivity cells (Figs. 1 and 2). Curves
are shown corresponding to the cells being filled with normal
liquid 3He at P =0 and 30 bars.

6
7

9
10

0.10
4.60

10.20
20.20
29.98

36.701
32.824
30.319
27.656
26.172'

'Inferred from the solid nucleation temperature.

0.05—0.5
0.05—0.6
0.05—0.8
0.05—1.0
0.05—1.3
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FIG. 6. Thermal-conductivity data for normal liquid He on
log-log scales. The solid and open circles represent data ob-
tained using the cells shown in Pigs. 1 and 2, respectively. centratlon) dependence. Consequently, Ic Is roughly pro-

portional to 3He density. The very different behavior of
the pure liquid is a manifestation of the strong interac-
tions experienced by the He atoms.

UF =2k' TF /171 3

where R is the gas constant, and

(4)

It then follows that, in this regime, a is inversely propor-
tional to T.

For temperatures high compared to Tp, Boltzmann
statistics apply, and kinetic theory gives the result that,
for an ideal gas, a ~ (T/m3)'~ . The data shown in Fig. 6
extend upward in temperature to only l K, which is of the
order of T~. Here the data are approaching density in-
dependence, but the temperature dependence differs from
T'~ . This is not surprising since the molar specific heat
near l K also differs considerably from the classical value
of —,R.

Another notable feature of the data is that at very low
temperatures the conductivity decreases with increasing
He density, contrary to the results for dilute He- He

mixtures. In the latter case, the Fermi system is only
shghtly nonideal and ~, has only a weak density (i.e., con-

Here Cy is the molar specific heat at constant volume, V
is the molar volume, v~ is the Fermi velocity, and z„ is the
scattering time appropriate for thermal conductivity. The
scattering time is proportional to T at very low-
temperatures as a consequence of the Pauli exclusion prin-
ciple, which permits only particles in states near the Fer-
mi level to scatter. At very low temperatures we also have

Cy/8 = ( n /2)( T/TF )

B. Comparison with earlier measurements

0.5——

Lee ei Fairbanks
Q.g- ——Anderson, Sa linger 8 0/heatley--- Anderson, Connolly, et al.

Abel, et cl.0.5—

0.2—

p~ 0 bars

-O. l
— ' '

5 lO

I I I I ! I I I I I I I

FIG. 8. Comparison of thermal-conductivity data obtained
near I' =0 bars. x~, refers to Eqs. (6) and (7),

Comparison with the I'=0 results from earlier experi-
ments is made in Fig. 8, which shows the relative differ-
ences from the more-precise present measurements. It
should be noted that in all of the previous experiments
magnetic cooling was used, and, consequently, true
steady-state conditions could not be achieved. This is an
important consideration in these experiments because of
the very long relaxation times encountered. As already
discussed, the long times at very low temperatures are due
to the large thermal boundary resistance, and at higher
temperatures they are due to the small thermal diffusivity.
These experiments also have the complication that a por-
tion of the power generated in the tube heater goes toward
increasing the temperature of the sample. Bearing in
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TABLE III. Best-fit parameters for Eqs. {6) and (7). The units for the conductivity and molar
volume are erg/sec cm K and cm', respectively.

Qpj.

Q &J.

Q2J

Q3J

—4 1884746X 10
—1.854 637 9

4.361 779 2 X 10
—9.432 829 6X 10

1.926 283 9
2.369 5190X 10

—4.2101673X10 2

8.9196267 X 10

—6.828475 6X 10-'
1.005 022 1 X 10

—2.090 3165 X 10

b
b

b()~

b)J.

b2J.

2.549 899 7
—1.486 1472X 10

1.031 123 9X 10
—3.374651 7X 10

2.591 379 2X 10

—1.186 1905X10
7.217 632 9

—4.108463 6X 10'
2.261 2612X 10

—1.457499 8X 10

1.718 778 7X 10
—7.543 915 7X10-'

6.818 853 4X 10
—3.420 780 1

2.138 964 3

~ ~
~ ~

26.27

Oo0
00 0 ~

0

O
Opoop 0

~ ~
0 0 0~ ~ + ~ ~ 00 0 Oppppp OO

~ ~ ~ ~ yQ~ 00 0 on CDop 0

mind the precision of the earlier data, and also the fact
that the total systematic errors are estimated to be as large
as 10%, the agreement is reasonable.

The largest amount of scatter occurs in the data of Lee
and Fairbank (open squares), which represent, however,
the first conductivity measurements on normal liquid He.
The long-dashed curve corresponds to the smoothed re-
sults of Anderson, Salinger, and Wheatley. These mea-
surements extended to much lower temperatures and were
the first to exhibit the increase in thermal conductivity
with decreasing temperature, a characteristc of the
Fermi-liquid regime. Thermal equilibrium was a serious
problem in this experiment; presumably this explains the
very large deviations from the present measurements at
the lower temperatures.

The short-dashed curve shows the smoothed results of

Anderson, Connolly, Vilches, and Wheatley, who also
made measurements under pressure. The agreement be-
tween these and the present data is within the few percent
scatter in the earlier measurements, except near 60 mK,
where the two sets of measurements diverge. This depar-
ture at the low-temperature end of their range may be re-
lated to the difficulties which they experienced with their
carbon-resistance thermometers. It was reported that
these problems prevented them from extending their mea-
surements to lower temperatures.

The most-recent and lowest-temperature data (open cir-
cles) are due to Abel, Johnson, Wheatley, and Zimmer-
mann. Outside of the systematic differences, these values
are also in quite good agreement with the present work. It
is interesting that these deviations are similar in both
magnitude and temperature dependence to the relative
differences between the specific-heat measurements of
Abel, Anderson, Black, and Wheatley, ' and those report-
ed in Ref. 1 (see Fig. 16 of this reference). These two
pairs of experiments are based on the same respective
types of thermometry. However, possible differences in
the two temperature scales probably cannot be invoked to
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FIG. 9. Derivations from least-squares fits to the thermal-
conductivity data. Equation (6) was used below 50 mK, and Eq.
(7) above 50 mK. The numbers give the molar volume in cm .
The closed and open circles correspond to data obtained with
the apparatuses shown in Figs. 1 and 2, respectively.
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FIG. 10. Inverse of the thermal diffusivity plotted vs the
temperature. The diffusivity was determined using Eqs. (6) and
(7) for the thermal conductivity and Eqs. (7) and (8) of Ref. 1 for
the specific heat.
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entirely explain the discrepancies in both the thermal-
conductivity and specific-heat experiments. If, for exam-

ple, the two scales were simply related by a uniform shift,
then the relative differences for the two types of measure-
ments would be of opposite sign.

30
I

EXPERIMENT
~ —Abel etal.———Greytak etat.
~ —This work

PRESSURE ( bar)
2I I 5 9 6

I I I 1

C. Empirical equations describing the conductivity data

The curves drawn through the conductivity data in
Figs. 6 and 7 correspond to least-squares fits of the mea-
sured values, with both the temperature and molar volume
as independent variables. Below 50 mK the fitting func-
tion was

E 25—
C3
0)
th

20—

I-
l5—

Io—

Above this temperature the fitting was performed using
the expression

l =—2
j=o

b,q
VJT' . 0

24
I

28
I

30 32
V(crn')

34 36 38

I'he best-fit parameters are listed in Table III, and the rel-
ative deviations are plotted in Fig. 9. The rms derivations
are 1.0%%uo and 0.5%, respectively. Some smoothed values
of s., along with other derived quantities, are tabulated in
Table IV at several molar volumes corresponding to nomi-
nal sample pressures that are multiples of 5 bars.

The inverse of the thermal diffusivity, D, =zV/Ci, is
plotted in Fig. 10 for several molar volumes as well as
against temperature using Ci from Ref. 1. Since I /Dt is
approximately the thermal relaxation time for a sample of
linear dimension I, Fig. 10 can be used directly to estimate
these times. For l = 1 cm and P =0 the thermal time con-
stant is -0.2 sec at 1 mK (neglecting boundary resis-
tance), but —1000 sec above 100 mK.

D. Zero-temperature results

The conductivity results extrapolated to T =0 are plot-
ted as a function of molar volume in Fig. 11. The solid
circles are from fits of the data obtained at each molar

FIG. 11. Thermal conductivity of normal liquid He at T =0
K. Details are given in the text.

volume and at temperatures less than 50 mK using the
function

1/sT =a+bT+cT",
with n =2. Justification for this particular expression
will be given in Sec. III E. %e note that using n =3 or 4
worsened the fit and also considerably changed the b
values; however, the leading term remained unchanged to
within better than 2%%uo. A curious finding is that, to
within the precision of the measurements, xT

~ r 0 is a
linear function of the inverse of the density. The straight
line drawn in Fig. 11 comes from the more general fit, Eq.
(6), in which the data at all densities were treated simul-
taneously. (Smoothed zero-temperature values are listed
at several molar volumes in Table V.)

The solid square in Fig. 11 corresponds to the experi-

TABLE V. Smoothed zero-temperature parameters derived from the measured thermal conductivity.
The quantities ~„and U+ are based on m 3 values from Ref. 1. The quantity b is defined by Eq. (10).

P V PF Uy KT b
(bar) (cxn'/mol) (10 g cm/sec) (10' cm/sec) (erg/sec cm) (10 ' sec K ) (cm sec/erg K)

0
3
6
9

12
15
18
21
24
27
30
33
34.36

36.84
33.87
32.07
30.76
29.71
28.86
28.13
27.56
27.06
26.58
26.14
25.71
25.54

8.28
8.52
8.67
8.79
8.89
8.98
9.06
9.12
9.18
9.23
9.28
9.34
9.36

6.00
5.42
5.04
4.72
4.47
4.24
4.03
3.86
3.71
3.57
3.44
3.30
3.24

29.08
23.36
19.89
17.37
15.35
13.71
12.30
11.20
10.24
9.32
8.47
7.64
7.31

0.391
0.329
0.291
0.263
0.241
0.222
0.206
0.193
0.181
0.169
0.158
0.147
0.143

—0.42
—0.60
—0.78
—0.97
—1.19
—1.42
—1.69
—1.96
—2.26
—2.63
—3.06
—3.62
—3.89
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mental work of Abel, Johnson, Wheatley, and Zimrner-
mann, already discussed in Sec. IIB. The dashed curve
was drawn using the smooth values tabulated in Ref. 15,
which are based on the zero-pressure measurements of
Abel et al. , and on unpublished work under pressure by
Greytak, Johnson, Paulson, and Wheatley. At small mo-
lar volumes the dashed curve differs from the present
work by 40%, and at large molar volumes by only 20%.
Thus the discrepancy cannot be attributed solely to the
obvious possible errors, for example, in the thermometer
spacing determinations. The fact that the two sets of data
do not scale by a constant factor can be largely explained
if the density dependence in the experiment of Greytak
er al. was determined by simply measuring the conduc-
tivity at a given (but not-too-low) temperature. This is be-
cause the relative density dependence of vT grows with
decreasing temperature (Sec. III E).

The open symbols plotted in Fig. 11 corresponds to
theoretical values, all of which show reasonably good
agreement with experiment in both magnitude and density
dependence. In the s and p approximations of Dy and
Pethick' it is assumed that only s and p waves contribute
to the scattering. Consequently, the scattering amplitudes
for pairs of particles with parallel and antiparallel spins
can be written in terms of the Landau parameters F~".
The open circles are the s and p conductivities evaluated
by Tesanovic and Valls' neglecting Landau parameters
with I & 1 and using the values of Fo, Fo, and F', tabulat-
ed in Ref. 1. Fi was determined using the forward-
scattering sum rule, '

g (Ai'+Hi') =0,
1=0

where

(9)

~s, a
gS 6t I

1+F('/(2l + 1)

Again, only terms with I (1 were retained. (Fi'= —0.42
at P=0 bars; Fi ———0.24 at P =27 bars. ) The open
squares, which are in better agreement with the new rnea-
surements, are also s and p values computed' as above,
but with Fi determined' using the coefficient of the
T InT correction to the low-temperature specific heat.
(Fi ———0.55 at P =0 bars; Fi ———0.99 at 27 bars. ) The
circled pluses in Fig. 11 are conductivities determined us-

ing the paramagnon model. These values were taken from
the review paper of Levin and Valls, and were deter-
mined using the He effective mass from Ref. l. Also in-

dicated (open triangles) are the results of recent theoretical
work by Pfitzner and Wolfle. ' These calculations are
based on the polarization-potential approaches of Pines
and Bedell, and Aldrich and Pines, but modified to ex-
plicitly incorporate exchange symmetry.

E. Finite-temperature behavior

The various theories discussed in the preceding sections
are all ultimately based on the assumption that the quasi-
particle scattering takes place on the Fermi surface, and
therefore strictly apply only in the limit of zero tempera-
ture. At finite temperatures the energy transfer in quasi-

l2

IO

8
E
C3

0)

o

0
0

I

l5
I

50

T(rnK)

I

45

particle collisions must be taken into account. Emery
has shown that this implies, as a general feature of Fermi
systems, that ~„' is proportional to terms in T and T,
and consequently that 1/~T has the limiting low-
temperature form a+bT Since the .b coefficient multi-
plies T rather than T, as one might have presumed, there
is an explanation for the rather large departures of x from
1/T behavior observed (Fig. 6), even for a temperature
very small compared to TF. Figure 12 shows the experi-
mental data plotted as I/aT vs T to explicitly demon-
strate the consistency with the theoretically predicted
behavior. The smooth curves through the data were
drawn using Eq. (6) and the best-fit parameters given in
Table III. The straight dashed lines are extrapolations of
the inferred limiting temperature dependences. In Fig. 13
the slopes of these lines, that is, the extracted b coeffi-
cients, are plotted as a function of molar volume. Fitting
the data obtained with T ~ 30 rnK at each molar volume,
using the expression

I/aT =a +bT+cT (10)

yielded the values shown by the open squares. Including
data up to 60 mK and adding a term in T to the fitting
relation yielded the value shown by the open circles. The
uncertainties indicated correspond to standard errors.

FIG. 12. Thermal-conductivity data plotted as 1/~T vs T to
demonstrate the consistency with theoretical predictions. The
smooth curves were drawn using Eq. (6); the straight dashed
lines are extrapolations of the very-low-temperature behavior.
Data taken using the cells shown in Figs. 1 and 2 are indicated
by the open and closed circles, respectively.
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FIG. 13. Coefficient of the linear contribution to 1/sT [see
Eq. (101].
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The smooth curve through the points corresponds to the
fit (Sec. III C) in which the data at all densities were treat-
ed simultaneously.

At P=O, comparison can be made with the results of
Abel et al. , who determined that —b/a=6. 3 K '. Our
corresponding value is 12.2 K '. Since the data them-
selves differ (Fig. 8) quite uniformly by 10%, the explana-
tion for the serious disagreement between these two num-
bers must be largely in the data analysis. In the older
work, and consistent with the precision of those measure-
ments, the data obtained below 30 mK were fitted using
only the first two terms in Eq. (10). However, in the
present work, the data have an order of magnitude greater
precision and require the inclusion of the term in T2 to
adequately fit the data over the same temperature range.
The curvature in the low-temperature data (Fig. 12),
which increases with increasing density, then explains the
larger —b/a value estimated from the present measure-
ments.

The experimentally determined, leading finite-
temperature correction to the conductivity can, in princi-
ple, be compared with theoretical values using the expres-
sions derived by Dy and Pethick. ' These expressions,
however, are not in analytic form and have not yet been
evaluated using the Landau parameters of Ref. 1.

tween v„and a. Experimentally, it is observed, however,
that the finite-temperature corrections to the specific heat
are already detectable at temperatures of the order of 10
mK, particularly at the higher pressures. Consequently,
at least part of the T contribution to 1/aT is attributable
to the T lnT contributions to Cz. We ask if it is not pos-

IO 2
I I I I I I I

I
I I I I I I I

IO 3

E
IO-~

O
CL

IO

E

T(rnK )

FIG. 14. Values of 1/~„T extracted from the thermal-
conductivity data (see Sec. III F).

F. Scattering time at finite temperature

Thus far the analysis has been concerned directly with
the quantity experimentally measured, i.e., the thermal,
conductivity. However, the more fundamental parameter
connected with this transport property is the scattering
time v.„. In fact, it is the finite-temperature corrections to
~„which actually have been determined theoretically.
Certainly, at sufficiently low temperatures Cz is propor-
tional to T and there is no ambiguity in the relation be-

IO-6

IO 7
lo

T(mK)
IOO

FIG. 15. Quasiparticle mean free path defined by the product
of w„(T) from Eq. (11)and v+(T) from Eq. (13).



4944 DENNIS S. GREYWALL 29

TABLE VI. Parameters resulting from least-squares fits of 1/~„T extracted from thermal-
conductivity and specific-heat (Ref. 1) data using Eq. (14). The parameter a, was not adjustable {see
text).

V
(cm mol)

36.67
32.83
30.33
27.65
26.27

(10' /secK )

2.58
3.26
3.94
5.13
6.18

b,
(10' /secK )

—36.2
—46.9
—68.3

—120.0
—172.0

(10"/sec K )

—177.0
—102.0
—272.0
—652.0

—1130.0

0
(K)

0.38
0.30
0.61
0.41
0.33

rms
deviations

(Vo)

0.29
0.64
0.41
0.43
0.44

2 2
„( )

v A' 3ir X
RT ir2It~ V

which leads to the expression

UF( T) =pF /I i ( T)

(12)

(13)

used in this analysis.
Figure 14 shows the inferred. values of 1/r„T plotted

against the temperature. Figure 15 shows the quasiparti-

sible that most of the T contribution be from this source,
and extract ~ values by combining the conductivity data
with smoothed specific-heat results.

Rearranging Eq. (2), we have

1 VF Cy 1.
2

&„T2 3V T trT

The conversion from tr to r„, therefore, would be straight-
forward were it not for the factor UF, since the specific
heat is not strictly proportional to T there is uncertainty
in how to determine vF at finite temperatures. According
to recent theoretical work, the deviation of the
specific heat from a linear temperature dependence should
be interpreted in terms of a temperature-dependent aver-
age effective mass. Referring to Eqs. (3) and (5), this
mass can be defined by

cle mean free path defined by UF(T)r„(T) In b.oth figures
the solid curves are based on the smooth conductivity
values, Eq. (6).

The fact that curvature remains in the data as plotted
in Fig. 14 means that higher-order contributions to
1/r„T are indeed important, even at relatively low tem-
peratures. Although these terms have not been studied in
detail theoretically, they are thought to be of the form
T lnT. We have tested the data for consistency with this
expectation by fitting the results obtained below 60 mK
using the expression

1/r„T =a,+b,T+c,T ln(T/8, )

The parameters b„c„and 8, were adjustable; a, was
fixed using values of ~T

~ z 0 from Eq. (6) and
Cv/T

~
z. o from Eq. (7) of Ref. 1. The best-fit parame-

ters are listed in Table VI. It is interesting that 8, has a
value of about 0.4 K; from an analysis of the T~lnT con-
tribution to Cv/T it was determined that the characteris-
tic temperature ranged from 0.46 K at P=0 bars to 0.22
K at P=30 bars.
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