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Particle-hole excitations in normal liquid He
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The dynamic form factor S(Q,E} in liquid 'Hc is evaluated in the momentum-transfer range
0

2 & Q & 5 A ' for comparison with neutron scattering measurements. In this momentum range the

neutrons excite chieAy interacting single particle-hole (p-h) excitations but no collective excitations.

S(Q,E) is calculated within an extended random-phase approximation (RPA) Rnd the single p hcn--
ergy spectrum and p-h interaction needed in the RPA is provided by the Galitskii-Feynman-

Hartree-Pock (GFHF) theory of hquid He. The GFHF is a first-principles theory having no ad-

justable parameters with only the pair interatomic potential as input. Comparison with experiment

sllggcsts tllat tllc cxcltatlolls Rt Q =2 A Rlc well described by R slllglc p-h cxcltatlo11 spcctru111

having effective mass m =1, a strongly negative spin-symmetric p-h interaction and a nearly zero
spin-antisymmetric interaction. This comparison also suggests that the p-h spectrum is we11

represented by the GFHF spectrum, the real part of the interaction by the Galitskii-Feynman (GF)
T matrix, but that the imaginary part of the GF T matrix is too large.

I. INTRODUCTION

Neutron scattering studies have provided exciting
new information on the collective and elementary excita-
tions in normal liquid He. These measurements observe
a dynamic form factor S(Q,E), which is a sum of scatter-
ing from the density excitations and from the spin-density
excitations. At wave-vector transfers Q &1.5 A ', the
observed dynamic form factor shows a two-peak struc-
ture. Thc peak at lowcI' cncI'gy E ls ldcnt1f1cd as a
"paramagnon"-like resonance in the spin-density com-
ponent, while the peak at higher energy is identified with
the zero-sound mode in the density excitation extending

up to Q-ky. At Q & 1.5 A ', both peaks disappear and
the observed S(Q,E) is characteristic of scattering chiefly
from interacting single quasiparticle-quasihole excitations
in both components. To date, the measurements have
been confined to Q & 2.5 A

Several models ' ' have been developed which
describe the shape of S(Q,E) well. The most successful is
the polarization-potential theory of liquid helium
developed by Aldrich and Pines which provides a de-
tailed description of S(Q,E) for Q &2 A '. The inter-

play between this theory and experiment has led to the
development of phenomenological polarization potentials
which have been successfully used to describe quite in-

dependent properties, ' such as transport coefficients'
and the superfluid transition temperature. ' At low Q,
Glyde and Khanna ' obtained good agreement with the
observed S(Q,E) using a simple quasiparticle-hole in-
teraction that is a straightforward extension of Landau
theory to finite Q and E This exten. sion was proposed by
Babu and Brown. ' Yoshida and Takeno, " with the use
of the memory function method and astute use of sum
rules, obtained csscntia11y the same interaction as used by

Glyde and Khanna and similar results for S(Q,E). The
spin-dependent part of the scattering does, however, seem
best described by the simple pararnagnon model employed
by Beal-Monod, using an effective mass m*= 1 and a
single interaction parameter.

In this paper we present a calculation of S(Q,E) at
higher wave-vector transfer, 2&Q&5 A '. At these Q
values we expect the neutrons to excite only single
quasiparticlc-hole excitations with a possible coupling to
multiparticle-hole states via the quasiparticlc interaction.
To describe normal He we use the Galitskii-Feynman-
Hartree-Fock (GFHF) theory, ' which has been applied to
the ground-state properties of both normal and fully
spin-polarized He. ' This is a first-principles theory
which has as input only the pair interatomic potential. In
the present application the quasiparticle (hole} states will
be approximated by the GFHF single-particle energies
(SPE's) and the quasiparticle interaction by the GF T ma-
trix. The aim is to explore S(Q,E) at higher Q, and to
test how well the GFHF theory describes the dynamics of
He at Q values where the liquid does not support collec-

'tlvc cxcltatlons.
The S(Q,E) to be calculated is related to the corre-

sponding dynamic susceptibility X(Q,E) by

Qp
S(Q,E)=— [n (E)+1]ImX(Q, E),

where n (E} is the Bose function and Qo is the volume per
atom. Takeno and Yoshida have shown that the full

X(Q,E) of a liquid, quantum or classical, can, quite gen-
erally, be expressed in the form

( E) X (Q,E)
1 —I (Q,E)X'(Q,E)
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This is the form used by Aldrich and Pines and by
Pathak and Lucke. ' Here X (Q,E) is the dynamic sus-

ceptibility of a reference system of noninteracting parti-
cles satisfying the same statistics as the liquid particles.
All the interaction effects are incorporated in I (Q,E),
which is, in general, complex and includes moments of the
memory function. Here, we represent X by the Lindhard
function

1 n (k) n—(k +Q)
0 k E —[e(k +Q) —e(k)]

with the e(k) given by the GFHF single-particle energies.
Our reference system is therefore a system of noninteract-
ing fermions having complex Hartree-Fock energies. The
interaction I (Q,E) is represented by the GF T matrix
which is also complex. Equation (2) reduces to the stan-
dard random-phase approximation (RPA) if the e(k) are
free-particle energies and I'(k) is the Fourier transform of
the interatomic potential. Equations (2) and (3) can there-
fore be viewed as an extended RPA using HF energies and
the bare interaction replaced by a T matrix. The broad
aim of our work is to see how well S(Q,E) is described
using the GFHF e(k) and the T matrix with a X(Q,E)
given by (2).

Why might the GF T matrix represent the full
quasiparticle-quasihole (qp-qh) interaction I (Q,E) well in
the range 2&Q&5 A '? Firstly, the full interaction is
often separated into a direct and an induced part. The
induced part corresponds to the interaction between a qp-
qh pair induced via the density and spin-density fluctua-
tions. Since the liquid does not support observable density
or spin-density excitations at Q) 1.5 A ', we expect the
induced component to be small at large Q. Secondly, the
energy transfers at Q)2 A ' are large, substantially
larger than the depth of the attractive well of the pair po-
tential (= —10 K). Thus the interacting quasiparticles
should be chiefly affected by the steeply repulsive hard
core of the potential with the attractive well playing a
much smaller role. The direct i.nteraction should there-
fore be predominately pair wise via the repulsive hard
core of the potential, an interaction well described by a T
I11atflx.

In the next section we outline the form of S(Q,E) and
the ingredients of the GFHF theory. The results are
presented in Sec. III and discussed in Sec. IV.

A. Dynamic form factor

The inelastic scattering cross section observed when
neutrons scatter from liquid He is proportional to

S(Q,E)=S,(Q,E)+ SI(Q,E) .

Here, IIIQ(E) is the momentum (energy) transferred from
the neutron to the liquid in the scattering, and o, (o.;) is
the coherent (incoherent) scattering cross section. We use
o, =4.9 b (Ref. 24) and the ratio IT;/o, =0.25, which is
co s'st twithdi t es t f; a d thth
inelastic scattering results of Skold and Pelizzari. In (4),

S.(Q,E)= ' I«.'"" '—«(Q, r)« -Q, 0)&

is the usual coherent dynamic form factor depending
upon the Fourier component p(g, t) of the particle densi-
ty, and

S,(g,E)= I dr e'E""
M I+1

X(1(Q,I) I( —g,0) &

is a spin-dependent counterpart depending upon the
Fourier component,

I(Q, t)= g IIe
I

of the spin density. If the spins are independent, Sl(Q,E)
reduces to the usual incoherent dynamic form factor.

S,(Q,E) is related through (1) to the Fourier transform
of a density dynamic susceptibility defined as

X,(Q, I)= i —( [p(g, t)„p( —Q, O)] &,

where 8(t) is the Heaviside step function and [, ] are the
commutator square brackets. The Sl(Q,E) is similarly re-
lated to a spin susceptibility,

X (Q, I)= —' ( [l(Q, I),1(—g, 0)]& .
flQ

(7)

Tllc X~ (Xl ) arc 111 turn glvcll by tllc gcIlclal foHI1 (2) 111

terms of the spin-symmetric (spin-antisymmetric) interac-
tion I '= —,

' (I"+I")[I'= —,
' (I"—I")]as

X( E)=
1 —I "(Q,E)X (Q,E)

where X is given by (3).
Clearly, if I"=I"=0, then both S, and Sl reduce to

the noninteracting Fermi particle form

So(Q,E)= — [n (E)+ 1]ImX (Q,E) .

Ill 'tllls case, fl'Gill (3), tllc lncomlng Ilclltlon cxcltcs a 8111-

gle particle in state e(k) with the Fermi sea to a state
e( k +Q) above the Fermi sea. The neutron, which
transfers a momentum A'Q and energy E to the liquid,
thereby creates a particle-hole pair having a momentum
difference of Ilig and an excited energy
E=e(k+Q) —e(k). As noted in the Introduction, the
e(k) is given here by the GFHF-SPE spectrum.

When the p-h interact, X is given by (8), and here the
interaction between the particle a,nd hole is represented by
the appropriate spin-dependent GF T matrix.

B. GFHF theory

The GFHF theory is developed in several texts, ' and
has been discussed in detail for liquid He recently.
Briefly, it begins with N noninteracting He atoms (fer-
mions) in a box of volume Q. Here, we set the density at
the observed value of He at saturated vapor pressure,
Qo ——36.83 cm /mole. The interaction between the atoms
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via the pair potential is then included to first order. This
leads to the Hartree-Pock approximation. The interaction
between pairs via the pair potential is then summed to al1
orders. This summation is formally effected by replacing
the Fourier transform of the pair potential by a complex
and energy-dependent T Inatrix leading to the GFHF ap-
proximation. The GF T matrix depends upon the HF
SPE «(k), and «(k) depends upon the T matrix. The T
matrix and «(k) must therefore be evaluated iteratively
until consistent. After the iteration, we renormalized the
self-consistent T matrix by zk, where
&k = [1—B«(k,E)/BE] ls tllc 1cslduc of tllc slllglc-
particle Green function at the quasiparticle pole. In
liquid He we found zk=0. 6 independent of k in the
range 1(k (2.5 A ' of interest here. The renormalized
ski"'(Q, E) should be the most appropriate interaction to
use with a Hartree-Fock-like g .

For the pair potential we have used interchangeably the
Beck and HFDHE2 potential of Aziz et al. For the
present S(Q,E) there is no significant difference between
the two, although the GFHF ground-state energy of spin-
polarized He is lower by -0.2 K using the Aziz et al.
potential.

In general the T matrix, I'(f 12,kl4, P;E), depends upon
the relative incoming momentum of the interacting pair

1
—+ —+

k~z ———,(kl —k2), the relative outgoing momentum of the
Ipair k34 ———,( kl —k4), and the c.m. momentum

P =—,
' (kl+ kl). In an RPA-like form (2), the relative in-

commg and outgomg moInenta are the same, k34 ——k~2.
Also, Q =kl —k2 ——2klz ls the momentum difference of
the interacting qp-qh pair. %e chose I' =0 rather arbi-
trarily. The I"' in (8) then reduces to I"(Q,E) with

Q =2k)l.

III. RESULTS

The GFHF single-particle energy (SPE) spectrum «(k)
is shown in Fig. 1. This is the final «(k) obtained by

iterating the GF T matrix and «(k) until consistent. This
«(k) gives a ground-state energy of —3.1 K at Qo ——36.83
cm /mole. In Fig. 1 we see that the Re«(k) is shifted
downward, due to the net attractive interaction between
the atoms, from the original noninteracting kinetic ener-

gy, «(k)=A' k /2M. The real Re«(k), however, has the
same general dependence on k as «(k), except for the
constant shift to lower energy and has an effective mass
of m*= 1, independent of k. Thus we expect the differ-
ence «(k+Q) —«(k) appearing in I to be approximately
the same for Re«(k) as for «(k). The «(k) has, however,
an lmag1Qary part whj. ch wc expect to spread g over a
wider energy range.

In Fig. 2 we show X (Q,E) at Q =2 A ' calculated us-
ing the GFHF «(k) and using the free particle «(k).
Firstly, the position of g (Q,E) on the energy axis E is ef-
fectively the same in both cases. This tells us that the "ef-
fcctlvc Illass associated with Rc«'(k) ls llldccd m 1.
Secondly, the chief difference is that the 7 calculated
with the GFHF «(k) is reduced in intensity at the peak
and is spread over a wider energy range due to the iIna-
ginary part of «(k). Otherwise, the two X are very simi-
lar.

In Flg. 3 wc sllow thc S (Q,E) fol Q =2 A givell by
(9), calculated using a purely free-particle energy spec-
trum, «(k)=A' k /2m*, for three arbitrary choices of the
effective mass m*. The purpose of Fig. 3 is to demon-
strate that by simply adjusting the effective mass m* it is
not possible to find an S (Q,E) to fit the observed data of
Skold and Pelizzari. Even at high Q (Q) 2 A '), an in-
tcrparticlc interaction is clearly cvidcnt in thc observed
S(Q,E). A qp-qh interaction I is needed in (8) to change
the shape of S(Q,E) from S (Q,E) to the shape observed.

Figure 4 shows the GF T-matrix interaction I'(Q, E) at
Q =2 and 5 A ' as a function of energy E. There we no-
tice that the spin-aniisyrnmetric interaction I is small,
both in terms of the real and imaginary parts. This means
that the spin-dependent SI(Q,E) will differ little from
So(Q,E). The spin-symmetric I"(Q,E), however, is large

kd 0I

l

0.0

"o
i z

k(k )

FIG. 1. GFHF single-particle energy spectrum e(k) in liqmd
3He; e (k)=A' k /2M.

0 l.5 3.0 4.5 6.0 75
E (meV)

FIG. 2. Dynamic susceptibility p (,Rcp;
Imgo) for nonintcracting fermions (3) calculated using both free
(FREE) panicle energ1cs ~'(k)=A'k'pe and thc eFHF
si.ngle-particle energies (HF). +0 is divided by
dn/d«=m*k~/(m A ), the density of states per unit volume at
6'p using Pl =3.1M. Eg 1s thc fIce-partlclc Icco11.cnclgy.
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from So(Q,E) because I' is small. Also, S, is indeed
shifted to lower E due to the negative value of ReI". The
ImI' serves to lower the intensity in the peak region of
S,(Q,E) and extend it to higher E values. The impact of
I"on S, is reduced somewhat at the higher Q values.

In the upper half of Fig. 6 we compare the total
S(Q,E) calculated from (4) with the observed values of
S(Q,E) obtained by Skold and Pelizzari. In this compar-
ison there are no free parameters and the measurements
provide an unadjusted value of S(Q,E) in meV '. From
the upper part of Fig. 6 we see that the calculated intensi-
ty is too small by a factor of 2 in the peak region, and the
calculated S(Q,E) reaches up to higher energies, than is
observed. However, an interaction of approximately the
magnitude of zk Rel'(Q, E) is clearly needed to shift
S(Q,E) into the energy range needed for agreement with
experiment. In the lower half of Fig. 6 we show the
S(Q,E) obtained by setting the imaginary part of the in-
teraction equal to zero, ImI'(Q, E)=0. This agrees very
well both in magnitude and in energy scale with the ob-
served S(Q,E). This suggests that the zk ImI"' given by
the T matrix is too large, but that the real part of I" has
both the correct sign and magnitude.

In Fig. 7 we compare our calculated S(Q,E) with the
scattered intensity observed by Stirling et al. at a con-

0.8-
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FIG. 7. S(Q,E), as in Fig. 6, compared with the scattering
intensity observed by Stirling et al. (Ref. 2) at constant scatter-
ing angle /=84'. The corresponding Q value for this P is
shown as a function of E at the top of the graph.

~O
0 — o ~

0 I

e e0

~ 0.2—
«3
(A

0- ."~~

~y

I

3 4
E(meV)

—ST
EXPT,

a=2.0A ~

Irn I =0

I

5 6 7 8

stant scattering angle of 84'. In a constant-angle measure-
ment, Q varies somewhat with energy transfer as shown
at the top of Fig. 7. The observed intensity is also deter-
mined within an unknown constant only, so that the cal-
culated S(Q,E) can be adjusted relative to the observed
intensity by a single overall constant. In the upper half of
Fig. 7 we see that the calculated S(Q,E) fits reasonably
well, but is broader than the observed intensity. While a
constant-Q scan is somewhat broader than a constant-
angle scan, the calculated S(Q,E) is definitely broader
than the observed intensity mould be if converted to a
constant-Q mode. Also, S(Q,E) peaks at a somewhat
lomer energy than the observed intensity. In the lower
half of Fig. 7 we see the S(Q,E) calculated with the ima-
ginary part of the T matrix set to zero agrees extremely
well with the observed intensity. Again, this suggests that
the real part of the T matrix represents the p-h interac-
tion well, but that the imaginary part is too large.

0 I 2 3 4 5 6 7 8
E(~eV)

FIG. 6. S(Q,E) calculated using the GF T-matrix interac-
tion and GFHF single-particle energies: upper half, the full T
matrix is retained; lower half, the imaginary part of the T ma-
trix is set to zero. The points are the observed values of Skold
and Pelizzari (Ref. 4).

IV. DISCUSSION

From Fig. 5 we see the coherent S,(Q,E) calculated
with the GF T-matrix interaction peaks at a lower energy
than the noninteracting So(Q,E). Since S,(Q,E) dom-
inates the total S(Q,E), the total S(Q,E) also peaks at a
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lower energy than So(Q,E). At Q=2 A ', where there is
data for comparison, Figs. 6 and 7 show that this peaking
at lower energy is needed to obtain agreement with experi-
ment. In an RPA-hke theory at least, a negative interac-
tion (I ) makes S(Q,E) peak at a lower energy, while a
positive interaction pushes S(Q,E) up to higher energy.
The comparison with experiment in Figs. 6 and 7 there-
fore broadly confirms that I"(Q,E) should be negative, as
shown in Fig. 4, and of approximately the magnitude
zkI '(Q, E) given by the GF T matrix.

The zt, l"(Q,E), on the other hand, is so small that
SI(Q,E) differs little from the noninteracting So(Q,E).
Since it is impossible at present to isolate St(Q, E) from
the total observed S(Q,E), it is not possible to confirm or
refute whether the T-matrix approximation to zkI"(Q,E)
is approximately correct or not. However, if I'
= —,'(I"—I ") is indeed small in the range 2& Q &5
0
A ', then this suggests that the interaction is dominated
by the hard core of the potential, with Fermi statistical
repulsion arising from the Pauli principle (in I'", but not
in I") playing a relatively minor role.

In the range 2& Q &5 A ', the observed S(Q,E) in
liquid He (Refs. 27 and 28) and in solid He (Refs. 29
and 30) also peaks below that expected for scattering from
free particles, i.e., below the recoil energy Ez ——R Q /2M.
This suggests that there is something common in the in-
teraction between the helium atoms in all these systems
independent of the statistics and the phase. That is, the
difference in statistics between liquid He and He ap-
parently does not play a major role, as has been proposed
at all Q by Pines, ' nor does any difference in the collec-
tive excitations between the solid and the liquid apparent-
ly have a major impact on the interaction in this energy
and momentum range. The common feature is, of course,
the bare potential, and the total interaction is therefore
apparently dominated by the "direct" component via the
bare potential at large energy transfers. This component
should be well approximated by a T matrix in this
momentum range. The chief disagreement with experi-
ment is that the calculated S(Q,E) is too broad, indicat-
ing that the imaginary part of the T matrix [and possibly
of e(k)] is too large.

In Fig. 8 we show the "on-energy-shell" GF T matrix,
I'(k, E), where k = —,'(k& —k2)= —,'Q is the relative in-

coming momentum of the two particles, and
E =@(k~)+e(kz) is the on energy shell [with the c.m.
momentum I' =0, E =2@(k)]. Also shown in Fig. 8 are
the effective interactions determined empirically by Al-
drich and Pines, by Glyde and Khanna, and the interac-
tion calculated by Krotscheck, ' using the method of
correlated basis functions (CBF's). These latter effective
interactions are selected expressly for use in an RPA-like
form (2) to calculate S(Q,E) or the static structure factor
S(Q) with emphasis on accuracy at low Q. Indeed, the
interaction U(Q) by Krotscheck is obtained by calculat-
ing S(Q) using the CBF method and determining U(Q)
from U(Q) = ( E~ /2) [S (Q) —So (Q)]. The Aldrich
and Pines interaction is determined in a similar spirit
from the difference between the observed S(Q) and the
noninteracting Fermi gas So(Q). The Glyde and Khanna
interaction was determined by using the observed Landau

I I
I

ZO

0
l (~)

I

0.8

k(A )

I

2.4 4.0

FIG. 8. On-energy-shell spin-symmetric GF T matrix,
I'[k, e(k)]: (l) Beck potential (Ref. 25) and (2) HFDHE2 poten-
tial (Ref. 26) (,ReI'; ———,ImI'). The static part of
(a) the empirically determined potentials of Aldrich and Pines
(AP and of Glyde and Khanna GK), and (b) the potential calcu-
lated by Krotscheck (E) using the CBF method is also shown.
Here, k =Q/2.

parameter Fo (at Q=0) and invoking sum-rule argu-
ments. These interactions correspond to the high-
frequency limit of the full interaction including induced
contributions (the I"discussed by Abrikosov et al. ) and
should be valid at low Q. At Q&2. 5 A ', where
S(Q)=So(Q) =1, the U(Q) defined above must vanish.

On the other hand, we expect the T matrix to represent
the full interaction in (2) at high Q, but to be inappropri-
ate in (2) at low Q, where induced contributions dominate.
The T matrix is the interaction which enters the GFHF
ground-state energy and must remain negative at low Q in
order to obtain a bound liquid. It is not the same effective
interaction as the AP polarization potentials or the U(Q),
and was not designed for use in (2). It does not, for exam-
ple, contain induced interactions and is not the high-
frequency limit of the full interaction. However, at suffi-
ciently high Q we expect induced interactions to be rela-
tively unimportant, and expect all effective interactions to
reduce approximately to the T matrix. From Fig. 4 this
T-matrix interaction is still highly energy dependent. In
this sense, the T matrix and earlier interactions comple-
ment each other, and are valid in different momentum-
transfer ranges.

Finally, use of the form (2), with a T-matrix interaction
and a Hartree-Fock e(k), essentially excludes any scatter-
ing from multiparticle-ho1e excitations. %hile the neu-
tron creates single p-h excitations, coupling to
multiparticle-hole (mp-h) excitations via the p-h interac-
tion is possible. We find the present S,(Q,E) takes up ap-
proximately 85% of the f sum rule independent of Q in
the range 2& Q & 5 A '. This suggests that the mp-h
component, neglected here, accounts for approximately
15% of the total S, (Q,E). This is consistent with the cal-
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culations of Aldrich and Pines, and of Skold and Peliz-
zari at lower Q. On the other hand, the St(Q,E) and

So(Q,E) exceed the f sum rule by approximately 10%,
when the GFHF e(k) spectrum is used. An improved
theory should include mp-h excitations, although this is
unlikely to improve agreement with experiment in the
present case. It would also be interesting to see whether
including induced interactions would reduce ImI .
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