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Binding of 3He in He films
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We present for the first time a calculation of the binding of 'He to films of He. We follow a
variational procedure which has been used successfully for calculating the binding of He to the sur-
face of bulk He. Our main modifications consist of the inclusion of the substrate van der Waals
field as a local pressure within the film and as an attractive tail in the vacuum region above the sur-
face. We compare the solution for the bound-state energies with experimental results for films and
find reasonable agreement for the binding energy. Our calculation and experimental results suggest
that models of He in films of He, where the He is assumed to be in a continuum of three-
dimensional states, are not strictly correct.

I. INTRODUCTION

When He is added to liquid He, it is energetically
favorable for the He to reside in a state localized at the
liquid-vacuum interface. The first observation of this
phenomenon came from measurements of the surface ten-
sion. ' These measurements showed a decrease of the sur-
face tension at low temperatures when the surface state
become appreciably occupied with He. The correct inter-
pretation of these data was provided by Andreev, who
suggested the existence of such a state for the He. There
have been a number of experiments since then which have
shown that at the bulk surface a single state exists at an
energy of 2.22 K below solution into bulk He. The He
in this state behaves very nearly as an ideal two-
dimensional (2D) Fermi gas of quasiparticles with an ef-
fective mass about 1.5 times the bare mass m3. The ex-
perimental as well as the theoretical situations have been
the subject of a recent review.

In the case of films of He, it has been found that the
He is still bound at the free surface, but its behavior is

more complicated. It is found, for instance, that the bind-
ing energy is a strong function of the two-dimensional
He density, and that for sufficiently thin films, the He

at the surface separates into a dense phase. More de-
tailed discussion of these observations is planned to be the
subject of other publications. In this paper we want to
present an extension of a theoretical model to represent
the zero-coverage limit for He in films of He. In the
case of bulk He this model has been applied successfully
to calculate the binding energy for He at the free surface.
This is a variational calculation which follows an ansatz
due to Feynman. It was applied to He with a free sur-
face by Lekner, who showed that the solution for the He
bound states can be reduced to a one-dimensional
Schrodinger equation with an effective potential. Saam
was the first to construct such a potential and solve for
what turned out to be a single bound state. More recently,
Mantz and Edwards have improved on this calculation
by incorporating in the effective-potential information
from atomic scattering at the surface' and adding the
liquid-surface —He-atom van der Waals attraction for the

II. THEORY AND THE EFFECTIVE
POTENTIAL

Lekner was the first to extend the variational theory of
Feynman to the case of He with a free surface. In this
theory the wave function describing one He atom at r&

and X —l He atoms at r2, r 3, . . . , rz is written as
' 1/2

f(r), , riv)=f(r)) Qp(r), . . . , r~), (1)
p(r, )

where Po is the ground-state wave function of the ~He

atom, po is the bulk He density at zero pressure, p(r&) is
the local density, and P(r&) is a function to be varied to
achieve the minimum energy. This minimization results
in a one-dimensional Schrodinger-like equation, which for
the liquid surface as the x-y plane is given by

d P(z)) + V3(z) )p(z) ) =e$(z) ) .
2m 3 dz ~

(2)

The effective potential for the He, V3(z), is given in
terms of the ground-state properties of the He. Motion
of the He in the x-y plane remains as that of a free parti-
cle.

vacuum region above the surface.
We show in this paper that this theory can be extended

to the case of He films by incorporating the effect of the
substrate's van der Waals field in the effective potential.
When we solve for the bound states in this potential, we
find a discrete spectrum with only a few states. This is in
contrast to models which have often been used for He in
He films, where it has been assumed that the He in the

film is in a three-dimensional continuum. "' We com-
pare the results of our calculation with results of our ex-
periments extrapolated to zero He coverage. These are
measurements of heat capacity for helium films formed
on Nuclepore filters. ' We find numerical agreement for
the binding energy, the energy difference between the
ground state and the first excited state, to roughly the
same precision as has been found for the calculation of
this energy for the bulk surface.
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Saam was the first to construct V3(z) and obtain a
solution for the energy e. More recently, Mantz and Ed-
wards9 (ME) have redone this calculation and incorporat-
ed in V3(z) experimental results for p(z) obtained from
scattering experiments. These authors also include the
proper asymptotic behavior of V3(z) in the region of the
vacuum. They find @=4.64 K, in quite good agreement
with the experimental result of 5.00+0.03 K.

Following the notation of ME, the effective potential
can be written as

V3(z& ) = —L4+
2%i 3 lt Zl

m4 —1 t(zl ),
m3

(3)

where a(z)=[p(z)/po]'~, L4 is the latent heat at zero
temperature, and t(z} is the kinetic energy per particle in
the 4He ground state. This quantity can be constructed by
observing the asymptotic behavior of V3(z) in the vacuum
and in the liquid regions, and assuming, as was pointed
out by Saam, that in the region of the surface changes in
t(z) stem mainly from density variations. In the liquid
region just below the surface t(z) is related to properties
of solutions of He in He. These two approaches for
t (z), from the liquid and the vacuum sides, join smoothly
through the surface region and with the first term in Eq.
(3) provide the potential which binds the He at the sur-
face of bulk He.

To extend this calculation to He in a film of He, one
must incorporate in V3(z) the influence of the substrate
van der Waals field, which is responsible for the forma-
tion of the film. This field, to the extent that the He is
concerned, reflects itself in three ways. In the vacuum re-
gion a He atom, instead of seeing just the van der Waals
attraction from the He surface, is also affected by that of
the substrate. This gives a more attractive tail to V3(z) in
the vacuum. In the surface region, the He density profile
is modified, hence the "well" region of the potential is
changed. More importantly, however, in the liquid region
of the film there is an increase of the local pressure as one
approaches the solid substrate. This reflects itself in a
repulsive, hard-core —type region for V3(z) which is not
present in the bulk-surface case. This feature, of course,
affects most strongly the spectrum of excited states avail-
able to the He. The spectrum becomes a discrete set of
2D states as opposed to the continuum of three dimen-
sional (3D) states available in the liquid region for the
.bulk-surface case. We describe now how we have con-
structed V3(z) and solved for the energy spectrum. We
have done this for three films of thickness equal to those
we have studied experimentally.

A. V3(z) for films of 4He

To construct the effective potential, we have treated the
liquid-film region and the surface-vacuum region
separately, and then joined the potential in a smooth way.
This is similar to, but a bit different from, what is done
for the bulk surface case. We consider the liquid-film re-

gion first. Following ME, we write V3(z) as

V4(zl) = —1.4
217l4 Q(zl )

and the exponent n is related to properties of He and di-
lute mixtures of He in He. Equation (4) can be taken as
valid in the whole region of the surface, even though the
a "(z) term is strictly applicable to the liquid region just
below the surface. The point is that this term becomes
rapidly negligible as one goes into the low-density region.
Here, the a "(z) term dominates. All the terms in Eq. (4)
are functions of pressure, which we calculate as follows.
We consider the film as a uniform fluid and use the rela-
tionship between the pressure P and the substrate's van
der Waals potential U,"

—U dP=dU.

We have parametrized the variations of the molar volume

U as a polynomial in I' and integrated Eq. (6) to obtain

r

p3 9 37p2+ l 85 ~ lp4p 9 59X l07
Z3 d3

(7)
where P is in units of atmospheres and z and d are in A.
The pressure is made to go to 0 at z =d, the liquid sur-
face. To relate to the experimental value of d, ' we note
that experimentally the film thickness is determined from
the amount of He condensed and the adsorption area
available. Experiments indicate that the first layer, a
solid, forms a thickness of about 3 A, and that subsequent
helium atoms form a fluid film at very nearly the bulk
density. ' This is not strictly self-consistent with a densi-
ty which varies as a function of position from the sub-
strate, but is a reasonable approximation when consider-
ing just the determination of the film thickness. We will
refer to this as the nonunal thickness and identify this as
the d of Eq. (7).

With the pressure variation of the film known from Eq.
(7), the dependence of L4, E3, and a on z can be input in
Eq. (4}.' For the exponent n, we have found that it
varies by only 6% in the range of pressures up to 20 atm.
We have taken this number as a constant. The potential
which results from this calculation is shown in Fig. 1 for
the case of two films, d =13 and 21.8 A. The rise of the
potential as one approaches the solid substrate at z =0 is
due mainly to the decrease in 1.4 with pressure. Near the
free surface, where the pressure goes to 0, the potential
approaches —E3 ——2.78 K. This is the energy of the
lowest state for He in bulk He at zero pressure.

To construct V3(z) through the surface region and in
the vacuum, we must know the density profile at the free
surface. We have taken a (z) to behave as a Fermi func-
tion

u(z)= I/(e "+1)
The function p (z) determines the sharpness of the surface,
and, as used by ME, contains parameters p, A, , y, and 5,

V (z, ) = V (z, )+(L —E)a "(zl),

where

(4) p(z) =pz+y+ (z'+6')
4

Among these parameters, y= —2.5 and 6 =8.5 A are
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FIG. 1. He effective potential in the liquid region for films
with nominal thickness of 21.8 and 13.0 A. The substrate is at
z =0. The nominal thickness is indicated by the shaded vertical
lines.

fixed by fitting data from the elastic scattering experi-
ments of He atoms at the liquid surface. ' The remain-
ing parameters are fixed by requiring that in the region
above the surface V4(z) have the van der Waals form

cxo
V4 ———

Z3
' (10)

0
in units of A

For the case of a film of He, taking the origin at the
solid substrate, we have written p (z) as

p(z) =P(z —d)+y+ j [(z —d)'+5'] '+A, '/z'I,

(12)

where 1,'=a/ao is the ratio of He-substrate to He—He-
surface van der Waals constants. This ensures that above
the film one has the correct asymptotic behavior:

&o u
lim Vg (z) = V4(z) =-

z~large (z —d)' z

Numerically, we have A, =20 A as in ME, and A, '=14.6.
This latter is obtained by using 2.4X10 erg cm as the
value of a for the He—Nuclepore-filter van der Waals
constant. ' We have retained the remaining parameters in
Eq. (12),-y and 5, at the same value as for the bulk sur-
face. This, of course, is not strictly correct, but there are
no scattering experiments in the case of films from which
these parameters could be obtained independently. We
will return to this point later.

With an expression for p(z), and hence, a(z), we can
now construct, via Eqs. (4) and (5), Vg(z) for the surface-

(13)

where ao is the He-atom —He-surface van der Waals con-
0

stant. This yields A, =20 A. The requirement that Eq.
(10) be satisfied also fixes P,

' 1/2
2m4L4 = 1.087

z (A)

FIG. 2. Full He effective potential for two films of He.
Two regions are joined together to form this potential, the "vac-
uum" and the "film" region. The extrapolation of these poten-
tials beyond the region where they are joined is indicated by
dashed lines. The vertical shaded lines are at the nominal film
thickness.

vacuum region. This potential should join in a smooth
way with the potential shown in Fig. 1, constructed from
the liquid properties. In fact, not surprisingly, this does
not happen; rather, a small discontinuity exists where one
would expect these potentials to join. To take care of this,
we note that in our calculation of Vi(z) for the surface re-
gion we have used L4 ——7. 16 K, the zero-pressure value
for the He binding energy. In fact, this number is a
function of pressure, and should be smaller when the po-
tential is made to match V&(z) constructed from the
liquid side. We find that these potentials join smoothly if
for Eq. (11) we take L4 ——6.8, 6.47, 6.2 K for the 21.8-,
15.3-, and 13.0-A films, respectively. With this proviso,
the full potentials for the same two films shown in Fig. 1

are now shown in Fig. 2. The dashed lines show the con-
tinuation of the "liquid side" and the "vacuum side"
through the region where they match. These potentials
have a minimum in a region slightly above z=d, the
nominal surface. This feature is very similar to the situa-
tion with the bulk surface.

B. Solution for the bound states

To solve Eq. (2) for the eigenvalues and eigenfunctions,
we have used the boundary condition that P vanishes at
z=3 A. This is to refiect the fact that the dense solid
layer of He at the substrate is impenetrable to the He.
For large z, we have forced the wave function to vanish
at z =53 A. Both of these restrictions have a negligible
effect on the lowest bound states and are just a convenient
interval in which to integrate Eq. (2). We have checked
this by increasing and decreasing this range by 10 A, as
well as forcing P to vanish at 6 A rather than 3 A. The
difference between ground state and first excited states
changed by only -0.10 K. Limiting the integration in-
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terval does introduce the artificial result that the energy
spectrum is discrete even for positive energies, i.e., the
vacuum region. Here the He should be a free particle.
This feature of the solution is understood and is of no in-
terest.

To solve Eq. (2) numerically, we have divided the re-

gion of integration into 100 intervals and used a procedure
given by Cooney et al. ' We have checked this procedure
for the case where V3(z) is the bulk surface potential. In
this case, we have taken the integration interval as 80 A,
i.e., +40 A of the surface. We find a single bound state at
at energy —4.67 K. This is to be compared with the re-
sult of ME of —4.64 K. The slight discrepancy we attri-
bute to the numerical method.

For the case of the films, we show in Fig. 3 the solution
for the ground-state and first-excited-state probability
densities superimposed over the He density profile. The
simplest feature of the solution is that the lowest bound
state is, indeed, mostly localized at the surface. The first
excited state, however, has a substantial probability densi-

ty in the surface region as well. Clearly the distinction of
surface state versus film state is not as meaningful as in

the case of the bulk surface where one speaks of a surface
state and bulk states. There is a tendency, which can be
noted in Fig. 3, for the thicker films to have the excited
state more extended into the liquid region. This trend
should continue with further increase of thickness until
the excited states become a three-dimensional continuum.
Another simple feature suggested by Fig. 3 is that the ef-
fective mass m* of the He quasiparticle in the excited
state should be larger than in the ground state. This
comes from the simple hydrodynamic argument that the
excited state sees proportionately more of the liquid re-
gion than the ground state. Experimentally, one finds
that this is so. The ground state has in the limit of zero
He coverage m*—=(1—2)m3, while the excited state has
m*—= (6—7)m3. These results are planned to be discussed
in greater detail in a subsequent publication.

We list in Table I the lowest bound states which result
from our calculation. ' These are compared with results
which are obtained by extrapolating experimental values
of e~, e2, and b.e to zero coverage. ' In the case of the
21.8-A film, this extrapolation cannot be done reliably
and is omitted from the table. We also note that the
behavior of e~ and e2 with coverage is not as smooth as

(z),

p(zj/p

IO
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I

20 30
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FIG. 3. Density profile, shaded region, and the probability
densities for the ground-state and first excited state for He in
two films of He. The first 3 A near z =0 are taken as solid
He. The probability densities are in arbitrary units.

he, and hence, the extrapolation to zero coverage is not
particularly reliable. In one way, this is expected since the
heat capacity from which these results are obtained are
most sensitive to b,e rather than the absolute values of the
energies. The errors shown in this table reflect the uncer-
tainty in the extrapolation.

In the case of Ae, we see from this table that the results
of our calculation are not out of line with the experimen-
tal results. There seems to be a systematic tendency for
the model to underestimate the value of b,e. This is most
obvious for the thinnest film, but is also true for the bulk
surface. In the cases of e& and ez, the results for the 13-A
film are in reasonable agreement with calculations, while
for the 15.3-A case the experimental results seem marked-

ly higher.

TABLE I. Theoretical and experimental results for the bound-state energies of 'He in He films and in bulk He.

Film thickness
(A) Theory

(K)
Expt. Theory

(K)
Expt. Theory Expt.

13.0
15.3
21.8

—3.93
—4.14
—4.40
—4.67

—5.0+0.6
—7.1+0.6

—5.00+0.03'"

—1.05
—1.38
—1.97
—2.79'

—1.0+0.6
—3.6+0.6

—2.785 +0.01'

2.88
2.76
2.43
1.88

4.1+0.3
3.1+0.2

2.22y0. 03b

'Reference 15.
Reference 3.

'W. E. Massey, C. W. Woo, and H. T, Tan, Phys. Rev. A 1, 519 (1970).
Reference 9.
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III. COMMENTS AND CONCLUSIONS

The principal distinction in the effective potential be-
tween He in a film and at the surface of bulk He is the
repulsive part which stems from the higher pressure in the
film due to the substrate's van der Waals field. At the
surface, even though we do have a modification from the
substrate, the effect is not very strong. In addition, we
have retained in our calculation the parameter y and 6,
which are determined from bulk-surface properties. To
see how sensitive our calculation is to these parameters,
we have changed these in a range of 20—40%. We have
found that Ae changes only of the order of +0.01 K. One
can vary these parameters, however, more drastically and
actually induce oscillations in the density on the vacuum
side of the surface and hence obtain a double-well type of
potential. This does not seem very reasonable. Overall,
we can say that the treatment of the density profile at the
surface is the weakest link in the calculation. From the
experimental values of e„ for instance, one would expect
the well region at the surface to be deeper. We also note
at this point that our procedure of joining the two sides of

the potential in a smooth way need not have been done, or
could have been done by "lowering" the liquid side of the
potential. Both of these procedures yield more negative
values for the energies, but do not affect b,e to an appreci-
able extent.

We feel the merit of our calculation is that it is a rather
simple extension of the theory applied to the bulk surface,
and nevertheless picks up some important features of the
experimental results. Not the least important among
these is the fact that the excited states for the He are also
2D in character and form a discrete spectrum for motion
in the z direction. This is in agreement with the earlier
observations of DiPirro and Gasparini ' and is to be
constrasted with models where this spectrum is treated as
a 3D continuum.
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