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Quasiparticle spectral density of low-dimensional Hubbard Hamiltonians
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The spectral density of states of one- and two-dimensional Hubbard Hamiltonians is analyzed by means

of Green's-function techniques. The procedure has been checked in the half-filled —band one-dimensional

case by comparing it with the well-known solution of Lieb and Wu. When the ratio between the intrasite

Coulomb interaction and the transfer integral is great enough, we find for subbands for both the one- and

two-dimensional cases. Implications for Si(111) surfaces are commented on.

Correlation in narrow bands is a topic of current interest
which has stimulated an increasing amount of attention to
Hubbard Hamiltonians. ' Lieb and Wu have given an exact
solution to the one-dimensional half-filled —band case. Oth-
er people have given alternative approaches' ', these pro-
cedures yield good results for the ground-state energy and,
in some cases, for the low-excited quasiparticles of the one-
dimensional Hamiltonian, and offer a way to solve Hub-
bard Hamiltonians of higher dimensions.

The purpose of this Brief Report is to present new results
for the spectral density of states of the one- and two-
dimensional Hubbard Hamiltonians, extending other
results' to the whole spectrum of electron excitations. In
the two-dimensional case, we consider the Hubbard Hamil-
tonian recently introduced to analyze the correlation effects
associated to the dangling-bond surface states of

(111) 10-12

The Hubbard Hamiltonian we are interested in reads as

H = QEpn; + etc;+ + /Un;tn; t

=—Hp+ QU(n nItI t (n )I in; I
—(n;t) n; t)

where t is the hopping interaction between nearest neigh-
bors and U the intrasite Coulomb interaction. In Eq. (1),
Ho represents the mean-field Hubbard Hamiltonian.

By using standard many-body techniques, ' we can intro-
duce the Green's function G„"(pI) and the self-energy
X,z(pI), both quantities verifying the following equation:

i~1 —H p
—X(~) 1 G (p)) =I, (2)

where (Hp)0= (i ~H p~j ), atld I is tile idelltity matt'ix.
In our procedure we look for an approximate self-energy

X. Our solution of X has been obtained with the following
steps: (i) First, we neglect' ' any off-diagonal terms
X,t(pI), i &j; (ii) Second, we determine X;; (pI) by follow-
ing the argument given by Martin-Rodero et aI. ' This pro-
cedure yields

Xa( ) Xcr(2)( (1 —(n, ) ) U+Ep ep; —
(2)

(n;)( I ,
—(n; ) ) U'

here X;; t2i(pI) is the second-order term for the self-energy,
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FIG. 1. Density of states for spin o- in atom 1, in the one-
dimensional case, for (a) U/t =2.67, (b) U/t =4. Dashed line: HF
solution. Figures give the strength of each band.
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TABLE I. Ground-state energy and energy gap (both in units of t) for different values of U/t. LW=—Lieb
and Wu (Ref. 2) solution. HF=—Hartree-Fock solution.

LW

Ground-state energy (E/t)
This
work HF LW

Energy gap (6/t)
This
work HF

2

2.67

—0.844
—0.737
—0.588

—0.826
—0.702
—0.500

—0.782
—0.651
—0.468

0, 172
0.451
1.288

0.154
0.358
1.044

0.682
1.455
3.076

feature of our density of states is the appearance of four
bands when we move from U/t =2.67 to U/t =4. This is
due to a correlation effect which is lacking in the HF solu-
tion, where only two bands are found. Note that this effect
only appears for U great enough, a limit for which two lev-
els per spin are found at each atom; then, the four bands
come from the two atoms in the unit cell. For this case, the
HF solution gives an average of the two bands found in the
valence or the conduction region.

In Fig. 2, the local density of states

(q is the one-dimensional momentum) is shown for
U/t =4; this figure clearly illustrates the existence of four
bands. It is of interest to point out that in the limit U
we find that the strength of the two inner bands determin-
ing the energy gap goes to zero.

We now turn our attention to a two-dimensional case and
consider the Hamiltonian recently proposed by some
researchers' " to analyze the correlation effects associated
with the dangling bonds of the Si(111) surface. In this Brief
Report we present the results obtained for the (2 x I )-
reconstructed surface as calculated by using the parameters
given by Del Sole and Chadi': U=1.15 eV, t =0.10 eV. In
Fig. 3 we give the total density of states for the antifer-

romagnetic case as obtained by using our procedure as well
as the HF solution, the case considered by Del Sole and
Chadi. ' Our results show that, for the given parameters,
the system presents four bands in complete parallelism with
the one-dimensional case. Note that the HF solution only
gives two bands; in our solution, each of those bands is split
into the two subbands of our valence and conduction re-
gion. It is of interest to remark that the more exact solution
shows a much narrower gap than the HF case; this has also
been found in the one-dimensional case (see Table I).
Moreover, let us comment that for U great enough, the two
inner bands determining the gap (with an increasingly small
strength for U/r ~) are the parallel, in the (2&&1) anti-
ferromagnetic case, of the Kondo-like peak appearing in the
paramagnetic solution. ' '' They can be interpreted as com-
ing from the splitting of this Kondo-like peak, an effect due
to the new symmetry of the (2x I) surface.

All these results show that the dangling bonds of the
Si(111) surface represent a highly correlated electron gas, ' '

and that for this system more accurate solutions than a HF
one are needed if quantitative results, and even qualitative
ones, are sought. The local spin-density functional" may
give better results than the HF calculations, since correla-
tion effects, as introduced in such a method, are likely to
broaden the HF density of states, bringing the bandwidths
into better agreement with our calculations.
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