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Interlayer potential in 2II-MOS2
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An (exp-6) —type interlayer potential function is computed from factor-group analysis of in-

tralayer and interlayer vibration frequencies in 1ayered 2H-MoS& crystal. Such a potential function
a11ows one to include distant-neighbor interactions. For nonbonded intralayer interactions, only
Coulombic interactions are considered. In the case of electrically neutral layers, interlayer ionic in-

teractions are not important. This also allows us to confine the lattice sums to two dimensions. The
equilibrium conditions, based on invariance of the lattice under internal and external strain, are used

to eliminate a few parameters in the potential function. An iterative least-squares-fit method is

presented for deriving the potential parameters from the observed vibrational frequencies.

I. INTRODUCTION

Vibrational spectra of layer crystals attracted attention
of spectroscopists over the last few years. A large number
of Rarnan and infrared spectroscopic investigations have
been reported in the literature. ' The major aim of these
works is to analyze the effect of two-dimensional nature
of the crystals on their dynamical properties. The pres-
ence of a weak interlayer interaction gives rise to small
Davydov-type sphtting and low-frequency rigid-layer
modes observed in the far-infrared region. As an attempt
to understand the observed spectra and also to translate
these data into information about the bonding nature in
these crystals, particularly the ratio of intralayer-
interlayer forces, a number of theoretical model calcula-
tions were reported in the past for calculations of op-
tical modes. The chief motivation of these works was to
reproduce the observed data at the Brillouin-zone center
by fitting a set of force-constant parameters. These stud-
ies are broadly of two types —the linear-chain model and
the atom-atom —force model. The linear-chain model for-
mulated by Wieting for MOSI and GaSe and also by
Ghosh for the CdC12-type crystals, along with the modi-
fication by Ghosh and Maiti, " is based on the factor-
group analysis of the normal vibrations' in terms of
compressional and shear forces between different sheets of
atoms (sublayers) that constitute a complete layer. On the
other hand, the atom-atom —force model by Maiti and
Ghosh carries out the factor-group analysis of the normal
modes in terms of the atom-atom —bond forces. These
studies generate information about atomic binding which
is of more immediate interest to chemists. Recently,
Altshul et aI. IO have pointed out that the linear-chain
model is not rotationally invariant, whereas the atom-
atom model is, although the latter model calculates the
rigid-layer frequency at a much lower value. The major
deficiency of all these modds is in the process of fitting
the limited amount of observed data to reproduce a few
force-field parameters. Thus the model calculations have
to be limited to the nearest- and next-nearest-neighbor in-
teractions and the more-distant-neighbor forces have to be
left out of the model, although that is not always justified.
This is the main reason for the deviation of the calculated

data from the observed ones. As an attempt to overcome
this problem partially, we present a calculation based on
Ril empirical potciitlR1 fllllc'tioI1 foi IIltci'layci Rnd IloII-

bonded intralayer interactions. The potential functions
expressed in terms of a few adjustable parameters can be
used to extend the lattice sums up to any desired distance,
in principle, from the reference atom.

Calculations have been carried out for 2H-MoS2 con-
taining two layers in a primitive unit cell. Both the
linear-chain model and the atom-atom —force model have
bccn app11cd to this CI'ystal pI'cv1ously. ' ' However, thc
interlayer S-S potential function was always confined to
the nearest neighbors. The role of more distant neighbors
has never been carefully studied.

II. THEORY

In the case of layered crystals, the weak interlayer force
is of van der Waals type, so that each layer is electrically
neutral. The lattice attains stability when the weak force
across the interlayer gap is balanced by the intralaycr
forces on the atoms in the surface of the layer. In the case
of MOSI, the sulfur atoms on the surface layer are bonded
covalently to the molybdenum atoms sandwiched between
the sulfur planes. In addition to this strong bonding, the
sulfuI' atoI11s have both 8 stI'ong CouloIQbic and weak van
der %aals —type interaction with distant-neighbor atoms
within the layer. The Coulombic interaction is of long-
range type and dominates over the short-range van der
Waals forces. Hence we shall restrict ourselves only to the
Coulomblc iiltci'Rctioil foi IioIlboIldcd illtralayci llltci'Rc-

tions. The van der Waals —type interlayer interaction be-
tween the sulfur planes is assumed to be a pairwise poten-
tial of exp-6 type,

where Atj, b;1, and CJ are the Williams parameters for the
pair (i,j). The potential energy for the bonded atoms
(Mo—S) within a layer is given as

V;„„,= ,' K(5r)—
where K=(I)2V/Br2)„„,; the interatomic separation is

assumed to be such that each atom is in a position of
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minimum potential energy. The electrostatic force within
the layer for nonbonded atoms is

~intra ( ~ij )= ei ej /"ij (3)

In the case of intralayer bonded atoms only Mo—S
bond-stretching force constants are included. The bond-
bending forces may be important. However, this would
involve next-nearest-neighbor (i.e., intralayer S-S) interac-
tions. Such forces are implicitly taken into account by the
inclusion of the Coulombic potential function [Eq. (3)] for
all the nonbonded atoms within the layer. This enables us
to circumvent the problem of introducing another force
constant such as the S . S bond-stretching constant
normally used in the central force-field model or the
bond-bending forces used in the valence force-field model.
In fact, in calculations involving such a force constant this
constant alone has to account for all the distant-neighbor
interactions.

With this definition of the potential functions we can
calculate the elements of the force-constant matrix

8 V

t) u tt I,K t)u p I,K

CP

~ —Mo Second Layer
0—

In ter Iayei
Sepal'ation

First Layer

which defines the force experienced by the Kth atom in the
direction a in a given layer 1 due to the displacement in
the direction p of the K'th atom in all the layers. Such a
force-constant matrix can be block-diagonalized by means
of a similarity transformation with the projection operator
as discussed earlier. '

The solution of the secular determinant is subject to
constraints imposed by the equilibrium condition of the
lattice. This arises because of using analytic forms for the
nonbonded potential such that t) V/t)r&~0. The equilibri-
um of the lattice demands that the total potential energy
be invariant with respect to rigid translation and rota-
tion. ' These conditions were first formulated by Boyer
and Hardy. ' If the displacement u~(l, K) is given by

u (l,K)=u~(K)+ QR~jiXji(l, K),
p

then

av =0 for all tz and K,
t)u~(K)

BV =0 for all aP,
M~p

where u (K) is the displacement of the Kth atom in the a
direction in the unit cell and produces internal strain,
Xji(l,K) is the equilibrium position of the (I,K)th atom, and
R p is the external strain which produces a net rotation of
the complete unit cell. The first of these equations states
that the net force on any sublattice in the crystal is zero,
while the second equation states that the total macroscop-
ic stress is zero.

III. CALCULATIONS

The primitive unit cell of 2H-MoS2 contains two layers
(Fig. 1) and the crystal factor group is D6&. The factor-
group analysis leads to the symmetry modes

FIG. 1. Layered structure of 2H-MoSz. Only one hexagon of
each layer is shown. The complete layer is formed by repetition
of these hexagons side by side (a=3.16, e=3.185, and c'=2.96
A).

TABLE I. Symmetry coordinates of 2H-MoSz.

Symmetry coordinates

S) (A )g)

Sz (Bz„)

S3 (Az„)

Sa (Az. )

S, (B„)
S6 (Bz,)

1

z (z~ —z3+z4 z6)
1

z ( —z~+z3+zg z6)

1/V 6(zt+z3+z3+z4+z5+z4)
1/V 12(zt —2Z3+Z3+Z4 —2Z5+Z4)

1/V 12(z, —Zzz+z3 z4+2z5 —z5)

1/V 6(zt+z3+Z3 z4 z5 zQ)

(A,g+2/I»+2B, Z+B,„+E,z+2E,„+2E2z+E»). The
symmetry coordinates for the nondegenerate modes corre-
sponding to the displacements of the atoms along the Z
axis (perpendicular to the layers) are given in Table I. The
symmetry coordinates for the degenerate E modes may be
expressed in the same way in terms of displacements along
x or y directions parallel to the layers.

The evaluation of force-constant matrix elements de-
pends on the choice of potential function parameters. We
assume that the residual electric charge on Mo is twice
that in S, i.e., eM, ———2es. Since the interlayer potential
is only between sulfur atoms we use three parameters, A,
b, and C, for this pair in the potential [Eq. (1)]. Hence the
total number of potential function parameters is five—E,
es, A, b, and C. For the calculation of lattice sums in the
force-constant matrix we extend the range up to 5 A from
the reference atom. The more-distant-neighbor effects are
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omitted from these calculations; the justification for this
assumption will be given later. The solution of the secular
determinant obtained with the help of the symmetry-
transformation matrix gives the following expressions for
the ten optically active frequencies:

cubi(A is) =3[Kg+e, (q+g)+2f i(A, b, C)j/m,

cop(8i„)=3[Kg+e, (i)+Q)]/m,

cop(A z„)=0,
a)4(A2„) =6(Kg+e, rl)/p,

o)g6(&2s ) =A i+[A i
—36(K(+e, rl )fi(A, b, C)/mM]'~,

ro7(Eig) =3[K(1 g)+—e, (q'+g')+2f2(A, b, C)]/2m,

cps(E2„)=3[K(1—g)+e, (il'+if/)]/2m,

co9(E i„)=0,
coio(E i„)=3[K(1—g) +e,, g']/p,

cuii i2(E2s ) =Az+ I A2 —9[K(1 g)+—e, g']

&&f2(A, b, C)/IM I
'~

where

fi(A, b, C) =Ab g (bg; —y; )exp( br; )+6Cr, —

f2(A, b, C)=Ab g (bg;'—y')exp( br )+6C~'—

geometric parameters. The values of these constants are
listed in Table II. Thus the frequency expressions are
nonlinear functions of crystal structure and potential
function parameters.

The equilibrium condition [Eq. (6)] with respect to the
internal strain gives only one equation for the sulfur atom
along the Z axis. The sulfur atom is symmetrically sur-
rounded in the plane of the layer, and thus the X or F
component of the force acting on this atom is identically
zero. Since the Mo atom is surrounded symmetrically, the
net force acting on it vanishes identically. The rota-
tional-invariance condition [Eq. (7)] is tensorial in nature,
and we have only two components, XX and ZZ. Thus we
obtain three additional nonlinear equations among the un-
known parameters.

In our case we have seven observed frequencies, which
together with the three equations arising from the equili-
brium of the lattice, can determine the five parameters.
However, since the equations are nonlinear, we have to
follow an iterative least-squares-fit method. The method
consists of the following steps.

(1) Choose a set of guess values xj for the unknown pa-
rameters x~. Calculate the difference between the ob-
served value y; and the value y; calculated with the guess
values.

(2) With the use of analytic forms of the derivatives

g,z ——By;/Bxz, calculate their initial values with the guess
value xj .0

(3) Set up the normal equations

A i co4/2+ 3f——i (A, b, C)/m,

A, 2
——zoic/2+ 3f2(A, b, C)/2m,

p, =2IM/(M + 2m),

m is equal to the mass of S atom, M is equal to the mass
of Mo atom, and g, rt, etc. , are constants depending on

TABLE II. Geometrical parameters (in cgs units) used in fre-
quencp calculations.

where Y is the column vector with the elements FJ. de-
fined for M unknown parameters. We have

N
F.= g W~g~, dy;, j=1,2, . . . , M,

where W; is the weight factor given to the ith observed

data, X is a column vector with M elements dxj, and 6 is
the M )&M matrix defined by

E

i=1
Parameter

vl

$1
42
$2

$1
4z
y2

rI (A)
r2 (A)

Value

0.4324
3799

14731
—436

—5062
503

55
276

89
191
344
419
206
—0.974
—4.26

3.477
4.698

A)g
&Is

1
Ap„
A2„
gl
+2

1

2

El
E2

'References 9 and 16.

0
470

0
384
383

34

384
368

0
476
483

68
301
298

0
385
387

28

TABLE III. Calculation of frequencies (in cm ') in 2H-
MoSp.
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TABLE IV. Calculation of potential function parameters.

Parameter

E (m dyn/A)
e, (electronic charge)
3 (Kcal/mol)
b (A-')
C (Kcal/molA )

'Reference 16.
Reference 17.

This work

1.966
—0.315

848 163
3.938

3583

Rinaldi and Pawley'

533 829
4.0

1005

Kurittu'

106 190
3.2

2571

(4) Solve these equations for dxj. with the known initial
values for YJ and Gjk defined for the guess values xJ.
Add these dx to xj, so that xj'=xj +dxj.

(5) Repeat the process with the new values xJ until con-
vergence is obtained.

In our case three of the five unknown parameters could
be eliminated by using the three equations arising from
the equilibrium conditions. Thus we are left with two un-
known constants K and A, while the number of observed
data available from Raman and ir measurements is seven.
We used JY;=1 for all the observed frequencies. The
least-squares-fit program converged after four iterations.
This process determines the two constants E and 3, which
yield the other constants b, C, and e, . The values of the
observed and calculated frequencies are presented in Table
III, while the fitted parameters are given in Table IV.

IV. DISCUSSIONS

In this work we have presented a method of calculation
of the vibrational spectrum of a layered-crystal 2H-MoS2
using an analytic form for the interlayer potential and a
Coulombic potential for the nonbonded intralayer interac-
tions. It may be noted that the lattice sum for the
Coulombic interactions is not convergent for a three-
dimensional lattice and one should employ the Ewald
summation technique for this purpose. In our case, we
have to carry out a two-dimensional lattice sum since each
layer is electrically neutral. In this case as well, the
Coulombic interaction is slowly convergent. However, the
small contribution from the Coulombic interaction as evi-
denced by the small value of e, obtained by us shows that
direct lattice summation is sufficient. This is also corro-
borated by the fact that MoS2 is not known to be ionic. It
has been verified that the inclusion of more-distant-
neighbor interactions do not modify the results. This
method is, however, approximate, and for a truly ionic
crystal a proper lattice-summation method should be con-
sidered.

We have considered only Coulombic interactions for the

nonbonded pairs, and the van der Waals interactions are
neglected because they are small and fall off rapidly with
distance. In fact, an Mo-S nonbonded exp-6 potential
function can be incorporated in this model. But this
would involve three more unknown parameters. In view
of the limited number of observed data, it has not been at-
tempted in this work.

The potential function parameters 3, b, and C in the
S . S pair for the lattice states of orthorhombic sulfur
were calculated by Rinaldi and Pawley. ' They calculated
a series of values of the three potential function parame-
ters by varying the value of b from 2.8 to 4.0 A ', and
proposed that a comparison of the calculated frequencies
with the assigned spectroscopic data would lead to a
choice of the b value and hence the other two parameters.
In our work the values of A, b, and C are obtained by
least-squares fit of the calculated frequencies with the ob-
served data, and the fitted value of b is close to the 4.0-
A ' value of Rinaldi and Pawley. ' Hence we have
presented all three of their parameters in Table IV for
comparison with our data. It may be noted that the agree-
ment is fair. More recently, Kurittu' has presented a de-
tailed calculation of these parameters for S S bond-
ing. He obtained b=3.2 A ' (these values are also includ-
ed in Table IV for comparison).

The calculated values of frequencies are in fair agree-
ment with the observed ones. The notable discrepancy is
that the observed Davydov splitting could not be repro-
duced, and, as previously obtained by us and other work-
ers, ' ' we obtain E2g&Ef„, a contradiction of the ob-
served finding. This discrepancy was discussed by us in a
previous paper, and we believe that in calculations of
Davydov splitting, higher-order multipole interaction
should be taken into account.

In spite of the limitations in the proposed model we
have successfully developed a potential function for the
interlayer gap. Such a model can be easily extended to
other high-symmetry layered crystals for obtaining the in-
terlayer potential function.
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