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Symmetry-adapted linear combination of atomic orbitals bases
and band-structure computation for quasi-one-dimensional solids
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A method to derive LCAO bases adapted to the symmetry of a quasi-one-dimensional crystal is
presented. The complete solution is given for chains of L(2q)~mc line-group symmetry in general
and for the beryllium hydride polymer and tetracyanoplatinate chain in particular. We also give a
quantitative account of computational reductions and discuss band touchings and slopes, crystal-
field splitting, and selection rules for direct optical absorption.

I. INTRODUCTION

Discoveries of pyroelectric and piezoelectric (polyvi-
nylidene fluoride), photoconducting (polyvinyl carba-
zole, etc.), conducting [polyacetylene, polypara-
phenylene, tetrathiafulvalene-tetracyanoquinodimethane,
(TTF-TCNQ), potassium tetracyanoplatinate complexes
(KCP), etc.] and superconducting [polysulfur nitride,
NbSe3, bis-tetramethyltetraselenafulvalene perchlorate
(TMTSF)zC104, etc.] polymers and quasi-one-dimensional
(quasi-1D) solids have stimulated extensive investigation
on their electronic properties. ' One-electron band-
structure computations on model chains, ranging from
semiempirical to ab initio Hartree-Pock, provide informa-
tion on charge-density distributions, geometric structure
and force constants (via potential energy surface scan-
ning), charge-carrier mobilities along the chain, etc.
Offering a conceptual framework for interpretation of re-
lated experimental [x-ray photoelectron spectroscopy
(XPS), electron energy-loss spectroscopy (EELS), etc.]
data, they contribute to our understanding of structure
and properties of these materials. In this paper, we im-
plant explicit symmetry considerations into such compu-
tations, trying to improve their efficiency and obtain addi-
tional physical insight.

Polymers and quasi-1D solids possess specific spatial
symmetries, properly described in terms of /inc groups
Utilizing the analogy with the crystallographic space
groups as much as possible, we could express most of
line-group theoretical results in terms already familiar to a
solid-state physicist (Brillouin zone, band and star degen-
eracies, compatibility, etc). Motivation for independent
study of the line groups stems from their advantageous
structural features (uniaxial rotations, order-2 subgroup
chains, comprehension of a whole infinite family of line
groups by a single parametrized formula, etc. (cf. Sec. II),
enabling us to complete certain tasks [e.g., to tabulate
symmetry-adapted bases (SAB's)] that would be very im-
practical to perform for all the three-dimensional (3D) 230
space groups. Next, it is possible to give a clear physical

interpretation (quasimomentum, quasi-angular-momen-
tum, mirror-plane parities, etc.) of the quantum numbers
arising from the line groups, and thus to express our re-
sults in very simple terms, avoiding elaborate group-
theoretical parlance. Finally, in 3D crystals, general k
vectors outnumber the special k vectors (viz. , those that
are invariant under some symmetry operations}; in con-
trast, for all but a few of the most trivial line groups, every
k point is a special point; thereby importance of symmetry
considerations is greatly enhanced in the case of chainlike
systems. However, apart from the translational symmetry
and the simplest (cyclic) line groups, only a few other line
groups were considered; therefore a systematic study of
all line groups has been undertaken, ' ' this paper
comprising the part devoted to the applications of line-
group theory to linear combination of atomic orbitals
(LCAO} band-structure calculations on polymers.

The paper is organized as follows. The method we use
to derive the LCAO SAB's is expounded in Sec. II and il-
lustrated in the Appendix, where such a basis is explicitly
tabulated for the I.(2q)~mc line groups, the most complex
within this approach. The form of one-electron equations
in the new basis is discussed, and a quantitative account is
given for the computational reductions (in the format of
matrices and in the number of integrals). For many
quasi-1D and polymeric conductors the line-group sym-
metry is specified, and two examples —beryllium hydride
polymer and tetracyanoplatinate chain, both of great in-
terest by themselves ' —are considered in detail (SAB's,
equations, computational savings, band-structure features,
compatibility, selection rules, crystal-field splitting) in
Secs. III and IV, respectively.

II. LINE-GROUP SYMMETRY-ADAPTED LCAO'S
AND BAND-STRUCTURE COMPUTATIONS

A. Line groups

The spatial symmetry groups of physical systems
periodic along a line—such as stereoregular polymers and
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TABLE I. Line groups and their isogonal point groups. Here n =1,2, . . . , p =0, 1, . . . , n —1, and q =n/2=1, 2, . . . . C„, &„,

&s, and U are defined in the text (in Sec. II A) and Ud = C'2„U. The relevant index-2 subgroup structure of the line groups is explicitly

shown below.

Point
group 6 odd

Line group

Ln
Lnz

n even

Lnm =Ln+(&„
I
0)Ln

Lnc =Ln +(&„
I ,

' )Ln—

Lnmm =Ln +(&„ I
0)Ln

Lncc =Ln +(&„
I

—, )Ln

L (2q)»mc =L (2q)»+ (&,
I
0)L (2q)»

Ln =Ln+(&&C,„ I
0)Ln

Ln/m =Ln+{&&
I
O)Ln

L (2q)»/m =L (2q)»+(&»
I
0)L (2q)»

L(2n)=Ln+(&sC2„I 0)Ln

Ln2=Ln +(U
I
0)Ln

In, 2=Ln, +(U
I
0)Ln,

Ln 22=Ln+(0
I
0)Ln

Ln~22=Lnr+(U
I
0)Lnp

Lnm =Lnm +(Ud
I
0)Lnm

Lnc=Lnc+(Ud
I
0)Lnc

L (2n )2m =Lnmm +(Ud
I
0)Lnmm

L (2n )2c =Lncc +{Oq
I
0)Lncc

L(2n )2m =Lnm +(&s
I
0)Lnm

L (2n )2c =Lnc + (&»
I
0)Lnc

Ln/mmm =Lnmm +(&I, I
0)Lnmm

Lnlmcc =Lncc+(&h
I
0)Lncc

L (2q)»/mcm =L {2q)»mc +(&I,
I
0)L (2q)»mc

Ceo Ii

D„I
L oem

Lao�/mm

=L corn+(&s I
0)L oom

{a) {c)
atomic chains or molecular stacks in quasi-10 solids —are
line groups. ' [Line groups are frequently confused with
either strip (Streiffen) groups or one-dimensional space
groups; in fact, they correspond to arrays of three-, two-,
and one-dimensional objects, respectively. j

Let (R
I
r) denote an element of a line group L; if the z

axis coincides with the chain axis, then (R
I
r) r

=R r+~ae„where a is the translational period, v=t+U,
where 0&v g1 and t =0,+1,+2, . . . . 8 =C„,o.,„o~, U,

or a combination of these transformations. Here C„
denotes a rotation through a=2»tin around the z axis; n

may be any integer so that the number of line groups is
unlimited. (There are 75 crystallographic line groups in
which n =1, 2, 3, 4 or 6; they appear as proper subgroups
in the space groups. However, for a single chain one fre-
quently finds n =5, 7, etc.; in some polymers n & 40.) The
mirror reflections in the xz and the xy planes are denoted

by o„and o.~, respectively, and U is the rotation through
a=+ around the x axis. A line group is denoted, in the
international crystallographic (Hermann-Mauguin)
manner, by Lnz (p =0, 1, . . . , n —1) if it contains a screw
axis (C„ Ip/n), by Ln~2 if it also contains (U

I
0), etc.

The list of all line groups (with relevant subgroup struc-
ture indicated) is given in Table I, and some of currently
most interesting chain compounds are classified according
to their line-group symmetry in Fig. 1 and Table II.

With translational symmetry, it is sufficient to consider
explicitly one unit cell instead of the whole periodic ob-

Se

iINb

I

L1m

{g) Iiz

L2~/mcm L4mm L4/mmm

FIG. 1. Examples of line-group symmetries of polymers B.nd

quasi-1D molecular stacks. (a) trans-polyacetylene, (1) NbSe3,
{c) planar (polyparaphenylene), (d) polypyrrole, (e) %olfram's
red salt, (f) Magnus's green salt.
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TABLE II. List of some representative quasi-lD conductors, molecular stacks, and polymers, classified according to line-group
syHlIIlctfy. Thc foHO%'ing dcf1n1tlons Rpply: TMTSP, bis-tctfRIQcthyltctfasclcnafulvalcnc; NMP, X-mcthylphcnazinlum; HMTTP,
hexaInethylenetetrathiafulvalene; TTT, tetrathiatetracene; TSeT, tetraselenatetracene.

Line group

L Im

L 1/mm
L 2jmc

L 2/mcc
L 2/mmm
L 2(/mcm

L 4mm
L 4/mmm
L42/mcm
L 84/mcm

Compounds

trans-polyacetylene or trans (C-H)„, poly(p-phenylene su%de) or (C6H4 S )„„
TMTSP —,NMP —,HMTTP —stacks
MX3 (M=Nb, Ti,Zr, TR; X=S,Se,Te) chains
polysulfurnitride or (SN)„
poly(p-phenylene) or (C6Hq)„
tetracyanoquinodimethane (TCNQ) stacks, tetrathiafulvaleue (TTF) stacks, planar poly(p-phenylene)
TTT stacks, TSeT stacks, cistransoid- and transcisoid-polyacetylene, poly(pyrrole)
Wolfram's red salts, e.g., [Ptlea)qj[pt(ea)48rq]Brq (ea=ethylamiuel
Magnus's green salts, e.g., PtC14PtNq, porphyrinic molecular metals
beryllium hydride or (BCH2)„, beryllium chloride or (BCCI2)„
K2Pt(CN)g

ject. Additional symmetries (rotation and screw axes, mir-
ror and glide planes) further decrease the relevant portion
(asymmetric unit) of the polymer onto a basic motif, i.e.,
the minimal part from which the line group recovers the
rest.

[R
~
7]e(r —R, )=e(r —R„) .

Each of these two mappings (4~&5 and R„~R„)can be
completely specified when an appropriate classification of
AO's and atomic sites is made.

B. Irreducible representation and SAB's of line groups

Let V be a state space [spanned by the initial set of
atomic orbitals (AO's)] and let

P,', = g D;,{R ~~)'[R ~r],
(R /~)eL,

C. On-site transformations: Types of AO's

If the AO's are of the form

4 '=f(r, 8)e

a pair t4 *,4 *j {with m, ~0) can be replaced by an
Nl Nl

equivalent pair I 4+',4 *
j of real AO's defined by

where D is a unitary irreducible representation (irrep) of
the corresponding line group L, d~ is the dimension of
D, ~L

~

is the orde~ of L (assumed finite in virtue of the
Born —von Karman periodic boundary conditions), and

[R
~

w] is a (reducible) unitary operator defined in Vby

hzing P .
J one can construct a basis of V

adapted (SAB) with respect 'to L, according to the weii-

algorithm: (i) specify the input data (atomic po-

sitions, orbitals, irreps D ), (ii) determine the matrices of

[R
~
v] for each (R

~

~)FL, {iii) form P;;, i =1, . . . , d~,
(iv) apply them to obtain symmetry-adapted columns, and
(v) select from these a linearly independent set. (For the
space grQUPS, a coI11pQter roUtlnc has bec11 developed
along these lines; the required irreps are generated each
time. ) The question we posed ourselves was, is it possible
to perform this task only once by tabulating ready-to-use
line-group LCAO SAB's—or even better, by writing the
final one-electron (extended-Hiickel, pseudopotential, etc.)

equations in a symmetry-adapted form? The answer is
positive, due to the following observations. First, the ir-
reps D of all the line groups are now available (in a
parametrized form). Second, the action of [R

~
r] onto an

AO 4(r —R„) consists of an on-site transformation (rota-

tion and/or reflection) RC(r)~4(r) followed by a site

change R„~R„=(R
~
r)R„so that altogether one has

4+' ——f(r, 8)cos(m, g)

{2a)

C'„4+*——cos(m, sa)@+*+sin(m,sa)4 *,
Nf Nl

C'„4 =—sin(m, sa)4+'+cos(m, sa)e *,
(2b)

(2c)

op++ =+4+ (3b)

D. Site permutations: Graphs of line groups

Any polymer can be viewed as the union of simple
(monatomic) subchains, each generated by the action of
the operations of the corresponding line group L onto one
of the atoms in the basic motif. We call the set I of the
atomic sites belonging to one subchain a graph of L.

4 *=f(r,8)sin(m, g) .

In this classification s, P„and d, orbitals are of 4
type, Ip„,pr j and Id, d~, j are pairs of I@+,4' j type,
td, „d„~j is a pair of t4+,4 j type, etc. One can

easily verify that
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Now, if R„EI then (8
~

~)R„=R„EI, so that (R
~

r) de-
fines a permutation u —+v=lI(u). Two graphs are in-
equivalent if they give rise to different permutations; for
each line group there are no more than few distinct graphs
that can be found by inspection (or by enumeration of
some special homomorphisms of L).

Thus we can completely determine the action of [R
~
r]

m
onto an atomic orbital 4~ if its type (specified by m, and
A, ) and the graph I to which it belongs are given; then the
remaining steps (iii)—(v) are readily performed. Our task
is solved when we tabulate the LCAO SAB's for each L,
D, I, A, , andm, .

E. LCAO SAB tables: Usage

Comprehensive tables of the LCAO SAB's for the line
groups have been derived as outlined above; for the sake
of brevity we list (in the Appendix) only those correspond-
ing to the L(2q)qmc family of line groups. This choice is
made because (a) they are the most complex groups to be
computer-implanted in our approach, (b) they contain ro-
tation and screw axes, mirror and glide planes, and thus
they contain the features of all others, and (c) the actual
physical systems [beryllium hydride polymers, Pt(CN)4
chains] we extensively deal with later in this paper (cf.
Secs. III and IV) belong to this family. As for (a), the line
groups isogonal to C„or C„„significantly contribute to
numerical savings; the effect of additional (&t„U, Ud)
symmetries is negligible and we use them a posteriori (via
the compatibility relations, etc.; cf. Secs. III and IV). The
relevant subgroup is indicated for each line group in Table
I.

The graphs of L(2q)vmc are I, containing points on
the z axis (two points per translation period), I', generated
by a point in the o„plane (2q points per period), and I,
with a generating point in an arbitrary asymmetric posi-
tion (4q points per period). The irreps of L(2q)zmc are
one-dimensional (kAo kBo kA& kB&) and two di-
mensional (kE, m = 1, . . . , q —I), the latter bringing
in twofold band degeneracies; they are reproduced in
Table III.

For each graph and each irrep, only those orbitals that
give rise to linearly independent symmetry-adapted
LCAO's are listed and projected. For a given polymer,
the user must find the tabulated LCAO for each orbital of
each atom in the basic motif, and together these LCAO's

constitute a complete SAB; the procedure is illustrated on
(BeHz) in Sec. III.

P; = g C;„(a)P;;4„

(where the index v enumerates the to AO's in the basic
domain) to obtain

QCt„(a)[H&,(a)—e(a)S&„(a)]=0 (4)

for each irrep D of L, where

Sq„(a)—:(4q, P t t4„),
H~„(a)—= (4qHP ()4„) .

Since P f& and P;;, i =2, . . . , d (d being the dimension
of D~) give rise to identical S&„(a) [and H&,(a)], Eqs. (4)
do not depend on i, therefore explaining the systematic
d -fold degeneracy.

Numerical savings achieved via this basis transforma-
tion are significant. Before proceeding to their quantita-
tive estimation let us just stress that the numerical coeffi-
cients C~„(a) appearing in the symmetry-adapted LCAO's
and in the expansion of the matrix elements (5) in terms of
those over the initial AO's are indeed the same.

F. One-electron equations in the LCAO SAB formulation

For a broad class of one-electron Hamiltonians (includ-
ing those appearing in frequently used tight-binding,
extended-Hiickel, pseudopotential, etc. , schemes), one can

prove commutation of H with the corresponding line

group L and therefore with P,J. [In the self-consistent-
field (SCF) Hartree-Fock (HF) method one should, howev-
er, be aware of the "symmetry dilemma. " Incorrect nu-
merical cutoffs may also violate the symmetry, as has
happened frequently in the literature. ] The commutation
with L is preserved if one neglects

~
(4q(r —Rq)

~

4,(r —R„))
~

when it is less than 5, or when
~

R„—R,
~

&d, where 5,d
are specified constants; including the long-range summa-
tions is even better. Thus one expands

TABLE III. irreps of the line groups L (2q)~mc, q =1,2, . . . . Here K(~)=exp(ikva ), M(s) =(~0 +),0 p
N(s) =(„~p ), where p=exp(imsa) and t =0, +1,+2, . . . , a=m. /q, r =0, 1, . . . , q —1,—m/a &k(m/a, m =1,2, . . . , q —1.

irrep

IE,-m

(Cgq
~
t)

K(t)

K(t)

K(t)

Ic(t)

K(t)M(2r)

Ic( 2 +t)
—K( —,+t)1

K( 2 +t)
—K( 2 +t)1

K( 2 +t)M(2r+1)

(o„C2~q
(
t)

K(t)

Ic(t)
—K(t)
—K(t)

K(t)N (2r)

(cr„C~~q+'
~ 2 +t)

Ic( 2 +t)
—K( 2 +t)
—K( 2 +t)
K( 2 +t)

K( 2 +t)N(2r+1)
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G. Computational advantages

The I.CAO SAB formulation of the one-electron eigen-
problem, Eq. (4), offers the following advantages: (i) the
format of the matrices to be diagonalized is lowered, (ii)
the number of integrals over AO's to be calculated is re-
duced, and (iii) the one-electron states emerge with sym-
metry labels, useful for logical control of the calculations
and for subsequent physical interpretation of the results.

To make thc argument quant1tatlvc~ lct us cons1dcr an
arbitrary polymer of L (2q)emc symmetry, with a orbitals

of 4 type and b AO pairs of I4+*,4 ') type on I",
graphs, c +2d on I', graphs, and e +2f on I, graphs, in
the basic domain. I.et us further classify the above-
111e11tlolled b palI's of orbitals at, I 111'to b1 pairs wlfll

m, =hq, b2 pairs with Fr(m, /q)= —,', and b3 pairs for
which m, = —m+(h+1)q, where h =0, +1, . . . , and
Fr(x) is the fractional part of x. (These three conditions
are indeed complementary. ) The irreps of the one-
dimensional translation group T are defined by

d, (E
~

t)=exp(tkta), w~ere ~/—a &k &~/a; ~ence V
splits into the orthogonal sum of subspaces V(dk) of di-
IQcns10Q

«mV(dk)=2(a+b)+2q(c+2d)+4q(e+2f) . (6)

In the LCAO SAB of L(2q)emc, as given in the Appen-
dix, each V(dk) splits further into the orthogonal sum of
subspaces V(kD } of the following dimensions:

dim V(kAO) =dim V(kate) =a +b1+c +d +e +2f,
dim V(180)=dim V(kate ) =b1+d +2f,

2b2+c+2d+2e+4f, m =q/2

dimv(„Z )= 2b3+c+2d+2e+4f m = —m. +(h+1}q
c+2d+2e+4f, m =m, —hq,

where h =0,+1, . . .; the three conditions on m in kE
are complementary and altogether m = 1, . . . , q —1 (cf.
the Appendix). Hence H(k) and S(k) matrices are block-
diagonalized from QXQ to a sum of blocks, dimensions

of which are given in (7}. For beryllium hydride polymer
(cf. Sec. IIIA) in the valence-orbital description, this
amounts to reduction from 12X12 to 3X3 matrices and
for Pt(CN)4 chain (cf. Sec. IVA) from 84X84 to at most

10& 10. Since diagonalization is usually the computation-
al bottleneck (except for the SCF HF method), evidently

some interesting, but as yet intractable, systems are now

brought within reach by virtue of line group SAB's.
I.et us discuss now reductions in the number of in-

tegrals [item (ii)] to be computed. Traditionally, one
would calculate the overlap integrals

0 I;

R„@„r—R —ta e, r

to form the 0X0 blocks S(k), —m/a & k & n /a, where
e

0 t
S„„(k)=+exp( ikta )—

p v

and analogously for H(k). Instead, for each irrep D~ of
L(2q)~mc we form S(a) according to (5a), utilizing only
some of the integrals („~ '„).

For a given 4', let 4p denote the oI'bital belonging to
the zeroth basic motif (BM), such that 4„'=[8

~
v]C „ for

some [R
~
v]GL(2q}smc. It can be seen that we do not

need (sf'„) unless
(1}4z belongs to BM,

(2) both 4& and 4~ contribute to some V,
(4q, I' 4p):(P @q,C&—p)+0, or

(3) p, &v'.
It is straightforward but space consuming to analyze in

detail the effects of cases (1)—(3) in terms of a,b, . . . ,f
and D; let us rather note that case (1) plays the major
role for atoms in asymmetric positions in contrast to case
(2), which mostly affects those on I;. Also, note that case
(3) is more strict than the traditional p & v. Altogether the
savings are remarkable; some numerical illustrations can
be found in Secs. III and IV.

In view of frequent misunderstandings we feel it neces-
sary to stress also that the integrals to be actually calculatnn

ed within the two methods are indeed the same; only the
linear combinations made from them afterwards are dif-
ferent. This point may be easily understood upon inspec-
tion of the overlap matrix for (BeH2)„ in the L42mc
I CAO SAB, given in Table IV.

In the line-group SAB formulation, the eigcnvalues and
eigenstates of H emerge automatically assigned to irreps
of L [item (iii)]. These labels convey physical information
on which we concentrate in Secs. III and IV; in addition,
they bring in some computational advantage in terms of
logical controls of the calculated bands and states. In ad-
dition to checks of degeneracy, transformation properties,
frequencies of irreps, and band touchings at the zone
center and edges, these labels are helpful in the case where
two or more bands come close together or cross ("band-
indexing difficulties"}. A posteriori symmetry analysis of
the reported band structures of polymers shows that in-
correct 1nterpolatlons, 1ncorrcct 1ntcl Rctlon truncatlons,
and other artificial violations of symmetry were frequent-

ly made.
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TABLE IV. Overlap matrix for the (BeH2) polymer, expressed in the LCAO SAB of L42mc. S(Ao) block corresponds to the
irrep kAO, S(A2) to kA2, and S(Ei ) to the first column of kEi 1. y =—exp( —ika/2) and —m/a (k (m/a.

Atomic
4& ——2s (Be~), 42 ——2p, (Bei), 43=2@„(Bei),
47 ——2s(Be2), 48——2p, (Be2), 49——2p~(Be2),

orbitals

44 ——2'(Bet), 4s ——1s(H)), 46——ls(H2),
C',0

——2p„(Be2), e', i ——1s(H3), e DI2
——ls(H4)

Block 1

Overlap

S1I

S(AO) = S )2 S22 S2s, where

S2s Sss

r

0 t 0 t
S „=& +exp( —ikttt) +y 6, @=1,2, @=1,2, 5, p(v slid

p v p v+6

Ot Ot 0 t
S55 ——~+exp( ikta) —

5 5 + 5 6 +2y

Block 2 S(A2): same as S(AD) but replace y by —y
r

P„ 0 P„
S(Ei)= 0 P33 0, where

P3s 0 Pss

~ r

0 t 0
P3„———,+exp{ ikta)— 3 i y 3

—6, v=3, 5 and

Ot 0&
P55 —

g +exp( —lktQ )

III. EXAMPLE: BAND STRUCTURE
OF BERYLLIUM HYDRIDE POLYMER

A. Symmetry-adapted one-electron eigenproblem

The translational repeat unit of the (BCHI)„polymer
contains 6 atoms with altogether 12 valence orbitals (cf.
Fig. 2 and Table IV). The chain is invariant with respect
to the line group

L 4z/mcm =L 42mc+ (&I, i
0)L 4&me .

The basic motif contains two atoms (Bel in the I', posi-
tion and Hi ill tllc I q posltloll) with 5 AO s ( Ilia ~ ~ ~, C 5).
The irreps of L42mc are kAD, kAq, k80, k82 (one-
dimensional), and kEI I (two-dimensional). Using the
LCAO SAB of L 4zmc, the 12-dimensional subspace V(k)
splits into V(AO)+ V(A2)+ V(EI)+ V(E I), where these
three-dimensional subspaces correspond to kAO and kA2,
the first and second matrix columns of HEI I, respective-
ly. In more detail, V(AII) and V(AI) are generated by
projecting out 41, 4z, and 4s by P(kA0) and P(kAI),
respectively; V(EI ) is formed from 41, tII4, and Ill& pro-
jected by P(kEI i)l i. As expected from the twofold de-
generacy, S(E i)=S{E,) if the basis of V(E, ) is ob-
tained via P{kEI I )2 I, so wc need ollly three 3X3 Hcl-

mitian matrices S(AO), S(A2), and S(EI ). Their explicit
form is given in Table IV. To simphfy further the entries
we have made use of the fact that [&„ i 0] maps
IIi&,44, 45,4» onto O'I, —4~, II15,4'll, respectively, so that

r

Ot Ot

5 11 5 12

SlIMlarlg,

O g

0 t 0
3 11 3 12

in view of [Cz iof: 41~—gtl, @t5 @t6, @'»~@II2. Thc
forms of thc blocks of LI(k) are completely analogous; onc
Just Ilccds to replace
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I', Be H2,'l x Ot Ot Ot Ot Ot
27 ' 49 ' 57 ' 58 ' 59

To be completely specific, let us retain only the
nearest-neighbor interactions. In the traditional approach,
one must compute 66 overlap integrals; we reduce these to
only 4, viz. ,

00 00 00 00
15 ' 25 ' 35 ' 56

L

If we include the next-nearest neighbors, the 92 integrals
reduce to 9; one needs also

00 00 00
17 ' l8 ' 28

0000
3 10 ' 5 11

Hence the savings of computation are remarkable.

B. Symmetry analysis of the band structure

The band structure of the (BeH2}„polymer, calculated
within the extended-Hiickel crystalline orbital (EHCO)
method, is presented in Fig. 3. A reasonable overall agree-
ment is found with the ab initio results. 13, 14

FIG. 2. Geometrical representation of (BeH2)„model chain.
Line-group symmetry is 1.42/mcm.

0

0 „t
H

p v

Out of ( ~,'), p, v=1,2, . . . , 12, the following integrals
are found to be redundant [cf. item (ii) of Sec. II G for the
discussion of cases (1)—(3)j. For case (1),

0
for p=6, 7, . . . , 12 .

p v
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For case (2},

0 t
1 3

r

0
2 3

0 t

37
For case (3),

0
1 4

r

0
24'
r

0

9

0 t
2 9

0 t

1 10

0 t
2 10
r

0
4 8

Ao

k
FIG. 3. Extended-Hiickel energy band structure of (BeHq)„

polymer. The three E bands are twofold degenerate throughout
the Brillouin zone. Vertical arrows indicate the symmetry-
allowed transitions induced by absorption of light polarized in a
plane containing the chain axis, for the perpendicular ( )

and parallel ( ———) incidence, respectively.
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A. Block-diagonalization of $(k}and H(k}

As follows from Table V, in the SAB formulation the
eigenproblem of CP block-diagonalizes:

V(k) = V(&o)+ V(&4)+ V(&o)+ V(&4)

+2V(E) )+2V(Ep)+2 V(E3),

where dim V(k) =84, dim V(B)=2, and dim V(A)
=dimV(E) 1=0; 2V(E&) means that the S(E&) block ap-

pears twice in S(k), etc. Therefore instead of an 84)&84
matrix we must diagonalize five 10X10 blocks and two

2)&2 blocks; in view of the roughly X dependence of di-

agonalization complexity, the latter task is 2 orders of
magnitude easier.

B. Reduction in the number of integrals

As an illustration, let us consider the CP chain in the
approximation in which the integrals

0 t
H

p v p v

FIG. 4. Geometrical representation of [Pt(CN)4]„model
chain. Line-group symmetry is I.84/mern.

The irreps of 1.8&me are kAo, kA4, kBo, kIt& (one-

dimensional) and kE~ ~, qE2 q, kE3 3 (two-

dimensional). The basic motif contains three atoms (Pt in
the I', position and C and N in the I „position) with 18
AO's.

The formulas given in Table IX for the I', graph and in
Table X for the I, graph enable one to write down im-

mediately the complete LCAO SAB for the CP chain; one
only needs to select, for each irrep kD of 1.84mc, the
AO's belonging to the (zeroth) basic motif that contribute
to the subspace V(kD ). This is accomplished in Table VI.

arc Qcglcctcd unless thc atoIDs involved bc1ong to thc SRIQc

planar Pt(CN)4 complex or to the neighboring complexes.
In the calculation scheme utilizing only translational

periodicity, one must calculate 6237 overlap integrals; fur-

ther syIDrnetry arguments reduce the number to only 257,
i.e., for more than 24 times.

C- Band degeneracies» touchings, and slopes

The E~ ~, E2 2, and E3 3 bands are twofold degen-
erate throughout the Brillouin zone. At the Brillouin-
zone edge k =m/a, the Ao bands remain coupled with the

A4 bands Rs do thc 80 Rnd 84, bands and thc EI ) and

E3 3 bands. Note that in the last case we obtain fourfold
degeneracy at the zone boundary; for more details see

Table VII. The slopes at the center and at the edges of the
Brillouin zone are the following:

TABLE VI. AO's from the (zeroth) basic motif of the CP chain which contribute to the subspace of
the specified irrep of L, Sqmc. The symmetry-adapted LCAO»s are obtained when the AO's of Pt (given

in the left-hand column below) are substituted into the formulas given in Table IX, and the AO's of C
and N (the right-hand column) into those of Table X.

Subspace

V(Ap), V(A4)

V(&p), V(&4)

V(Eg), V(E3)

pt

5s, 5p„5d 2, 6s

Atomic orbitals

2s(C), 2p, (C), 2p„(C)

2s(N), 2p, (N), 2p (N)

2'(C), 2'(N}
2s(C), 2p, (C), 2p (C), 2@~(C)
2s(N), 2p, (N), 2p (N), 2p„,(N)
2s(C), 2p, (C), 2p„(C), 2'(C)
2s(N), 2p, (N), 2p„(N), 2p~(N)
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0&k &m./a; cf. also Table V.

(k) & (k)I, and I eg (k)~eE3

+
0

0

+
0

kAO

k&a

D. Selection rules for direc p
'

t o tical absorption

to the results of Sec. III G we find the tran-In analogy o
th same labels —i.e.,n the states bear1ng e

d f h dE3~kE3—allowc ork~ 0~k~ O. ~ k 3 ~k 3—
e of li ht polarize a ong

selection rules for the parallel incr ence are

'~E]„~ ' —+E3,
&o

EI—+ Ao, E2 —+

~0

bove rules degenerate into E—+6,For k =m/a, the above ru es e
' —+6

G~E, where E stands for ~~, +~, or 2 2 a

7

E. Crystal-field splitting

for the E2 2 bands, and

for each pair IE,t'(k) e'(k) J of bands that cross at k =m a,
Vlz. , fol

i h s mmetry of the CP chain, whichIn view of the high symmetry o
stR110 raphlc 84 screw axis, 1 1sincludes a noncrys a g p

'

he effects o a crys a
'

Hlnc cnv1I'on-lng hcI'c to examine t.

P chain is invariant wiment. A single C
C 0), (Cs

i
—,
'

), (Cg
i
0), (Csto (Cs

I 7) 4 s

. . . , but when similar chains are pac

mmet, e.g., in Csz[Pt(CN)4]C10 3o, R 2

an 2 HF) the latter one hav-
le o -2000 'cm '. Thus we arrive at

F and Cs2[Pt(CN)4] (F p 39,

g ~ ' lI, . '.
d

.
bl ~ ttthe problem of reducction of the irre uci e r

i.e. the irreps o t c 4D~(i.gqmc&1. 4mm),
'

k
o its Io cr subgloup P7ltPl.

a
' '

h f ld degeneratecipal consequences a p
'

are s litting eac two o
e 3 bands andto a air of nondegenerate 2 an s

eim' '
hin s at k =m/a; for more de-eliminating all band touchings at =m a;

kE1,—1k~O

k 1,—1 k~Zk~2

I 8 /mcm onto mmI 4/ pygpn. For the Brillouin zoneTABLE VIII. Effects of symme ymmetry lowering from I.84/
h of the irreps.er art of the table and a t ecen er,t r, let k =0 in the upper pa

k 4 k~4 k 2, —k 4 E2, —2 kE3, —3k&0LS c

Ao @Ho Ao @Do

3 —3
@61,—1

+ +



"5 N

l c
~ o ~-I

Qh
Q

G0

o
+

5
Ng4

i

iN~ & ~ c Q
g

-&+~a ""

~g$ W 8 qg+ .~ 0+&I

~ j~
+

V

Q g ~R I

Q + ~ g
0bQ ~Q Q 'g

g
C$

II

eq ~
II

g g g

CP ~ ~ m

e + t& ce
P

ch

~ ~o -" P" ~~ ~&
~ ~ 'g

Q

CC
CP

g
Q q$ F@

F
~R ~

~ Q g g

Q

5~&"=+g.
~™

+ +
05

Q

+
te

R~+

I

A- pq

~I~
+ +

+

+ +
~+ e"+e

I

I

+

8 +

S4



IVAN BOZOVIC AND JOSEPH DELHALLE

cf

a)

~ W

+
II

+8 w

t=" e

0

e—
m

~ ~
Q ce

~ m
~ ~ Vg QC

*~

ea Q) Q
4

Q

rv /R
II V

V

Q

Q

05

tq
Q

~ ~

I

bQ

g
Q ~ e

II

«Pl Q

ce c5

Q v

g+
+

II

+

+
I

+

fv

+
+ ~ Pa

I

0

+
cna„e

I

Q lq

+

Ieasgel

g4

+

I

C4

H-

II

a„'

j

~"+ 8'

II

~ rH
j

j

P M

+.+ ~"+
+

~ 'I~I

II

e

II

j

j



SYMMP TRY ADAA»ED L»«R COMMNA»ATION Op ATOMIC ORBITALS BASES

Q Q

~ ~

8
E '"

CA

a6
c5

V
E

c5 Q
8

C5 rate

CP
I

I

I

»5 c$ +
~t

I
I

P Cfl +
Q

II

V
$(Q

e

C$ +

.~J

Q

+ + GC

8 Q

c0
C4 +

V

+
I

II

p ~ l4 ~ +
~R~ g @~ wR~

Q
+

g g ~ a.
8 ~

Q

Q 5
g & Q

g g~ -~ H"

a"~

~ y 8 —s"

$Q

+ ~
& t" a"~

II a

8 Ie
I

I

+

I

+e 8™+

4 ~

4C V
Q

~ eW

~R I

I

a
I

I

ee



4746 IVAN BOZOVIC AND JOSEPH DELHAI. LE

tails see Table VIII. Some other space groups
(P4b2, P4mm, C2/c, PI) are also found' in compounds
containing CP chains; these cases can be treated analo-
gollsly.
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APPENDIX: I.CAO SAB's FOR THE L (2&)qmc
LINE GROUPS

The problem posed in Sec. IIB—to construct and tabu-
late the symmetry-adapted LCAO's —is solved here for
the selected family of line groups, L (2q)zmc. After repro-
ducing the irrePs of L(2tl)emc (in Table III) for the
reader's convenience, we give explicitly (in Tables IX—XI)
the symmetry-adapted linear combinations (SALC) of the
initial atomic orbitals for each graph, each irrep of
L( 2tl) emc, and each type of AO. The tabulated SAB

spans the whole variational space V and is linearly
independent —for a given graph and irrep we omit the
AO's that project onto zero or onto functions linearly
dependent on those already tabulated.
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Belgrade, Yugoslavia.
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