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A method to derive LCAO bases adapted to the symmetry of a quasi-one-dimensional crystal is
presented. The complete solution is given for chains of L (2g),mc line-group symmetry in general
and for the beryllium hydride polymer and tetracyanoplatinate chain in particular. We also give a
quantitative account of computational reductions and discuss band touchings and slopes, crystal-
field splitting, and selection rules for direct optical absorption.

I. INTRODUCTION

Discoveries of pyroelectric and piezoelectric (polyvi-
nylidene fluoride), photoconducting (polyvinyl carba-
zole, etc.), conducting [polyacetylene, polypara-
phenylene, tetrathiafulvalene-tetracyanoquinodimethane,
(TTF-TCNQ), potassium tetracyanoplatinate complexes
(KCP), etc.] and superconducting [polysulfur nitride,
NbSe;, bis-tetramethyltetraselenafulvalene perchlorate
(TMTSF),ClO,, etc.] polymers and quasi-one-dimensional
(quasi-1D) solids have stimulated extensive investigation
on their electronic properties.! One-electron band-
structure computations on model chains,? ranging from
semiempirical to ab initio Hartree-Fock, provide informa-
tion on charge-density distributions, geometric structure
and force constants (via potential energy surface scan-
ning), charge-carrier mobilities along the chain, etc.
Offering a conceptual framework for interpretation of re-
lated experimental [x-ray photoelectron spectroscopy
(XPS), electron energy-loss spectroscopy (EELS), etc.]
data, they contribute to our understanding of structure
and properties of these materials. In this paper, we im-
plant explicit symmetry considerations into such compu-
tations, trying to improve their efficiency and obtain addi-
tional physical insight.

Polymers and quasi-1D solids possess specific spatial
symmetries, properly described in terms of line groups.>*
Utilizing the analogy with the crystallographic space
groups as much as possible, we could express most of
line-group theoretical results in terms already familiar to a
solid-state physicist (Brillouin zone, band and star degen-
eracies, compatibility, etc). Motivation for independent
study of the line groups stems from their advantageous
structural features (uniaxial rotations, order-2 subgroup
chains, comprehension of a whole infinite family of line
groups by a single parametrized formula, etc. (cf. Sec. II),
enabling us to complete certain tasks [e.g., to tabulate
symmetry-adapted bases (SAB’s)] that would be very im-
practical to perform for all the three-dimensional (3D) 230
space groups. Next, it is possible to give a clear physical
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interpretation (quasimomentum, quasi-angular-momen-
tum, mirror-plane parities, etc.) of the quantum numbers
arising from the line groups, and thus to express our re-
sults in very simple terms, avoiding elaborate group-
theoretical parlance. Finally, in 3D crystals, general K
vectors outnumber the special K vectors (viz., those that
are invariant under some symmetry operations); in con-
trast, for all but a few of the most trivial line groups, every
k point is a special point; thereby importance of symmetry
considerations is greatly enhanced in the case of chainlike
systems. However, apart from the translational symmetry
and the simplest (cyclic) line groups,’ only a few other line
groups were considered®; therefore a systematic study of
all line groups has been undertaken,””® this paper
comprising the part devoted to the applications of line-
group theory to linear combination of atomic orbitals
(LCAO) band-structure calculations on polymers.

The paper is organized as follows. The method we use
to derive the LCAO SAB’s is expounded in Sec. II and il-
lustrated in the Appendix, where such a basis is explicitly
tabulated for the L (2g),mc line groups, the most complex
within this approach. The form of one-electron equations
in the new basis is discussed, and a quantitative account is
given for the computational reductions (in the format of
matrices and in the number of integrals). For many
quasi-1D and polymeric conductors the line-group sym-
metry is specified, and two examples—beryllium hydride
polymer and tetracyanoplatinate chain, both of great in-
terest by themselves”!°—are considered in detail (SAB’s,
equations, computational savings, band-structure features,
compatibility, selection rules, crystal-field splitting) in
Secs. 11T and 1V, respectively.

II. LINE-GROUP SYMMETRY-ADAPTED LCAO’S
AND BAND-STRUCTURE COMPUTATIONS
A. Line groups

The spatial symmetry groups of physical systems
periodic along a line—such as stereoregular polymers and
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TABLE L. Line groups and their isogonal point groups. Here n =1,2,...
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,p=0,1,...,n—1,and g=n/2=1,2,.... C, 8,

0y, and U are defined in the text (in Sec. II A) and U, =C,,U. The relevant index-2 subgroup structure of the line groups is explicitly

shown below.

Point Line group
group n odd n even
C, Ln
Ln,
Cho Lnm =Ln +(3,|0)Ln Lnmm =Ln +(6,|0)Ln
Lne=Ln+(8,| +)Ln Lnee =Ln +(8, | +)Ln
L(2q)ymc =L (2g),+(5, | 0)L (2q),
Cu Ln/m=Ln +(&,|0)Ln
L(2q);/m =L(2q),+(64 | 0)L (2q),
S La=Ln+(6,C,, |0O)Ln L(Zn)=Ln +(8,C,, | 0)Ln
D, Ln2=Ln +(U|0)Ln Ln22=Ln +(U |0)Ln
Ln,2=Ln,+(U|0)Ln, Ln,22=Ln,+(U |0)Ln,
Dy Lam =Lnm +(U, | 0)Lnm L(2n)2m =Lnmm +(U; | 0)Lnmm
L#ic =Lne + (04| 0)Lnc L (2n)2¢ =Lnce +(0, | 0)Lnee
D,, L(2n)2m =Lnm +(6;, | 0)Lnm Ln/mmm =Lnmm +(& | 0)Lnmm
L(2n)2¢ =Lnc +(84 | 0)Lnc Ln /mecc =Lnce +(84 | 0)Lnecc
L(2q),/mem =L(2q),mc +(04 | 0)L (2g),mce
Cmv Lom
D, Lo /mm=Lom+(6,|0)L com

atomic chains or molecular stacks in quasi-1D solids—are
line groups.>* [Line groups are frequently confused with
either strip (Streiffen) groups or one-dimensional space
groups; in fact, they correspond to arrays of three-, two-,
and one-dimensional objects, respectively.]

Let (R | 7) denote an element of a line group L; if the z
axis coincides with the chain axis, then (R | )T
=RT+7a¢ €,, where a is the translatlonal penod T=t+,
where O<v <1 and ¢t =0,+1,%+2,. .R= C,,,a,,,ah, U,
or a combination of these transformatlons. Here C,l
denotes a rotation through a=2/n around the z axis; n
may be any integer so that the number of line groups is
unlimited. (There are 75 crystallographic line groups in
which n =1, 2, 3, 4 or 6; they appear as proper subgroups
in the space groups. However, for a single chain one fre-
quently finds n =5, 7, etc.; in some polymers n >40.) The
mirror reflections in the xz and the xy planes are denoted
by &, and &}, respectively, and U is the rotation through
a=m around the x axis. A line group is denoted, in the
international crystallographic (Hermann-Mauguin)
manner, by Ln, (p=0,1,...,n—1)if it contams a screw
axis (C |p/n), by Lny2 1f it also contains (U[O), etc.
The list of all line groups (with relevant subgroup struc-
ture indicated) is given in Table I, and some of currently
most interesting chain compounds are classified according
to their line-group symmetry in Fig. 1 and Table II.

With translational symmetry, it is sufficient to consider
explicitly one unit cell instead of the whole periodic ob-
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FIG. 1. Examples of line-group symmetries of polymers and
quasi-1D molecular stacks. (a) trans-polyacetylene, (b) NbSes,
(c) planar (polyparaphenylene), (d) polypyrrole, (e) Wolfram’s
red salt, (f) Magnus’s green salt.



29 SYMMETRY-ADAPTED LINEAR COMBINATION OF ATOMIC ORBITALS BASES . . .

4735

TABLE II. List of some representative quasi-1D conductors, molecular stacks, and polymers, classified according to line-group
symmetry. The following definitions apply: TMTSF, bis-tetramethyltetraselenafulvalene; NMP, N-methylphenazinium; HMTTF,
hexamethylenetetrathiafulvalene; TTT, tetrathiatetracene; TSeT, tetraselenatetracene.

Line group Compounds
LTm trans-polyacetylene or trans-(CH),, poly(p-phenylene sulfide) or (CeHiS™),,
TMTSF—NMP—, HMTTF— stacks
L1/mm MX; (M=Nb,Ti,Zr,Ta; X =S,Se,Te) chains
L2mc polysulfurnitride or (SN),
L2/mcc poly(p-phenylene) or (CeHy)y
L2/mmm tetracyanoquinodimethane (TCNQ) stacks, tetrathiafulvalene (TTF) stacks, planar poly(p-phenylene)
L2,/mem TTT stacks, TSeT stacks, cistransoid- and transcisoid-polyacetylene, poly(pyrrole)
L4mm Wolfram’s red salts, e.g., [Pt(ea),][Pt(ea),Br;]Br, (ea=-ethylamine)
L4/mmm Magnus’s green salts, e.g., PtCL,PtN,, porphyrinic molecular metals
L4,/mcm beryllium hydride or (BeH,),, beryllium chloride or (BeCl,),
L8;/mem K,Pt(CN),

ject. Additional symmetries (rotation and screw axes, mir-
ror and glide planes) further decrease the relevant portion
(asymmetric unit) of the polymer onto a basic motif, i.e.,
the minimal part from which the line group recovers the
rest. '

B. Irreducible representation and SAB’s of line groups

Let V be a state space [spanned by the initial set of
atomic orbitals (AO’s)] and let

S DyR|m*R |, (1)
(R|nEL

where D is a unitary irreducible representation (irrep) of
the corresponding line group L, d, is the dimension of
D%, | L | is the order of L (assumed finite in virtue of the
Born—von Kérman periodic boundary conditions), and
[I/{\ | 7] is a (reducible) unitary operator defined in ¥ by

[R|r]@(D)=d(R | 1~'D) .

Utilizing P §j one can construct a basis of ¥, symmetry-
adapted (SAB) with respect to L, according to the well-
known'! algorithm: (i) specify the input data (atomic po-
sitions, orbitals, irreps D%), (ii) determinfathe matrices of
[R | ] for each (R |7)€EL, (ii) form Py, i=1,...,dq,
(iv) apply them to obtain symmetry-adapted columns, and
(v) select from these a linearly independent set. (For the
space groups, a computer routine has been developed'?
along these lines; the required irreps are generated each
time.) The question we posed ourselves was, is it possible
to perform this task only once by tabulating ready-to-use
line-group LCAO SAB’s—or even better, by writing the
final one-electron (extended-Hiickel, pseudopotential, etc.)
equations in a symmetry-adapted form? The answer is
positive, due to the following observations. First, the ir-
reps D® of all the line groups are now available’ (in a
parametrized form). Second, the action of [f!\ | 7] onto an
AO O(T— ii,,) consists of an on-site transformation (rota-
tion and/or reflection) R ®(T)—®(T) followed by a site
change ﬁu —»l_i,, =R | T)ﬁu so that altogether one has

[R|7]®(F—R,)=d(F—R,) .

Each of these two mappings (®—® and R, —»l-i,,) can be
completely specified when an appropriate classification of
AQ’s and atomic sites is made.

C. Onssite transformations: Types of AO’s
If the AQ’s are of the form

O™ =f(r,0)e™?

a pair {<Dm‘,<l>—m’} (with m, >0) can be replaced by an
m

equivalent pair {CD':’,(D_‘} of real AO’s defined by

<I>':’ = f(r,0)cos(m,¢)
and

@7 =f(r,0)sin(m,$) .

In this classification s, p,, and d22 orbitals are of ®°
type, [Px)Py} and {dxmdyz} are pairs of {(I):_,(I)l_} type,
d,,z_yz’dxy} is a pair of {®%,®%} type, etc. One can
easily verify that

Csp°=9°, (2a)

Cid ) =cos(m,sa )<I>Z’ fsin(msa)® ", (2b)

G5 d_ = —sin(m,sa)® +cos(msa)® ", (2¢)
and

5,0°=0°, (3a)

6,00 =+dy (3b)

D. Site permutations: Graphs of line groups

Any polymer can be viewed as the union of simple
(monatomic) subchains, -each generated by the action of
the operations of the corresponding line group L onto one
of the atoms in the basic motif. We call the set T of the
atomic sites belonging to one subchain a graph of L.
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Now, if R, €T then (R | )R, =R, €T, so that (R | 7) de-
fines a permutation u-—v=II(u). Two graphs are in-
equivalent if they give rise to different permutations; for
each line group there are no more than few distinct graphs
that can be found by inspection (or by enumeration of
some special homomorphisms of L).

Thus we can completely determine the action of [ﬁ | 7]
onto an atomic orbital d>;?’ if its type (specified by m, and
A) and the graph I' to which it belongs are given; then the
remaining steps (iii)—(v) are readily performed. Our task
is solved when we tabulate the LCAO SAB’s for each L,
D% T, A, and m,.

E. LCAO SAB tables: Usage

Comprehensive tables of the LCAO SAB’s for the line
groups have been derived as outlined above; for the sake
of brevity we list (in the Appendix) only those correspond-
ing to the L(2g),mc family of line groups. This choice is
made because (a) they are the most complex groups to be
computer-implanted in our approach, (b) they contain ro-
tation and screw axes, mirror and glide planes, and thus
they contain the features of all others, and (c) the actual
physical systems [beryllium hydride polymers, Pt(CN),
chains] we extensively deal with later in this paper (cf.
Secs. III and IV) belong to this family. As for (a), the line
groups isogonal to C, or C,, significantly contribute to
numerical savings; the effect of additional (6,0,0;)
symmetries is negligible and we use them a posteriori (via
the compatibility relations, etc.; cf. Secs. III and IV). The
relevant subgroup is indicated for each line group in Table
L

The graphs of L(2g),mc are T, containing points on
the z axis (two points per translation period), I, generated
by a point in the o, plane (2g points per period), and I,
with a generating point in an arbitrary asymmetric posi-
tion (4g points per period). The irreps of L (2q),mc are
one-dimensional (;4o, xBo, x4y 1B,) and two-di-
mensional (xE,, _,,, m=1,...,q—1), the latter bringing
in twofold band degeneracies; they are reproduced in
Table III.

For each graph and each irrep, only those orbitals that
give rise to linearly independent symmetry-adapted
LCAO’s are listed and projected. For a given polymer,
the user must find the tabulated LCAO for each orbital of
each atom in the basic motif, and together these LCAO’s

TABLE IIL irreps of the line groups L (2g),mc, g =1,2, ... .
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constitute a complete SAB; the procedure is illustrated on
(BeH,), in Sec. III.

F. One-electron equations in the LCAO SAB formulation

For a broad class of one-electron Hamiltonians (includ-
ing those appearing in frequently used tight-binding,
extended-Hiickel, pseudopotential, etc., schemes), one can
prove commutation of H with the corresponding line
group L and therefore with P §j- [In the self-consistent-
field (SCF) Hartree-Fock (HF) method one should, howev-
er, be aware of the “symmetry dilemma.” Incorrect nu-
merical cutoffs may also violate the symmetry, as has
happened frequently in the literature.] The commutation
with L is preserved if one neglects

| (®,F—R,) | ®(F—R,))|

when it is less than 8, or when | ﬁy—ﬁvl >d, where §,d
are specified constants; including the long-range summa-
tions is even better. Thus one expands

1//=2¢a,', l)bai = E Civ(a)ﬁz’q)v
ai v=1

(where the index v enumerates the w AO’s in the basic
domain) to obtain

S Cila)[H (@) —ela)S,,(a)]=0 @)

for each irrep D of L, where

Sﬂv(a)5<¢p,ﬁ71¢v) , (5)
H, (a)= (Qpﬁﬁ7xq’v> .

Since ¢, and P2, i=2,..., d, (d, being the dimension
of D¢ give rise to identical S, () [and H w(a)], Egs. (4)
do not depend on i, therefore explaining the systematic
d,-fold degeneracy.

Numerical savings achieved via this basis transforma-
tion are significant. Before proceeding to their quantita-
tive estimation let us just stress that the numerical coeffi-
cients C;,(a) appearing in the symmetry-adapted LCAO’s
and in the expansion of the matrix elements (5) in terms of
those over the initial AQ’s are indeed the same.

Here «(7)=explikta), M (s)=(} 2#),

N()=Ct"), where p=explimsa) and t=0,+1,+2 ..., a=n/g r=01,...,q—1,
—m/a<k<m/a,m=12...,q—1.
irrep (x| (CE+ L +41) (0,C% | 1) (0,CH* | 5 +1)
kAo k(1) k(4 +1) K(2) k(5 +1)
x4, K(2) —k(F+1) K(2) —k(5+1)
«Bo K(t) k(5 +1) —x(t) —k(5+1)
«B, k(1) —k(5+1) —kl(t) k(5 +1)
«Em —m k(£)M (2r) k(5 +0DOM(2r +1) k(t)N (2r) k(5 +1N(2r 4+1)
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G. Computational advantages

The LCAO SAB formulation of the one-electron eigen-
problem, Eq. (4), offers the following advantages: (i) the
format of the matrices to be diagonalized is lowered, (ii)
the number of integrals over AQ’s to be calculated is re-
duced, and (iii) the one-electron states emerge with sym-
metry labels, useful for logical control of the calculations
and for subsequent physical interpretation of the results.

To make the argument quantitative, let us consider an
arbitrary polymer of L (2¢g),mc symmetry, with a orbitals
of ®° type and b AO pairs of {d)_,_ ,<Dm‘] type on T,
graphs, ¢ +2d on T', graphs, and e +2f on I', graphs, in
the basic domain. Let us further classify the above-
mentioned b pairs of orbitals at ', into b, pairs with

J

dimV (zdo)=dimV (;4,)=a +b,+c +d +-e +2f ,
dimV (;Bo)=dimV (;B,)=b,+d +2f ,
2b,+c +2d +2e +4f, m=q/2

dimV (yEp _m)= {2b3+c +2d +2e +4f, m=—m,
¢ +2d +2e +4f, m=m,—hg,

where h =0, %1, .. .; the three conditions on m in ¢ E,, _,,
are complementary and altogether m =1,...,q —1 (cf.
the Appendix). Hence H(k) and S(k) matrices are block-
diagonalized from QX to a sum of blocks, dimensions
of which are given in (7). For beryllium hydride polymer
(cf. Sec. IIIA) in the valence-orbital description, this
amounts to reduction from 12X 12 to 3X3 matrices and
for Pt(CN), chain (cf. Sec. IV A) from 84 X 84 to at most
10 10. Since diagonalization is usually the computation-
al bottleneck (except for the SCF HF method), evidently
some interesting, but as yet intractable, systems are now
brought within reach by virtue of line group SAB’s.

Let us discuss now reductions in the number of in-
tegrals [item (ii)] to be computed. Traditionally, one
would calculate the overlap integrals

0|t -
Jl=fou7-Ry

to form the QX Q blocks S(k), —m/a <k <m/a, where

®,(F—R,—1a¥€,)dT

0|t
S,w(k)=§exp(—zkta) wlv

and analogously for H(k). Instead, for each irrep D¢ of
L(2g),mc we form S(a) according to (5a), utilizing only
some of the integrals () | }).

For a given ®!, let <I>° denote the orbital belongmg to
the zeroth basic motif (BM), such that @' =[R | 719 for
some [R | T]1EL(2g),me. It can be seen that we do not

need (2& ) unless
(1) @, belongs to BM,
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m,=hg, b, pairs with Fr(m,/q)=+, and b; pairs for
which m,=—m +(h +1)g, where h=0,%1,..., and
Fr(x) is the fractional part of x. (These three conditions
are indeed complementary.) The irreps of the one-
d1mens1ona1 translation group T are defined by
a'k(E | t)=exp(ikta), where —m/a <k <mw/a; hence V
splits into the orthogonal sum of subspaces V(dy) of di-
mension

dimV(dy)=2(a +b)+2q(c +2d)+4q(e +2f). (6)

In the LCAO SAB of L(2q),mc, as given in the Appen-
dix, each V(d;) splits further into the orthogonal sum of
subspaces V (;D?) of the following dimensions:

)]

+(h+1)g

(2) both <I>° and (I),,' contribute to some V%, ie.,
(@0, P0))= & P @), ®%)-£0, or

(3) n<v.

It is straightforward but space consuming to analyze in
detail the effects of cases (1)—(3) in terms of a,b, ..., f
and D% let us rather note that case (1) plays the major
role for atoms in asymmetric positions in contrast to case
(2), which mostly affects those on I',. Also, note that case
(3) is more strict than the traditional u <v. Altogether the
savings are remarkable; some numerical illustrations can
be found in Secs. III and IV.

In view of frequent misunderstandings we feel it neces-
sary to stress also that the integrals to be actually calculat-
ed within the two methods are indeed the same; only the
linear combinations made from them afterwards are dif-
ferent. This point may be easily understood upon inspec-
tion of the overlap matrix for (BeH,), in the L 4,mc
LCAO SAB, given in Table IV.

In the line-group SAB formulation, the eigenvalues and
eigenstates of H emerge automatically assigned to irreps
of L [item (iii)]. These labels convey physical information
on which we concentrate in Secs. III and IV; in addition,
they bring in some computational advantage in terms of
logical controls of the calculated bands and states. In ad-
dition to checks of degeneracy, transformation properties,
frequencies of irreps, and band touchings at the zone
center and edges, these labels are helpful in the case where
two or more bands come close together or cross (“band-
indexing difficulties”).? 4 posteriori symmetry analysis of
the reported band structures of polymers shows that in-
correct interpolations, incorrect interaction truncations,
and other artificial violations of symmetry were frequent-
ly made. ,



4738

IVAN BOZOVIC AND JOSEPH DELHALLE

TABLE IV. Overlap matrix for the (BeH,), polymer, expressed in the LCAO SAB of L4,mc. S(A,) block corresponds to the

irrep xAo, S(4,) to xA4,, and S(E,) to the first column of L E; _;.

vy=exp(—ika/2)and —w/a <k <m/a.

Atomic orbitals

®=2s(Be,), DI=2p,(Be;), DI=2p,(Be,),

®)=2p,(Be;), PI=1s(H;), D¢=1s(H,),

®)=2s(Bey), P§=2p,(Be;), Py=2p,(Be;), DlHp=2p,(Bey), D =1s(H;), D= 1s(H,)

Overlap matrices
Su S Sis
Block 1 _AS(A())= STZ 522 S25 ’ where
St S3s Sss
; j 0)f 0] ¢ 1,2 1,2,5 d
S,,,V=7;exp(—zkta) v +v plv+6l] p=12, v=1,25 u<v an
1 _ olt] o]s 0|
Ss,5=7 >exp( —ikta) sls |+ Isle +2y sl
Block 2 S(4,): same as S(4,) but replace ¥ by —y
Py 0 Pjs
Block 3 S(E\)=10 P33 0 |, where
P 0 Ps
1 0ls 0|
P3, =+ Yexp(—ikta) 3y —iv |3 va6 ||’ v=3,5 and
1 ot o]
Pss =5 > exp(—ikta) sls1— Isle

III. EXAMPLE: BAND STRUCTURE
OF BERYLLIUM HYDRIDE POLYMER

A. Symmetry-adapted one-electron eigenproblem

The translational repeat unit of the (BeH,), polymer
contains 6 atoms with altogether 12 valence orbitals (cf.
Fig. 2 and Table IV). The chain is invariant with respect

to the line group
L 42/mcm =L 42mc +(6’h I O)L 42mC .

The basic motif contains two atoms (Be; in the I, posi-
tion and H; in the T, position) with 5 AO’s (¥, . .., ®?).
The irreps of L4,mc are Ay, rA,, xBo, xB» (one-
dimensional), and xE; _; (two-dimensional). Using the
LCAO SAB of L 4,mc, the 12-dimensional subspace V (k)
splits into V(A4g)+V(A4,)+V(E|)+V(E_,), where these
three-dimensional subspaces correspond to 4, and z4,,
the first and second matrix columns of x E,, _,, respective-
ly. In more detail, ¥ (4,) and V(A4,) are generated by
projecting out @9, ®J, and ®? by ﬁ(kAo) and ﬁ(kAz),
respectivel)\'; V(E,) is formed from &%, ®3, and @I pro-
jected by P(xE; _1)1,;. As expected from the twofold de-
generacy, §/£E_1)=§(E1) if the basis of V(E_,) is ob-
tained via P(xE;, _),,, so we need only three 3 X3 Her-

mitian matrices S(4,), S(4,), and S(E;). Their explicit
form is given in Table IV. To simplify further the entries
we have made use of the fact that [&,|0] maps
D4, D}, DL, DY onto D, — D}, DL, DYy, respectively, so that

k- L)

0|t 0|¢
117 |5]12

=0

and

Similarly,

and

(U
311

0|t
== 3|12
in view of [C, |0]: ®%— — @}, BLdL, D)L, The

forms of the blocks of H(k) are completely analogous; one
just needs to replace
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To be completely specific, let us retain only the
nearest-neighbor interactions. In the traditional approach,
one must compute 66 overlap integrals; we reduce these to
only 4, viz.,
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2 ’ )

If we include the next-nearest neighbors, the 92 integrals
reduce to 9; one needs also

olo] [olo] [olo
L sy 28]
/ olo oo
# 3liol |51 |-

Hence the savings of computation are remarkable.

B. Symmetry analysis of the band structure

The band structure of the (BeH,), polymer, calculated
within the extended-Hiickel crystalline orbital (EHCO)
method, is presented in Fig. 3. A reasonable overall agree-
ment is found with the ab initio results.!**

| NANTANE

FIG. 2. Geometrical representation of (BeH,), model chain. +17 ' —
Line-group symmetry is L 4,/mcm. /—4
A,
L
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Out of (3 %), p,v=1,2, ..., 12, the following integrals \
are found to be redundant [cf. item (ii) of Sec. II G for the el
discussion of cases (1)—(3)]. For case (1), _o3l { |
“F |
-0af | ]
|
0|t !
wlv for u=6,7,...,12. e I
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For case (2), i >
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2131 1214 12191 (2]10]° FIG. 3. Extended-Hiickel energy band structure of (BeH,),
polymer. The three E bands are twofold degenerate throughout
Oft Oft Oft 0|t the Brillouin zone. Vertical arrows indicate the symmetry-
3171 1318 (4|71 |48 allowed transitions induced by absorption of light polarized in a

plane containing the chain axis, for the perpendicular (
and parallel (— — —) incidence, respectively.

)

For case (3),
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TABLE V. Compatibility relations among the irreps of
L4,/mcm at k=0 and m/a and the irreps of L4,mc for
0<k <m/a. The superscripts + distinguish the irreps even and
odd with respect to (& | 0).

L4,/mem L4,mc L4,/mem

+ /sz\____
0B
‘rrEB

By ~—o
S —
oB{

xBo

Jf—l% /WEE“I
/’CEI"I
_—
OEit—l ﬂEit—-—l

';r/a

To each band we have assigned a symmetry label; i.e.,
the (abbreviated) symbol of the irrep of L 4,mc according
to which the corresponding one-electron states transform.
In view of the results of Sec. III A we see (contrary to Ref.
14) that A, and A, states are linear combinations of 1s(H),
2s(Be), and 2p,(Be) orbitals and that the degenerate E
states are made out of 1s(H), 2p, (Be), and 2p, (Be) orbitals.

As a logical check of the obtained band structure, we
can utilize the symmetry labels to analyze band touchings
and slopes at the Brillouin-zone center and boundaries.
The compatibility relations (cf. Table V) indeed indicate
that the 4, and 4, bands should remain coupled when
k—/a. In view of e(k)=¢(—k)—as follows from oy
symmetry and/or time-reversal symmetry—one has

de
dk | _o

=0

for each band and

de

=0
dk k=m/a
for the E bands. Finally,
de(4y) de(d,)
- =2 -0
dk k=m/a dk k=m/a

for the 4, and 4, bands that touch at k =7 /a. This can
be easily seen if one observes that pAdy=;A4, for
k'=k +2m/a, so that two bands €(zA4y) and €(;A4,)—
which are smooth and periodic in the Jones zone (i.e.,
twice the original Brillouin zone)—cross and reverse at
k=mw/a.
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C. Selection rules

The symmetry labels are also useful in discussion of dif-
ferent processes in which the polymer may be involved;
specifically, they allow one to derive easily the corre-
sponding selection rules.>!> Let us, for example, consider
direct optical absorption of a photon propagating along
the x axis and polarized in the xz plane (the coordinate
system is oriented as in Fig. 2). Taking for the moment
only the L4, subgroup into account, we see that the tran-
sition is forbidden unless Am =0, i.e., the allowed transi-
tions are A_;—>iA_1, rAo—irdy xA1—iAy
kA, —1A,. Adding (3, | 0) now we enlarge the line group
onto L 4,mc, with the effect that the ;4 _; and the ; 4,
states become degenerate at the same time so that the
selection rules are Ag—xdo, kE1,_1—kE1 -1,
xA,—rA,. Note that the energy defines mixed rather
than pure states in the case of degeneracy; for the same
reason the above-mentioned rules reduce at k =w/a to
ﬂ'EA _—)'n'EA7 ﬂEl,—l_—)ﬂEl,—l‘ On the other hand, if a
beam of light of right circular polarization is directed
along the z axis, L4, allows transitions with Am =41,
ie., xAd_1—xAo, kAdo—rA1, k1142, kAr—>rA g SO
that for L 4,mc one obtains the following rules:

kdo—kE1 —1, kA2—kE1_1, kEi,—1—rdo o1 A4, .

For the left circular polarization one has Am =—1, but
the final list of the transitions allowed by L 4,mc is identi-
cal to that given above, as indeed expected for nonchiral
(auto-enantiomorphic) chains such as the one under con-
sideration. Finally, the same rules must apply also to a
beam incident along the z axis and polarized in the xz (or
any other vertical) plane; the rule for L4, is Am==1 in
this case. The first two cases are illustrated in Fig. 3,
where the allowed direct optical transitions are represent-
ed by vertical arrows. It suggests that remarkable aniso-
tropy and dichroism for the absorption of polarized light
should be expected in (BeH,),—of course, for a reason-
ably perfect sample.

IV. EXAMPLE: ALL-VALENCE-ELECTRON
APPROACH TO TETRACYANOPLATINATE CHAIN

Let us consider now our second example, the
[Pt(CN),2~ ], chain (CP in what follows) represented in
Fig. 4. Compounds containing such chains have attracted
much attention recently; K,[Pt(CN),]Brg 3:3H,0 and its
chloro analog are in fact the model systems for studying
some phenomena (Peierls transitions, etc.) pertinent to
quasi-1D conductors.

In view of detailed discussions in the preceding section,
for the CP chain we give only the final results. Let us just
note that larger format (84 84) of this eigenproblem
enhances the relevance of symmetry arguments: They
reduce a difficult numerical task to a moderate task.

The translational repeat unit of CP contains 18 atoms
(two Pt, eight C, and eight N atoms), with 84 valence orbi-
tals altogether (5s,5p,5d,6s for Pt, 2s,2p for C, and 2s,2p
for N). The line group of CP is

L 84/mem =L8ymc + (6, | 0)L 84mc .



[Pt (CN),]1x

"9

[\f? x

FIG. 4. Geometrical representation of [Pt(CN),;], model
chain. Line-group symmetry is L 8,/mcm.

The irreps of L8ymc are rAg, rA4, xBo, rxBs (one-
dimensional) and E;_;, iE;_2, (E3_3 (two-
dimensional). The basic motif contains three atoms (Pt in
the T', position and C and N in the I', position) with 18
AQO’s.

The formulas given in Table IX for the I', graph and in
Table X for the I, graph enable one to write down im-
mediately the complete LCAO SAB for the CP chain; one
only needs to select, for each irrep D* of L 84mc, the
AO’s belonging to the (zeroth) basic motif that contribute
to the subspace ¥ (; D). This is accomplished in Table VI.
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A. Block-diagonalization of S(k) and H(k)

As follows from Table V, in the SAB formulation the
eigenproblem of CP block-diagonalizes:

V(k)=V(Ag)+V(44)+V(By)+V(B,)
+2V(E)+2V(E,)+2V(E3) ,

where dimV(k)=84, dimV(B)=2, and dimV(4)
=dimV (E)=10; 2V (E;) means that the S(E;) block ap-
pears twice in S(k), etc. Therefore instead of an 8484
matrix we must diagonalize five 10X 10 blocks and two
22 blocks; in view of the roughly N dependence of di-
agonalization complexity, the latter task is 2 orders of
magnitude easier.

B. Reduction in the number of integrals

As an illustration, let us consider the CP chain in the
approximation in which the integrals

0
u

t 0],\‘1‘
v ul iy

b

are neglected unless the atoms involved belong to the same
planar Pt(CN), complex or to the neighboring complexes.
In the calculation scheme utilizing only translational
periodicity, one must calculate 6237 overlap integrals; fur-
ther symmetry arguments reduce the number to only 257,
i.e., for more than 24 times.

C. Band degeneracies, touchings, and slopes

The E, _,, E, _,, and E; _3 bands are twofold degen-
erate throughout the Brillouin zone. At the Brillouin-
zone edge k = /a, the 4, bands remain coupled with the
A4 bands as do the By and B4 bands and the E, _; and
E; _; bands. Note that in the last case we obtain fourfold
degeneracy at the zone boundary; for more details see
Table VII. The slopes at the center and at the edges of the
Brillouin zone are the following:

TABLE VI. AO’s from the (zeroth) basic motif of the CP chain which contribute to the subspace of
the specified irrep of L 8;mc. The symmetry-adapted LCAQ’s are obtained when the AO’s of Pt (given
in the left-hand column below) are substituted into the formulas given in Table IX, and the AO’s of C

and N (the right-hand column) into those of Table X.

Subspace
Pt

Atomic orbitals
C,N

V(Ayp), V(A4,)
V(By), V(B,)
V(E;)

V(Ey), V(E;3)

5s, 5p, 5d22, 6s

pr ’ dez

Sd_»_p Sy

25(C), 2p,(C), 2p,(C)

2s5(N), 2p,(N), 2p,(N)

2p,(0), 2p,(N)

25(C), 2p,(C), 2p,(C), 2p,(C)
25(N), 2p,(N), 2p,(N), 2p,(N)
25(C), 2p,(C), 2p,(C), 2p,(C)
25(N), 2p,(N), 2p,(N), 2p,(N)




4742

TABLE VII. = Compatibility relations among the irreps of
L8,/mcm at k=0 and w/a and the irreps of L 8,mc at
0<k <w/a; cf. also Table V.

3,-3

/ ‘”Gl’—l
E;_3

de
dk |, _y

for each band,

de

“Le =0
dk k=m/a

for the E, _, bands, and

de
dk

_de
dk

k=m/a k=m/a

for each pair {e(k),€'(k)} of bands that cross at k =m/a,
viz., for
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(€4 (k)rea, (00, (€p (K)rep, ()} , and ez (K),eg, (k)] .

D. Selection rules for direct optical absorption

In analogy to the results of Sec. III G we find the tran-
sitions between the states bearing the same labels—i.e.,
xdo—rAos . - ., kE3— i E;—allowed for the perpendicu-
lar incidence of light polarized along the chain axis. The
selection rules for the parallel incidence are the following:

A, A,
BO —-)El, B4 —-)E3 y
E, E, E,
E1—> Ao, Ez——> E3 > E3-—-> A4 .
By B,

For k =m/a, the above rules degenerate into E—G,
G —E, where E stands for ,E,, ,Eg, or ,,Ez _, and G for
G? Z?, etc.

E. Crystal-field splitting

In view of the high symmetry of the CP chain, which
includes a noncrystallographic 8, screw axis, it is interest-
ing here to examine the effects of a crystalline environ-
ment. A single CP chain is invariant with respect
to (G| 1), (C40), (E3]3), (E,]0), (C3]3), (€30,
(CI1|+),..., but when similar chains are packed into a
crystal, the whole structure can at best be invariant with
respect to (C4]0),(C,]0),(C3|0), The Pt(CN),
chains are indeed found'® in crystals of I4/mcm space
group symmetry, e.g., in Cs,[Pt(CN),;]Cly, 30, Rb,[Pt(CN),]
(FHF)g 49, and Cs,[Pt(CN),] (FHF), 39, the latter one hav-
ing remarkable o);~2000 Q~'cm~'. Thus we arrive at
the problem of reduction of the irreducible representations
DX L8ymc|L4mm), i.e., the irreps of the L 8;mc line
group restricted to its proper subgroup L 4mm. The prin-
cipal consequences are splitting each twofold degenerate
E, _, band into a pair of nondegenerate 4, bands and
eliminating all band touchings at k = /a; for more de-

TABLE VIII. Effects of symmetry lowering from L 8,/mcm onto L 4/mmm. For the Brillouin zone
center, let k =0 in the upper part of the table and add the + superscript to each of the irreps.

L 84ymc Ao xAs xBo kBa xE1 «Ea_2 xE3_3
Lamm kAo kAo xBo xBo kB xA2®rA;  kE
L8,/mem Ea Es Ei G

L4/mmm AF®,A4; Bi®.By ,A70.47 Ei_jenEi_,
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tails see Table VIII. Some other space groups
(P4b2,P4mm,C2/c,P1) are also found'® in compounds
containing CP chains; these cases can be treated analo-

gously.
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APPENDIX: LCAO SAB’s FOR THE L (2q),mc
LINE GROUPS

The problem posed in Sec. Il B—to construct and tabu-
late the symmetry-adapted LCAO’s—is solved here for
the selected family of line groups, L (2g),mc. After repro-
ducing the irreps of L(2g),mc (in Table III) for the
reader’s convenience, we give explicitly (in Tables IX—XI)
the symmetry-adapted linear combinations (SALC) of the
initial atomic orbitals for each graph, each irrep of
L (2q)ymc, and each type of AO. The tabulated SAB
spans the whole variational space ¥V and is linearly
independent—for a given graph and irrep we omit the
AO’s that project onto zero or onto functions linearly
dependent on those already tabulated.

*Permanent address: Institute of Physics, P.O. Box 57, 11000
Belgrade, Yugoslavia.
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