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In the vicinity of a critical point, along the coexistence curve for a liquid and its vapor (or for a binary

mixture below the consolute point), the surface tension vanishes as o-= a-0(l —TjT, )I', whereas the corre-

lation length diverges as g= $0 (1—T/T, ) . %idom's scaling law relates p, to v as p, = (d —1)I (d ~4
is the dimensionality). Consequently, the combination of amplitudes (o-0/kT, ) ((0 ) is universal; the

first two terms of the e expansion for this quantity are computed in this work.

(4)], universal, alld equal to

Below the Curie point of an Ising ferromagnet, or
equivalently below the consolute point of a binary mixture
of two fluids, the two pure phases of the system may coex-
ist in the absence of any symmetry breaking field, if the
boundary conditions are set up appropriately. Let us consid-
er for definiteness a sample contained in a vertical cylinder
of height L and cross-sectional area A; if the spins point
down in the z = —L/2 plane and up in the z =L/2 plane,
an interface appears between the two pure phases of oppo-
site magnetization. The corresponding surface tension g is
defined ln terms of thc frcc cncrgy pcr unit area as

o = (Fti I' ll)/A—
in which the arrows specify the boundary conditions in the
planes z=L/2 and z= —L/2, respectively. This surface
tension vanishes at the critical point with an exponent p, de-
fined as

~(r) =~,r~, r=—(T, T)/T,' . —

Widom's scaling law' relates p, to the correlation length
exponent v. Specifically, if one writes

g(r) =g;r-",
Widom s law states that

p, =(d —l)v

in which d is the dimension of space (assumed here to be
smaller than four). It has been further argued by Fisk and
idom2 and recognized later as an aspect of the "two-scale
factor universality" that there exists a universal combina-
tion of critical amplitudes involving the surface tension am-
plitude o.o. Indeed, it is now understood that there is a
universal amplitude ratio corresponding to any critical ex-
ponent equality. 4 The simplest way to define this universal
combination is to notice that we expect the free energy of
the interface per unit area (divided by kT) multiplied by an
area defined by the correlation length to be both tempera-
ture independent and universal in the vicinity of T,. We
thus consider the quantity ~ defined as

(4 )-& ~(r)(» '(r)
kT,

it is both temperature independent [from the scaling law

r
16lrco r+ 2+ (Rz )» (7)

These other amplitudes are all available from Ref. 4;
however, for reasons that we do not understand, when we
use the various ~ expansions for these quantities, we do not
obtain a result for m in agreement with ours. 8 Second, the
calculation of the one-loop correction to mean-field theory
involves the Fredholm determinant of a SchrOdinger opera™
tor which is known in closed form and this makes our calcu-
lation much simpler.

Our result, to second order in ~, is

=2m 47 1 1
cu = —e 1 —e —+ —ln(4') ——y—

3 54 2 2

517&3 + g( 3) (g)
18

(y is Euler's constant = 0.5772 . . . ).
Setting e equal to one in ru (or in 1/co) yields estimates

which vary from 1.39 to 1.57. Experimental data on wo and
on the amplitude (o+ of the correlation length above T, are
available in a few binary mixtures. 9 With use of theoretical
estimates on (o+/$0 (Ref. 10) they lead to semiexperimental
values of rrl in tllc rallgc 1.2 to 1.5. Tllc 6 expansion (8) fof
cu is thus giving a 10 to 20'/o accuracy (which is sufficient to
decide that m lies in the interesting range 0.5 to 2 for the
critical wetting work reported in Ref. 5).

II. RENORMALIZATION-GROUP APPROACH

Thc vicinity of the critical point ls described by 8
Landau-Wilson continuum model" with an energy function-

The reason for choosing this rather odd normalization of
cu (with this factor 4') is related to the previous work on
the wetting transitions in which it was shown. that the actual
numerical value of cu, defined by Eq. (5), plays a key role in
understanding the nature of critical wetting. We report in
this work a calculation of co within the e expansion6
(e —=4 —d). Our calculation is similar to that of a quantity
Co performed by Ohta and Kawasaki. 7 There are neverthe-
less a few reasons to report our result. First, in order to
deduce ~ from Co we need a number of other amplitude ra-
tios (dcfined in Ref. 4), the relation being
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In order to obtain the free energy we must calculate the
partition function

exp W (hp ) =
J Dgpe

and the Legendre transform I'
( @p ) of W ( hp ) defined by

(10)

al written in terms of a one-component order parameter
@p(x) in an arbitrary external field hp(x):

PH = d"x[ —,
' ('7yp)' —

—,
'

rpyp+ —,
'

gpyp —hp(x) yp(x)]

(9)

The right-hand side of (18) is a pure number, a function
of e only, and thus this establishes both Widom's scaling
law (4) and the universality of ip.

III. EXPANSION IN POWERS OF e

OF THE SURFACE TENSION

At the mean field -level (e =0) we have

rM" (@)=„d4x[—,'(V@)2——,'r@2+(I/4!)gp ] . (19)

This gives the spontaneous magnetization
SN

itIp(x) = MMF (6r/g ) 1/2 (20a)

r (@,) = —W(h, )+ d4xh, (x)y, (x) .
and for the coexistence problem, the equation for @MF is

In zero field the free energy is given by
d ~tIMF ~ 1

F2
r~|IMF + g(ilIMF) (20b)

F/I T=r(yp),
in which @p(x) is the solution of

(12)
with the boundary condition cbMF( + ~) = + MM". The
solution of (20b) is the well-known kink

hp(x) —= =0sr
5@,(x)

(13)

~/kT=[r(@h(z) )
—r(M)]/A . (14)

In order to go beyond the mean-field theory, it is, as usu-

al, much simpler to use renormalized perturbation theory"
in which one deals immediately with the scaling limit

Boundary conditions must be supplemented to Eq. (13).
For up-up (or down-down) boundary conditions at
z = —L/2 and z = L/2, respectively, @p(x) is uniform and

equal to the spontaneous magnetization Mo. For down-up
boundary conditions, $$(z, x ~~) is independent of x

~~
but

vary with z between —Mo and Mo. The surface tension is

finally given by

@MF =M "tanh[ Jr/2(z zp) ] (21)

in which, from translational invariance, zo is arbitrary. Not-
ing that

IMF IMF
Tl TT

'I

[(@c)2 (MMF)2]2
2 dz 4I

elementary quadratures yield

(r r ) MF 4~2 3t2

kT A g

(22)

(23)

One loop correc-tions (first order in e). We have now to in-

clude one-loop diagrams and one-loop counterterms. For
the counterterms at this order, we note" that

I

PH= d x —Z( V~ti)' ——Zrp + gP Zip (15)
2 2

Z=l, Z=l+ u, Zi=1+ u
1 3

2E 2E

in which

(24)

(in which p, is an arbitrary inverse length scale, so that g is
dimensionless). We have used the minimal subtraction re-
normalization scheme in which the Zs are power series in g
with coefficients containing only multiple poles in e (but no
finite part).

The renormalization-group (RG) equations for any RG-
invariant physical quantity x, such as the surface tension or
the correlation length, read

This gives

kT

r(d/2)(2 )

4J2,t2

P+oo
+ dz ——r($"—M') + (It"—M')

x(r,g, p) =x(r(2),g(Z), xp) (16)

in which X is an arbitrary length-scale dilatation. In par-
ticular, the product (cr/kT)$4 ' satisfies (16) and is dimen-
sionless. Consequently, using the RG and dimensional
analysis, we have

Choosing A. such that r(X)/A. 'p, =1, [i.e., A
—(p, g) '],

g(A. ) is driven to its fixed point value g", and we obtain

+ ln det1 Q2 r +g@C2
—'72 —r +gM'/2

(25)

Two remarks are in order:
(i) When we expand loopwise the functional I (IlI ) up to

first order, I =rMF($) +I i (@}, and solve for the zero-
field profile (Sr/S~t ) (@')=0, the solution It is also shifted
from its mean-field value (21), QMF ~t

'= ItIMF+ it ', .
Therefore we have to consider rMF(iti'}+ri($'}; however,
in the loop expansion, this gets replaced by
I MF (QMF ) + I i ( ItIMF ), since by definition

(18)
~MF
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Hence we do not need to compute the change from the
mean-field order-parameter profile (21).

(ii) When we expand the field P about the mean-field
solution /Mr [(21)], the Gaussian part of these fluctuations
yields a determinant which appears in (25). This deter-
minant has a zero eigenvalue corresponding to the insensi-
tivity of the energy to a change of za, the interface location.
In principle, we should allow for fluctuations of P only in

directions transverse to this mode (()cb,/Bz). However, in

this problem, we can ignore this zero-mode problem com-
I

pletely because it does not give any singular contribution to
(25). Indeed, the lowest eigenvalue of the determinant
ea(q(~) =

q~~ vanishes when q((, the wave vector of the fluc-
tuations of the interface parallel to the z plane, vanishes;
however, it gives a contribution to (25) which, for low q~(,
behaves as f d" 'q~(lnq~~, which is finite.

We now give the main element of the calculation. The
determinant which appears in (25) may be easily diagonal-
ized, as far as the direction parallel to the z =0 plane are
concerned, by Fourier transformation, i.e. ,

—'7 —r +g@,(z)/2 ( d 'q((I —= ln det , n et—'7' —r +gM2/2 (27r )

—d /dz + q ~~

—r + 3r tanh (z Jr/2)
—d /dz +q ((

—r+ 3r
(26)

det
—d /dz —6''/cosh'(coz) +co'p (p —I) (p —2)

—d /dz + co p ( p + I ) (p + 2)
(27)

We are dealing here with the case (0 = Jr/2,
( ~

&/2

p= —qi[ +4=22
Therefore we end up with the explicit

&/2

—q[[ +4 —2
2 2

"-J (2.) — '"
—q'[[ +4
T

integral for I:
]/2

—q[i +42 2

[
1

+2 —q[[ +42 2

' 1/2

(28)
We, therefore, see explicitly in (28) that the zero of the

determinant at q[[
——0 does not prevent the integral to con-

verge for small q[[. A tedious, but straightforward, calcula-
tion yields

in which we have used explicitly (20) and (21). Using the
identity tanhzz —= I —I/cosh2z, we now have to consider a
one-dimensional Schrodinger operator in the attractive po-
tential —I/coshzz. The corresponding Fredholm deter-
minant is known in closed form:"

1

J dz — r(@2——M') + (P~ —M~)
OO

3 J2r3/2

where we have used
1

Sd —1 =4 I +—(I —21n2) +O(e2)
Sd 2

Using, in addition,

g'Sd =
3

e + 8,
e'+ O(e')

we find

with

3/2 —e/4 + O ( 2)
kT kT,

(

I +—I —ln2—

It is eady to verify that ——e/4 = v(d —I) + O(e2).

IV. CORRELATION LENGTH BELOW Tc

t

the counterterms, since elementary quadratures yield

(30)

(31)

(32)

(33)

(34)

I = r "/ Sd—( I +—ln2 — e+O(e2) . (29)
2e 2 18

The I/e pole of I/A cancels exactly the I/e parts given by

The calculation of the correlation function is completely
standard. " At one-loop order below T, one obtains for the
inverse correlation function at momentum p

r '1 1 'I

F(2)( ) 2 I+ u +gM' I+3u +~ t dq I
2e 2 2e 2 (27r)d (q2 —r+gM2/2)

g'M', t d'q/(2~) '
2 " (q' —r+gM /2) [(p+q)2 —r+gM'/2]

( 1 'I

=p' —r + —gM'+ —u( , gM' —r) ln( —,gM—'—r) +—ugM' I + J dxln[pzx(I —x) —r + '
gM ] (35)

This yields

g( &) —&
—(/2 —a/12( ——

g
—

&
—v

with

(36)

The correlation length is defined by the closest pole of the
correlation function in momentum space, namely,

(

r~2) —' =0 .

I

An elementary calculation, using (37), (34), and (32), and
the e expansion of Sd,

1

d/2F(d/2)

(

I + e —ln47r + ——~ + O (q2)
1 1 1

2 2 2

(0 =2 '/ I +e ——ln2+ ——
12 (37)

leads to the final result (8).
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