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The exciton binding energy of the line n = 1 in PbI2 presented a dilemma since the calculated en-
ergy using different methods is much greater than that obtained experimentally. In the present
work, with the use of the methods developed and applied previously with success for different semi-
conductors by Elkomoss for the exciton —ionized-donor complex and in which the polarizability of
the lattice has been taken into account, the binding energy of the complex has been calculated in
PbI2. This complex turns out to be stable. The exciton binding energy for the line n =1 has also
been determined. For the first time quite good agreement between the calculated value and the ex-
periments of Nikitine et ah. and Harbeke et al. for this line n =1 has been obtained. The oscillator
strength f3 if„ for the complex has also been calculated.

I. INTRODUCTION

The absorption spectra in PbI2 have been explained in
terms of a Wannier exciton series of up to four lines with
the Rydberg constants R„=142 meV (Refs. 1—5) and
R„=127 meV (Refs. 4—7) for the 4H and 2H polytypes,
respectively. It was a surprising result that the positions
of the n =1 line for the 4H and 2H polytypes were,
respectively, 82 meV (Refs. 1—3,5,8) and 72 meV (Refs. 5
and 8) higher than predicted from the Wannier series. In
an attempt to resolve the difficulty, the line n = 1 has been
represented by a different Wannier series. Since then the
anomaly of the line n =1 in PbI2 has been the subject of
particular interest over the years. Different authors have
tried unsuccessfully to explain this anomaly theoretical-
ly. ' In an excellent review of this problem Harbeke
and Tosatti have shown recently that the lines
n=1,2,3, . . . Rll belong to one and the same %annier
series. These authors have treated the problem using a
perturbing central-cell potential. In such a case for the
4H polytype, the n=1 anomaly from the Wannier isotro-
pic value is resolved, but the agreement with the observed
n =2,3, . . . lines and isotropic energies has been spoiled.

In recent work, Levy et al."' have observed a new line
'that they have lntcrplctcd Rs thc 11nc Pl =3. Based on th1s
finding and on the positions of what are generally accept-
ed to be the n =1 and 2 ljtnes, these authors ' have pro-
posed a new assignment of the exciton spectrum in terms
of a normal, isotropic Wannier series with a binding ener-

gy R„=30 meV. Harbeke and Tosatti have given dif-
ferent arguments that are not in favor of such a find-
ing. "' The conclusion of these authors is that the exci-
ton line n =3 observed by Levy et a/. "' must be just a
coincidence, and no such line is expected to be there. It is
then of interest to consider a different theoretical treat-
ment in order to solve the anomaly of the n = 1 line and to
obtain good agreement between the calculated and the ex-
pcr1mcntal VRlucs fol thc cncfgy of th1s 11nc.

In preceding papers given in Refs. 13 and 14, respec-
tively, the Pekeris' and Callan' ' methods for helium
have been developed for the exciton —ionized-donor com-
plex given in Fig. 1. Haken's exciton potential, ' in which
the effect of polarizability is included, has been general-
ized for such a system. ' ' ' These methods, ' ' ap-
plied with success for different semiconductors have also
been used to calculate the exciton binding energy E„ in
T1C1, T1Br,' ' and CdS. ' The calculated values of E„ in
CdS (Ref. 14) for the different available values of
cr =m,*/mt', , where m,

* and mt', are, respectively, the elec-
tron and the hole effective masses, are in quite good agree-
ment with experiment. For TlCl and T18r the calculated
values ' of E„are in better agreement with experiment
than those obtained from the simple hydrogenic formula
with the static dielectric constant. The theoretical
values' ' are also in better agreement with experiment
than those obtained in Ref. 23 by Bachrach and Brown
using Haken's potential' for the exciton with a simple
wave function. This has been interpreted as being due to
the defect of the wave function used in Ref. 23, particular-
ly for small distances.

FIG. 1. Exclton —1on1zed-donor complex.
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In the present work, the methods given in Refs. 13 and
14 have been applied to calculate the binding energy of the
exciton —ionized-donor complex as well as that for the ex-
citon line n =1 in PbI2. In our calculations we tried to
consider the least favorable values in obtaining the results.
Thus, the electron m,

' and the hole my*, effective masses
determined from the series n=2, 3,4, . . . have been con-
sidered. The self-consisent calculations lead to an excel-
lent agreement with experiment for the binding energy of
the exciton line n=1. The exclton —ionized-donor com-
plex in PbI2 is quite stable. The relative oscillator
strength f3/f„has also been calculated for this material,
where f3 and f„are the oscillator strengths of the com-
plex and the exclton~ respectively.

N N

V(rlz, r13,r23)= —,
' g g ezra,;,/K, «r;, ,

i =1j (&i)
(3)

&elf 1+(I/2)K, «

where A, lz, A, I3, and A23 are the coefficients of the terms
1/rlz, 1/r13, and 1/r23, respectively, and which are given
in the large square brackets of Eq. (1). Owing to the diffi-
culties that may occur in solving the problems of exciton
complexes using the general potential of Eqs. (1)—(3),
mean values of A, ,j's are considered. By knowing the wave
function llew of the system, one can write

x

As described by Haken, ' the dielectric constant K(rz3)
between the hole and the electron of a delocalized exciton
is a function of the distance r23 separating the two parti-
cles, of their effective masses, of the optical and static
dielectric constants K0 and K„respectively, and of the
longitudinal vibrational frequency fo of the lattice. As
atomic units in terms of a certain effective dielectric con-
stant Ed~ are usually adopted, the generalized' ' Haken
potential for any two particles i and j of effective masses

m; and mj*. in a crystal can be written in the following
orm:

1 1 Keff kij Keff gij
I — +K(rj) K,ff Kg 2 K, 2

s; =(4irm;*el/jl )'i

sf =(4m.m i*co/II )'i,

(2a)

whcl'c II ls Plallck s coIlstallt. Fol tllc cxcltoll —lolllzcd-
donor complex of Fig. 1, the potential energy of the sys-
tem ls

The mean values A, ,.j are denoted by A, , p, and v, respec-
tively. The values of A,, p, and v depend on the funda-
mental constants m,*, mI*, , E„E„and co.

GI. METHOD OF SOLUTION

In Refs. 13 and 14, the binding energy of the complex
of Fig. 1 has been calculated in terms of the binding ener-

gy Ez of the neutral donor. The atomic units

K,fffiz/m, 'ez and m,*e /K, ffk' have been adopted for
length and energy, respectively, and the units
m,*=fi=e /Keff= 1 have been used. The effective dielec-
tric constant K,ff=K(rlz) has been chosen such that
A, =l. In this case the neutral-donor binding energy
ED —— m,*e /2Kefffi —is simPly ——,

' a.u. In these atomic
units, the nonrelativistic Schrodinger equation written for
the system of Fig. 1 is

2 V, 'I'+ , oVP, lII+(E ——V)4=0,

where V, is the Laplacian for the electron, VI, is that for
the hole, Ir= I/ml*, is the mass ratio given in the atomic
units used, and V is the potential energy of the system
given in Eqs. (1)—(4). With the classical method of
Hylleraas, Eq. (5) for Fig. 1 can be written in the form

Bzq 2 Bq Bzq 2 Be B'0 2 B%2+ +O'
2 +

riz Brlz Br13 r13 Br13 Br23 rz3

z z z z+ (r 12+r23 —r13) +Ir ("13+"23 "12)
Br lzBrz3 ~&2~z3 ~~i3~~23 r )2~23

IV. PEKERIS METHOD

In Ref. 13 the Pekeris method'3 for helium has been
developed for the exciton —ionized-donor complex. We in-
troduce' the parametric coordinates u, u, and m given by

r12+ r13+ r23 ) U Pe(r 12 r13+ r23 )

Ic =Pe(r Iz+r13 —r23)

where &, p, and p are variational parameters. From Eq.
(7), the distances r12, r13, and r23 between the particles can
be written in terms of u, U, and w. If this energy E is
glVCIl 1I1 teITlls Of E,

E= —(IC+iTX)e

where & and X are determined from the approximation at
lnfiruty, then one obtains
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Let

(rr2+ 3p2+ y2 2 y)

X= , (3—a +p +y 2—py) .

(9)
same as those calculated from Eq. (36) of Ref. 13 for the
same value of e.

V. CALLAN METHOD

F(u, u, w) = g 2 ( l, m, n)Lr(u)L (U)L„(ro), (12)
», m, n =0

In Ref. 14 the Callan method' *' for helium has been
developed for the exciton —ionized-donor complex. In this
method, the approximate wave function 4 corresponding
to the solution of Eq. (6) has been written in the form

=e e
—A, &r» —fr&/(1+a )]r23

(16)

where I.», I. , and I.„denote, respectively, the normalized
Laguerre polynomials of order l, m, and n Aft. er dif-
ferent transformations and using the relations between the
Laguerre polynomials of Eq. (12) and their derivatives,
Eq. (6} gives' a considerably long, 57-term recursion rela-
tion between the coefficients A(l, m, n) of Eq. (12). This
recursion relation takes the form of the eigenvalue prob-
lem,

H+e(P+ erg) =0 .

The solution of the recursion relation (13) obtained using
the wave function of Eqs. (11) and (12) gives the energy
ratio E/ED as a function of o = 1/mf, for different values
of A, , p, and v. The H, P, and Q are 50)&50 matrices and
are functions of the three variational parameters a, p, and

y which are determined from the minimization of the en-

ergy E. The matrix H is also a function of A, , p, and v
given by Eq. (4). The exponential part of the wave func-
tion (11)can be written in terms of r &2, r», and r2& as

where o.i and o.3 are positive variational parameters deter-
mined from the minimization of the energy of the system.
Following this method, the correlation effect has been
considcrcd such that thc rcpuls1vc potcntlal along thc
direction ri3 1s truncated at a minimum distance R. This
distance R=1.1091 a.u. is determined such that for
A, =@=v=1 (polarizability neglected) one must obtain the
well-known value (0.6 a.u. ) for the binding energy of H2+
wh1ch corresponds to 0'=0.

With the wave function given in Eqs. {16)and (17) the
total energy E is

VI + (vr —v)

I3+ +I4,
g. »-S.»+"»~„,V=e F(Q, U, NJ p

(14)
where X is the normalization constant,

where a, b, and c are positive and given by the following
expressions:

a = ,'( ~+p+y)-, —

b = —,'(rr —p+y),
c =—,

' (a+p—y) .

For a specific semiconductor, the corresponding mean
values A, , p, and v of Eq. (4) must be calculated. For these
computations one needs to know the wave function 4 of
Eqs. (11) and (12). The calculations concerning this wave
function are quite complicated. As a simplification, only
the exponential part of Eq. (14) has been used to evaluate
the integrals of Eq. (4) and, consequently, to calculate the
values of A, , p, and v. In this case the values of A, , p, and
v for a particular semiconductor are obtained by Eq. (36)
given in Ref. 13. In Eq. (36) of Ref. 13, the values of A, , p,
and v depend not only on the fundamental constants, but
also on a function of r2, p, and y of Eq. (15) and of the en-
ergy e of the complex. This energy minimum correspond-
ing to particular values of a, P, and y has been calculated
using the determinant of Eq. (13) for some values of A, , p,
and v. In this case, the computations have to be self-
consistent as described in detail in Ref. 13. This means
that the values of A, , p, and v considered in the determina-
tion of the energy of Eqs. (8)—(10) and (13) must be the

1 1

g2 b2

1 1

C

1 1 1
+b 3+

(19)

with

Vi V)a=kr+, b=vr ——
1+o' 1+a. '

(20)

The integrals I~, I2, I3, and I4 are given by Eqs. {11)—(15)
of Ref. 14. In this case the theoretical expressions for A, ,
p, and v of Eq. (4} are given explicitly in Eqs. (17)—(20) of
Ref. 14. Again, the computations must be self-consistent
as explained in detail in this reference. The values of A, , p,
and v considered in the determination of the energy of Eq.
(18) must be the same as those calculated theoretically
from Eqs. (17)—(20) of Ref. 14. This method is simpler
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tu

0

and needs considerably less computer time than the previ-
ous method of Pekeris. Moreover, using this method'
one can calculate the oscillator strength' f1 of the
excltoll —10nlzed-d01101 c0111plex as follows:

f1 f„——(era„/Q)F(m, "/mf, ),
F(m,*/m„*)=X-' C(r», r»)d'r», (22)

12 13

(21)

where 0 is the volume of the elementary cell, and a„and
f„are, respectively, the radius and the oscillator strength
of the free exciton.

In both the Pekeris and Callan methods not only the
binding energy or the exciton —ionized-donor complex is
determined, but also the donor dielectric constant
ICD IC(r»)——=E,ff, the exciton dielectric constant E„, the
exciton radius a, the neutral donor ED, and the exciton
E„binding energies. For instance, once v is determined
the exciton binding energy in both methods is given by

~ l

QO
QO QO QO QO QO QO QO

where M is the exciton reduced mass. In this case

QOWWWWWWW

(24)
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The problem of anisotropy for the dielectric constant is
eliminated by taking mean values with the use of the for-
mula of Hopfield and Thomas 5

E, =(K,1E,(()'~ (25)

E,=(E,1E,(()'~ (26)

The effective masses rn,
' and n1q can be determined from

the following two relations:

I I 1+
m,

*
mI',

(28)

where s.o. denotes spin orbit and where the notations of
Eq. (28) are those given by Baldini and Franchi. Dif-
ferent cases corresponding to the various values of the
fundamental constants have been considered. In Table I
the values of the fundamental constants m,*, mf„o, &,1,

+0)) + and Q) ~hlch are used I the calcula-
tions are given for the polytypes 4H and 2H of Pblq
(I)—Pb11 (VIII). The least favorable conditions for obtain-
ing good agreement between the calculated and experi-
mental values for the n=l binding energies have been
considered. This corresponds to the use of the optical
dielectric constant IC, and the consideration of the 8„
value for n=2, 3,4, . . . . The values of M=0.3701 and
0.3881 for Phiz (I) and Pblz (II) (Table I) have been deter-
mined from the series n =2,3,4, . . . having 8„=142



(E—Eo)/ED

0.2305
0.2797
0.2182
0.2172
0.2986
0.2667
0.2434
0.2216

E,g
12.69
12.4764
12.5714
12.6862
12.3483
12.4802
12.6182
12.7126

p

0.9798
0.9875
0.9722
0.9745
0.9960
0.9941
0.9923
0.9910

60"
60
55"
55
608,b

60
60
60

10.0714
9.6365
9.9979

10.1158
9.4666
9.7183
9.9434

10.1328

PbI2 (I)
PbI2 (II)
PbI2 (III)
PbI2 (IV)
PbI2 (V)
PbI2 (VI)
PbI2 (VII)
PbI, (VIn)

1.0000
1.0000
1.0MS
1.0000
1.0000
1.0000
1.0000
1.0000

1.2600
1.2947
1.2574
1.2541
1.3044
1.2842
1.2690
1.2546

49.69
56.899
47.2763
43.1679
64.7469
61.4376
58.6867
56.5137

'References 1—3.
References 5 and 8.

TABLE II. Calculated values of A, , p, v, K„E,ff, E„,and (E—ED)/ED obtained by the Callan method in PbI2. In the last column
the experimental values (E„),„~, for the 4H and 2H polytypes of this material are also given.

V K E„(meV) (E„),„, (meV)

meV. ' ' These values of M correspond, respectively, to
the dielectric constants Ko ——6 and 6.1 (Table I). As a
matter of fact, according to Haken, the didectric con-
stant corresponding to the lines of high quantum numbers
should approach that of the static K, . In such a case, the
use of the values of M=0.3701 and 0.3881 for PbI2 (I) and
Phiz (II) (Table I) in the calculations for the line n= 1

could be the least favorable for obtaining good results.
For the 2H polytype, the value R„=127meV (Refs. 4—7)
for n=2, 3,4, . . . has been used. For PbI2 (I)—Pblq (III),
by knowing the values of M, Eqs. (27) and (28) can be
used to determine the corresponding values of m,

' and
mt', In Eq. .(28) the values g~=0.2, E, , =0.81 eV, and
Et=2.56 eV have been used. The value of m,

"
given in

Table I for 2H-Pblz (IV) is that published by Bloch
et al.16 obtained from the cyclotron resonance measure-
ments. Considering the values of mt*,

~ ~

= 1.67 and

m)~~/mal =2.3 Icportcd 111 Rcf. 26, Ollc call find
mt*, l ——0.726. Assuming an effective-mass relationship
similar to that of Eq. (25), the value of ml*, =1.1012 given
in Table I for 2H-PbI2 (IV) is easily obtained. For Phiz
(V)—PbI2 (VIII) the calculations have been carried out for
the different available values of K,„,K, ~~,

and to with the
same values of m,

* and ml*, . These values of m,
* and ml",

have been chosen such that excellent agreement with the
n = 1 experimental (E,),„p, value' ' is obtained (Table II).

In the Pekeris method, assuming the trial values 1.0,
0.975, and 1A45 for A,, p, and v, respectively, and using
the constants of Table I for PbI2 (I), the values of
e=1.0011 as well as (E Ez)/ED ——0.523—9 have been ob-
tained from the recursion relation (13). This value of
(E ED)/ED silo—ws tllRt thc cxclton Ionized d—onor c01-11-

plex is stable. Taking e=-1.0011, the calculated values of
A, =0.9999, p=0.9769, and v=1.4600 correspnding to
K,tt ——14.3758 have been obtained using Eq. (36) of Ref.
13. The very small differences between the initial and the
calculated values of p and v are 0.2% and 1%, respective-
ly. In view of the long computations these differences are
quite satisfactory. With v= 1 445 and using Eqs. (23) and

(24), one can find E„=50.91 IllcV RIld K„=9 949 Taking
the calculated value v=1.46, onc finds E =51 97 mcV
which is 2% higher than that obtained with the lnltlal

value v= 1.445.
On the other hand, using the constants of Table I, for

Phil (I)—PbI2 (VIII) the corresponding results of A, , p, v,

X„, K,~f, and E„obtain.ned by the Callan method are re-
ported. in Table II. In this table the experimental values
(E„),„~, for the 4H and 2H polytypes are also given. From
Table II, the values of E„=49.67 meV and K„=10.0714
for 4H-Pbll (I) are in quite good agreement with the cor-
responding values obtained above in the rigorous Pekeris
method. The computati. ons in the Callan method need
much less computer time than those carried out in the
Pekeris method. For this reason the different results ob-
tained in Table II are carried out in Callan's method for
the various cases Pbll (I)—PbI2 (VIII) of Table I. It is
surprising that the values of X~ =9.949 and 10.0714 ob-
tained for Phil (I), respectively, in the Pekeris and Callan
methods, are in good agreement with E, =9 considered by
Nikitine et al. assuming a different exciton rydberg
series, R„=506 cm ', for the line n= 1. The values of
E =49.67 (Table II), 50.91 or 51.97 meV (Pekeris
method) obtained in this paper for 4H-PbI2 (I) are also in
good agl cement with the corresponding experimental
value (E,),„~,=60 meV (Table II) for the same poly-
type. ' ' From Table II one can notice that the calcu-
lated values of E„ for PbI2 (II) and PbI2 (V)—PbI2 (VIII)
of the 4H polytypes are in excellent agreement with the
same experimental values of (E„),„~, of 60 meV. ' s On
the other hand, the values of E =47.2763 and 43.1679
meV calculated, respectively, in Table II for Phiz (III) and
PbI2 (IV) of the 2H polytypes, are in good agreement with
the experimental value (E„),„~,=55 meV (Refs. 5,8) re-
ported by different authors for the same polytype and
which is also given in Table II. In Table II the calculated
values of (E Ez)/ED for t—he different cases Phil
(I}—PbI2 (VIII} are also reported. These values calculated
using the Callan method and which are greater than 0
show that the exciton —ionized-donor complex in PbI2 is
stable.

As is noticeable, the value of R =127 meV (Refs. 4—7)
for the 2H polytypes is smaller than that of R„=142meV
(Refs. 1—5} for the 4H polytypes. That is why the experi-
mental value of (E„),„~, for the 2H polytypes is smaller
than that of the 4H polytypes (Table II). Again the calcu-
lated values of E„given in Table II for the different cases
of the 2H and the 4H polytypes are in agreement with this
experimental result. It is obvious that the degree of agree-
ment between the calculated and the experimental values
of E„depends on the different values of the fundamental
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constants given in Table I. If the degree of agreement
with experiment for most of the cases of the 4H polytypes
[PbI2 (II), PbI2 (V)—Pb12 (VIII)j studied in Table II hap-
pen to be better t4an that corresponding to the 2H poly-
types, it is simply that the fundamental constants given in
Table I for these 4H polytypes fit the experiment better
than those considered for the 2H polytypes which are also
given 1n Table I.

For PbI2 (I), considering the results given in Table II
and the value of the elementary unit-cell volume II=125
A, the relative oscillator strength f3/f„=0.573& 10 has

been obtained from Eqs. (16)—(22). This value of f3/f„
corresponds to a calculated value of the exciton radius
@„=I4.37 A. With the valve a„=I9 A given by NikitiIIC
et al ' ' the ratio f /f —1 324X10 has been obtained
These values of f3/f„ in PbI2 are at least 1 order of mag-
nitude smaHer than those previogsly caIIcnlated for CdS.
This is due to the fact that a„ for CdS is greater than that
in PbI2, 0 in CdS is smaller than that in PbI2, and the re-
sults given in Table II concerning p and v are different
from those already calculated in Table II of Ref. 14 for
CdS. Taking f„=1.8X10 given by Nikitine et al. the
values of f3 corresponding to a„=14.37 and 19 A are,
respectively, 6.875 and 15.892. For f„=3.75&(10 given
by Biellmann et al., the values of f3 corresponding to
e~=I4.37 A and I9 A are, respectively, 14.323 and
33.108. It must be mentioned that Gahwilier and Har-
beke give a value of fx =6.02& 10 for the 2H polytype
of PbIz.

In Phd the existence of an anomaly between two ryd-
bcrg series, onc belonging to t4c n= I linc aIId &.c otllcr
cox'responding to tbc Hnes pf =2,3,4, . . . , I1as been report-
ed by different authors. ' In this paper, using the funda-
mental constants obtained from the exciton Wannier series
for n=2, 3„4, . . . , we resolve the anomaly for the binding
energy of the n= 1 line reported by these authors. ' '-

Thus, good agreement between the calculated and experi-
mental values for the energy of the n = 1 line has been ob-
tained. SUOII a rcsQlt has Dot been achieved before. This
was done bp Using tS.c Hakcn potential, takiIIg into ac-
count the effect of the polarizability of the lattice; the
choice of the wave function is also quite important. The
calcolations show that thc cxciton —ionized-donar com-
plex in Pblp is stable. This result has not yet been ob-
served and, consequently, the oscillator strength f3 calcu-
lated in this paper for this complex cannot yet be com-
PRI'cd %1tRI. CxPcr1mcIlt.
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