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The exciton binding energy of the line n =1 in Pbl, presented a dilemma since the calculated en-
ergy using different methods is much greater than that obtained experimentally. In the present
work, with the use of the methods developed and applied previously with success for different semi-
conductors by Elkomoss for the exciton—ionized-donor complex and in which the polarizability of
the lattice has been taken into account, the binding energy of the complex has been calculated in
Pbl,. This complex turns out to be stable. The exciton binding energy for the line n =1 has also
been determined. For the first time quite good agreement between the calculated value and the ex-
periments of Nikitine et al. and Harbeke et al. for this line n =1 has been obtained. The oscillator
strength f3/f, for the complex has also been calculated.

I. INTRODUCTION

The absorption spectra in Pbl, have been explained in
terms of a Wannier exciton series of up to four lines with
the Rydberg constants R, =142 meV (Refs. 1-5) and
R, =127 meV (Refs. 4—7) for the 4H and 2H polytypes,
respectively. It was a surprising result that the positions
of the n=1 line for the 4H and 2H polytypes were,
respectively, 82 meV (Refs. 1—3,5,8) and 72 meV (Refs. 5
and 8) higher than predicted from the Wannier series. In
an attempt to resolve the difficulty, the line n =1 has been
represented by a different Wannier series.> Since then the
anomaly of the line n =1 in Pbl, has been the subject of
particular interest over the years. Different authors have
tried unsuccessfully to explain this anomaly theoretical-
ly.>!° In an excellent review® of this problem Harbeke
and Tosatti’® have shown recently that the lines
n=1,2,3,... all belong to one and the same Wannier
series. These authors® have treated the problem using a
perturbing central-cell potential. In such a case for the
4H polytype, the n=1 anomaly from the Wannier isotro-
pic value is resolved, but the agreement with the observed
n=2,3,... lines and isotropic energies has been spoiled.’

In recent work, Levy et al.!""!? have observed a new line
that they have interpreted as the line n=3. Based on this
finding and on the positions of what are generally accept-
ed to be the n =1 and 2 lines, these authors!!2 have pro-
posed a new assignment of the exciton spectrum in terms
of a normal, isotropic Wannier series with a binding ener-
gy R,=30 meV. Harbeke and Tosatti* have given dif-
ferent arguments that are not in favor of such a find-
ing.!"12 The conclusion of these authors* is that the exci-
ton line n=3 observed by Levy et al.!""!> must be just a
coincidence, and no such line is expected to be there. It is
then of interest to consider a different theoretical treat-
ment in order to solve the anomaly of the n =1 line and to
obtain good agreement between the calculated and the ex-
perimental values for the energy of this line.

In preceding papers given in Refs. 13 and 14, respec-
tively, the Pekeris'> and Callan'®'7 methods for helium
have been developed for the exciton—ionized-donor com-
plex given in Fig. 1. Haken’s exciton potential,'® in which
the effect of polarizability is included, has been general-
ized for such a system.!*!#1=22 These methods,'>'* ap-
plied with success for different semiconductors have also
been used to calculate the exciton binding energy E, in
TICI, TIBr,'>!® and CdS.!* The calculated values of E, in
CdS (Ref. 14) for the different available values of
o=m}/my, where m} and mj are, respectively, the elec-
tron and the hole effective masses, are in quite good agree-
ment with experiment. For TICl and TIBr the calculated
values'>!® of E, are in better agreement with experiment®®
than those obtained from the simple hydrogenic formula
with the static dielectric constant.?* The theoretical
values'!? are also in better agreement with experiment
than those obtained in Ref. 23 by Bachrach and Brown
using Haken’s potential'® for the exciton with a simple
wave function. This has been interpreted as being due to
the defect of the wave function used in Ref. 23, particular-
ly for small distances.
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FIG. 1. Exciton—ionized-donor complex.
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In the present work, the methods given in Refs. 13 and
14 have been applied to calculate the binding energy of the
exciton—ionized-donor complex as well as that for the ex-
citon line n =1 in Pbl,. In our calculations we tried to
consider the least favorable values in obtaining the results.
Thus, the electron m) and the hole m, effective masses
determined from the series n=2,3,4,... have been con-
sidered. The self-consisent calculations lead to an excel-
lent agreement with experiment for the binding energy of
the exciton line n=1. The exciton—ionized-donor com-
plex in Pbl, is quite stable. The relative oscillator
strength f3/f, has also been calculated for this material,
where f3 and f, are the oscillator strengths of the com-
plex and the exciton, respectively.

II. FORM OF THE POTENTIAL

As described by Haken,'® the dielectric constant K(r,3)
between the hole and the electron of a delocalized exciton
is a function of the distance r,; separating the two parti-
cles, of their effective masses, of the optical and static
dielectric constants K, and K, respectively, and of the
longitudinal vibrational frequency w of the lattice. As
atomic units in terms of a certain effective dielectric con-
stant K4 are usually adopted, the generalized'>??> Haken
potential for any two particles / and j of effective masses
m; and m}' in a crystal can be written in the following
form:

11 [Keff &y _Ke_ff_ELLJ’ )
K(ry) K | K, 2 K, 2
with
Gj=e g (2a)
k;=(4mm}w/h)'\? (2b)
Kj=(41rm}‘a)/h )2 (2c)

where 4 is Planck’s constant. For the exciton—ionized-
donor complex of Fig. 1, the potential energy of the sys-
tem?? is
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N
Virg,rizra)=7 3 3 ezlij/Keff"ij , (3)
i=1j (s)

where Ay, A3, and A,; are the coefficients of the terms

1/r15, 1/713, and 1/r,3, respectively, and which are given

in the large square brackets of Eq. (1). Owing to the diffi-

culties that may occur in solving the problems of exciton

complexes using the general potential of Egs. (1)—(3),

mean values of A;;’s are considered. By knowing the wave
function W of the system, one can write

[ v, vdr

_ K,
A==t L (1/2K e | — L
Jy*wdr

K, K, K,

4)

The mean values A;; are denoted by A, u, and v, respec-
tively. The values of A, u, and v depend on the funda-
mental constants m., mj, K,, K, and o.

III. METHOD OF SOLUTION

In Refs. 13 and 14, the binding energy of the complex
of Fig. 1 has been calculated in terms of the binding ener-
gy Ep of the neutral donor. The atomic units
Koe#?/mre? and m}e*/K%# have been adopted for
length and energy, respectively, and the units
m}=#i=e?/K. =1 have been used. The effective dielec-
tric constant K =K (r;;) has been chosen such that
A=1. In this case the neutral-donor binding energy
Ep=—m}e*/2K2#?* is simply —+ a.u. In these atomic
units, the nonrelativistic Schrodinger equation written for
the system of Fig. 1 is

TV 4 LoVIWAH(E —V)¥=0, (5)

where V2 is the Laplacian for the electron, V3 is that for
the hole, o=1/mj is the mass ratio given in the atomic
units used, and V is the potential energy of the system
given in Eqgs. (1)—(4). With the classical method of
Hylleraas,** Eq. (5) for Fig. 1 can be written in the form

W 2 AW W 2 v v 2 v
—_— —— |[+(1+0) —(1+4+o0)
ariy  ri2 Orp ory  ri3 Orp ard, + r dry3
o’y 2,2 2 *w 2,2 .2 A opo v
—r13) o (ris+r5;—ri) 2 E+ | L4 Y | lw=0.
0ri,0ra; (Fiz +72s B r12r23 + 0713073 BT 2 r12723 iz T3 723
(6)

IV. PEKERIS METHOD

In Ref. 13 the Pekeris method'® for helium has been
developed for the exciton—ionized-donor complex. We in-
troduce!® the parametric coordinates u, v, and w given by

u=ae(—ryp+riz+ry), v=PLe(rip—riz+ry),
(7)

w=ye(rp+riz—ra),

I
where a, B, and y are variational parameters. From Eq.
(7), the distances r,, 73, and 7,3 between the particles can
be written in terms of u, v, and w. If this energy E is
given in terms of €,

E=—(k+0oX)e, (8)

where k and X are determined from the approximation at
infinity, then one obtains
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k=52 +3B2+y*—2ay), 9)
=532 +B+y2—-2By) . (10)
Let
\I/=e_“/2)(“ +v+w)F(u’v’w) R (11)
with
Flupw= 3 A(LmmLwL,®L,w), (12)

Lm,n=0

where L;, L,,, and L, denote, respectively, the normalized
Laguerre polynomials of order I, m, and n. After dif-
ferent transformations and using the relations between the
Laguerre polynomials of Eq. (12) and their derivatives,
Eq. (6) gives'’ a considerably long, 57-term recursion rela-
tion between the coefficients A4 (,,m,n) of Eq. (12). This
recursion relation takes the form of the eigenvalue prob-
lem,

H+e(P+0Q)=0. (13)

The solution of the recursion relation (13) obtained using
the wave function of Egs. (11) and (12) gives the energy
ratio E /E}, as a function of o=1/m;, for different values
of A, u, and v. The H, P, and Q are 50X 50 matrices and
are functions of the three variational parameters a, 3, and
y which are determined from the minimization of the en-
ergy E. The matrix H is also a function of A, u, and v
given by Eq. (4). The exponential part of the wave func-
tion (11) can be written in terms of 7,, 713, and 7,3 as

‘I/=e—e(arn—brl3+cr23)F(u’v’w) , (14)
where a, b, and ¢ are positive and given by the following
expressions:

a=+5(—a+B+y),
b=7(@a—B+7), (15)
c=+(a+B—7y)

For a specific semiconductor, the corresponding mean
values A, u, and v of Eq. (4) must be calculated. For these
computations one needs to know the wave function ¥ of
Egs. (11) and (12). The calculations concerning this wave
function are quite complicated. As a simplification, only
the exponential part of Eq. (14) has been used to evaluate
the integrals of Eq. (4) and, consequently, to calculate the
values of A, u, and v. In this case the values of A, u, and
v for a particular semiconductor are obtained by Eq. (36)
given in Ref. 13. In Eq. (36) of Ref. 13, the values of A, u,
and v depend not only on the fundamental constants, but
also on a function of a, 3, and ¥ of Eq. (15) and of the en-
ergy € of the complex. This energy minimum correspond-
ing to particular values of a, 3, and ¥ has been calculated
using the determinant of Eq. (13) for some values of A, u,
and v. In this case, the computations have to be self-
consistent as described in detail in Ref. 13. This means
that the values of A, u, and v considered in the determina-
tion of the energy of Egs. (8)—(10) and (13) must be the
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same as those calculated from Eq. (36) of Ref. 13 for the
same- value of €.

V. CALLAN METHOD

In Ref. 14 the Callan method'®!” for helium has been
developed for the exciton—ionized-donor complex. In this
method, the approximate wave function @ corresponding
to the solution of Eq. (6) has been written in the form

¢=e_xlr‘2e—[vl/(l+0’)]’23 , (16)

with

M=A—0y, vi=v—o03, (17)
where o and o3 are positive variational parameters deter-
mined from the minimization of the energy of the system.
Following this method, the correlation effect has been
considered such that the repulsive potential along the
direction 7,3 is truncated at a minimum distance R. This
distance R=1.1091 a.u. is determined such that for
A=p=v=1 (polarizability neglected) one must obtain the
well-known value (0.6 a.u.) for the binding energy of H,™
which corresponds to o=0.

With the wave function given in Egs. (16) and (17) the
total energy E is

)»2 Il V%

- —v=
N 21+o0)

+(Vl N

I3
—+1,, (18)
+ N +1,
where N is the normalization constant,

v- foraar-2 | %_%] -]
a c

b
L__l_
d> 3
Ll
b d? c3 ’
(19)
with
Mt —2 b !
=+ 140’ =" 140’
(20)
b=2h, d—a-—b=—2
c=a+b=2},, d=a— =110 -

The integrals I, I,, I3, and I, are given by Eqgs. (11)—(15)
of Ref. 14. In this case the theoretical expressions for A,
1, and v of Eq. (4) are given explicitly in Egs. (17)—(20) of
Ref. 14. Again, the computations must be self-consistent
as explained in detail in this reference. The values of A, u,
and v considered in the determination of the energy of Eq.
(18) must be the same as those calculated theoretically
from Egs. (17)—(20) of Ref. 14. This method is simpler
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. . . and needs considerably less computer time than the previ-

slzgéecceez ous method of Pekeris. Moreover, using this method!*

AR one can calculate the oscillator strength'* f; of the
exciton—ionized-donor complex as follows:

- fr=Fe(mai/Q)F(m /mj) 21
Me — n "Q :ﬁ * * -1 3 2
PRCRRRvRE RS N Fmg/mi)=N="| [, _ @rora)dra|, @2
. 2=
where Q is the volume of the elementary cell, and a, and
- f» are, respectively, the radius and the oscillator strength
5 & a of the free exciton.

" b In both the Pekeris and Callan methods not only the
binding energy or the exciton—ionized-donor complex is
determined, but also the donor dielectric constant

e o Kp =K (r;;)=K_g, the exciton dielectric constant K, the
| = exciton radius a,, the neutral donor Ep, and the exciton
E, binding energies. For instance, once v is determined
the exciton binding energy in both methods is given by
4
PSS LEEEE B = M 23)
[ 0O N N ¢ N N N N x 2 b
N | 0000 0nn 277K %
VN nn nn
where M is the exciton reduced mass. In this case
N Kesr
z A Ky=— (24)
lg|eysssssyl .
- L8LEEL8s8] = can be determined.
g =
7] —
§ :T VI. COMPUTATIONS AND RESULTS
—_— ,Q‘ |
Sldlqwnmnnnnn ; The problem of anisotropy for the dielectric constant is
E || SRaR| 8 P P .
g crrrrR g . eliminated by taking mean values with the use of the for-
g EQ mula of Hopfield and Thomas?’
S OF)
. 23 K, =(K, K", (25)
5 N OIS = s s1Bs)|
= Mmoo 0V Y = 9
RIS 83333333 ol K,=(K, K,)'% . (26)
3 SoSSccss| B
& @ A e The effective masses m_; and m;, can be determined from
-'g é 5 the following two relations:
~ ~
R AR R R NG — 1 1 1
So~<0Wwww/|[tn ~ _— s 27)
S|IR233§58§(g2&8 & M mr  mp
Soocococdoo| o g = g
[N i3 »
q58 = 2K, 11
g~ 3 g =T | |’ (28)
ol 5w : 3Eg +2E;, me my
wEzsbegee|EN: k |
13 = Q ;T
£(8%2s ? 888|gxg O where s.0. denotes spin orbit and where the notations of
% %”,g" E‘E Eq. (28) are those given by Baldini and Franchi.® Dif-
§ S8 M E ferent cases corresponding to the various values of the
Z o A ";L et fundamental constants have been considered. In Table I
. lTeg. 5555 £E : 2 g the values of the fundamental constants m), m;, o, K;|,
fanageRaqng ; g8 5 ‘g’ K Ks» K,15 Kojj, K, and o which are used in the calcula-
ccoccocoo|fEE &g tions are given for the polytypes 4H and 2H of Pbl,
=Bz M £ (D—PbI, (VIID. The least favorable conditions for obtain-
5 2 2 5 & ing good agreement between the calculated and experi-
P - RN mental values for the n=1 binding energies have been
~8H8EsFEE|l2 eSS g g considered. This corresponds to the use of the optical

SESScooo % g § g 3s dielectric constant K, and the consideration of the R,

SEsSSSSS858898 value for n=2,3,4,... . The values of M=0.3701 and

REAAERAEA | 3A38wL

RUUIUIOSORURCY IRpranlC Il 0.3881 for Pbl, (I) and Pbl, (II) (Table I) have been deter-

SY¥NAaSITFIPPPELR mined from the series n=2,34,... having R, =142
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TABLE II. Calculated values of A, i, v, Ky, K., Ex, and (E —Ep)/Ep, obtained by the Callan method in Pbl,. In the last column
the experimental values (E,)exy for the 4H and 2H polytypes of this material are also given.

A u v Kx Keff ) Ex (meV) (E—ED)/ED (Ex)expt (meV)
Pbl, () 1.0000 0.9798 1.2600 10.0714 12.69 49.69 0.2305 60°
Pbl, (II) 1.0000 0.9875 1.2947 9.6365 12.4764 56.899 0.2797 60
Pbl, (III) 1.0000 0.9722 1.2574 9.9979 12.5714 47.2763 0.2182 55°
Pbl, (IV) 1.0000 0.9745 1.2541 10.1158 12.6862 43.1679 0.2172 55
Pbl, (V) 1.0000 0.9960 1.3044 9.4666 12.3483 64.7469 0.2986 60>°
PbL, (VD) 1.0000 0.9941 1.2842 9.7183 12.4802 61.4376 0.2667 60
Pbl, (VID) 1.0000 0.9923 1.2690 9.9434 12.6182 58.6867 0.2434 60
Pbl, (VIID) 1.0000 0.9910 1.2546 10.1328 12.7126 56.5137 0.2216 60

#References 1—3.
YReferences 5 and 8.

meV.!~> These values of M correspond, respectively, to
the dielectric constants Ko=6 and 6.1 (Table I). As a
matter of fact, according to Haken,'® the dielectric con-
stant corresponding to the lines of high quantum numbers
should approach that of the static K;. In such a case, the
use of the values of M'=0.3701 and 0.3881 for Pbl, (I) and
PbL, (II) (Table I) in the calculations for the line n=1
could be the least favorable for obtaining good results.
For the 2H polytype, the value R, =127 meV (Refs. 4—7)
for n=2,3,4,... has been used. For Pbl, (I)Pbl, (III),
by knowing the values of M, Egs. (27) and (28) can be
used to determine the corresponding values of m.) and
my. In Eq. (28) the values® g*=0.2, E , =0.81 eV, and
E,=2.56 ¢V have been used. The value of m) given in
Table I for 2H-PbI, (IV) is that published by Bloch
et al?® obtained from the cyclotron resonance measure-
ments. Considering the values of my;=1.67 and
my/my =23 reported in Ref. 26, one can find
my;=0.726. Assuming an effective-mass relationship
similar to that of Eq. (25), the value of mj =1.1012 given
in Table I for 2H-Pbl, (IV) is easily obtained. For Pbl,
(V)—Pbl, (VIII) the calculations have been carried out for
the different available values of K|, K|, and & with the
same values of m) and mj. These values of m. and m;
have been chosen such that excellent agreement with the
n =1 experimental (E,)ey, value' = is obtained (Table II).

In the Pekeris method, assuming the trial values 1.0,
0.975, and 1.445 for A, u, and v, respectively, and using
the constants of Table I for Pbl, (I), the values of
€=1.0011 as well as (E—Ep)/Ep=0.5239 have been ob-
tained from the recursion relation (13). This value of
(E—Ep)/Ep shows that the exciton—ionized-donor com-
plex is stable. Taking e==1.0011, the calculated values of
A=0.9999, ©=0.9769, and v=1.4600 correspnding to
K =14.3758 have been obtained using Eq. (36) of Ref.
13. The very small differences between the initial and the
calculated values of u and v are 0.2% and 1%, respective-
ly. In view of the long computations these differences are
quite satisfactory. With v=1.445 and using Egs. (23) and
(24), one can find E, =50.91 meV and K, =9.949. Taking
the calculated value v=1.46, one finds E,=51.97 meV,
which is 2% higher than that obtained with the initial
value v=1.445.

On the other hand, using the constants of Table I, for
Pbl, ()—PbI, (VIII) the corresponding results of A, u, v,

K,, K., and E, obtained by the Callan method are re-
ported in Table II. In this table the experimental values
(Ex)expt for the 4H and 2H polytypes are also given. From
Table II, the values of E, =49.67 meV and K, =10.0714
for 4H-Pbl, (I) are in quite good agreement with the cor-
responding values obtained above in the rigorous Pekeris
method. The computations in the Callan method need
much less computer time than those carried out in the
Pekeris method. For this reason the different results ob-
tained in Table II are carried out in Callan’s method for
the various cases Pbl, (I)—Pbl, (VIII) of Table I. It is
surprising that the values of K,=9.949 and 10.0714 ob-
tained for Pbl, (I), respectively, in the Pekeris and Callan
methods, are in good agreement with K, =9 considered by
Nikitine et al? assuming a different exciton rydberg
series, R, =506 cm™}, for the line n=1. The values of
E,=49.67 (Table II), 50.91 or 51.97 meV (Pekeris
method) obtained in this paper for 4H-Pbl, (I) are also in
good agreement with the corresponding experimental
value (Ey)ex,y=060 meV (Table II) for the same poly-
type.!=3>% From Table II one can notice that the calcu-
lated values of E, for Pbl, (II) and Pbl, (V)—Pbl, (VII)
of the 4H polytypes are in excellent agreement with the
same experimental values of (E, ), of 60 meV.!=>>% On
the other hand, the values of E,=47.2763 and 43.1679
meV calculated, respectively, in Table II for Pbl, (III) and
Pbl, (IV) of the 2H polytypes, are in good agreement with
the experimental value (Ey)exp=355 meV (Refs. 5,8) re-
ported by different authors for the same polytype and
which is also given in Table II. In Table II the calculated
values of (E—Ep)/Ep for the different cases Pbl,
(I)—Pbl, (VIII) are also reported. These values calculated
using the Callan method and which are greater than O
show that the exciton—ionized-donor complex in Pbl, is
stable.

As is noticeable, the value of R, =127 meV (Refs. 4—7)
for the 2H polytypes is smaller than that of R, =142 meV
(Refs. 1—5) for the 4H polytypes. That is why the experi-
mental value of (E)eyy for the 2H polytypes is smaller
than that of the 4H polytypes (Table II). Again the calcu-
lated values of E, given in Table II for the different cases
of the 2H and the 4H polytypes are in agreement with this
experimental result. It is obvious that the degree of agree-
ment between the calculated and the experimental values
of E, depends on the different values of the fundamental
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constants given in Table I. If the degree of agreement
with experiment for most of the cases of the 4H polytypes
[Pbl, (II), Pbl, (V)—Pbl, (VIID)] studied in Table II hap-
pen to be better than that corresponding to the 2H poly-
types, it is simply that the fundamental constants given in
Table I for these 4H polytypes fit the experiment better
than those considered for the 2H polytypes which are also
given in Table I.

For Pbl, (I), considering the results given in Table II
and the value of the elementary unit-cell volume?Q =125
A3, the relative oscillator strength f3/fx=0.573X 10* has
been obtained from Egs. (16)—(22). This value of f3/f,
corresponds to a calculated value of the exciton radius
a, =14.37 A. With the value a,=19 A given by Nikitine
et al.»>> the ratio f3/f, =1.324X 10° has been obtained.
These values of f3/f, in Pbl, are at least 1 order of mag-
nitude smaller than those previously'* calculated for CdS.
This is due to the fact that a, for CdS is greater than that
in Pbl,, Q) in CdS is smaller than that in Pbl,, and the re-
sults given in Table II concerning @ and v are different
from those already calculated in Table II of Ref. 14 for
CdS. Taking f, =1.8x 1072 given by Nikitine et al the
values of f3 corresponding to a,=14.37 and 19 A are,
respectively, 6.875 and 15.892. For f, =3.75X 1072 given
by Biellmann et al., o the values of f3 corresponding to
a,=14.37 A and 19 A are, respectively, 14.323 and
33.108. It must be mentioned that Gahwiller and Har-
beke® give a value of f, =6.02X 1072 for the 2H polytype
of Pblz.
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VII. CONCLUSIONS

In Pbl, the existence of an anomaly between two ryd-
berg series, one belonging to the n=1 line and the other
corresponding to the lines n=2,3,4, ..., has been report-
ed by different authors.!~7 In this paper, using the funda-
mental constants obtained from the exciton Wannier series
for n=2,3,4,..., we resolve the anomaly for the binding
energy of the n=1 line reported by these authors.!””
Thus, good agreement between the calculated and experi-
mental values for the energy of the n=1 line has been ob-
tained. Such a result has not been achieved before. This
was done by using the Haken potential, taking into ac-
count the effect of the polarizability of the lattice; the
choice of the wave function is also quite important. The
calculations show that the exciton—ionized-donor com-
plex in Pbl, is stable. This result has not yet been ob-
served and, consequently, the oscillator strength f; calcu-
lated in this paper for this complex cannot yet be com-
pared with experiment.
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