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Lower critical dimensionality of Heisenberg spin-glasses
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Results of numerical investigations of the scaling properties of the equilibrium sensitivity to changes in

the boundary conditions for two-dimensional and four-dimensional Heisenberg spin-glasses at T=0 are

presented. The results are consistent with an algebraic size dependence of this sensitivity. They suggest

that the two-dimensional system has a zero-temperature phase transition and that the four-dimensional sys-

tem behaves as if it were at its lower critical dimensionality.

Recently, Banavar and Cieplak' introduced the concept of
a scaling stlffncss for spin-glasses. Thc scaling stlffncss en-
ergy hE, is a measure of the coupling energy between sub-
systems of the spin-glass. It has been suggested, therefore,
that the scaling properties of AE, can yield information
about the nature of ordering and, in particular, about the
lower cri'tical dlITlcnslona11ty (LCD) of thc systcIIl. To
determine the scaling stiffness, one studies the sensitivity of
a block of AL, spins to changes in the boundary conditions.
Here, L denotes the length and A ( —Ld ') the area of the
block. For the sake of conceptual simplicity it is convenient
to apply two different boundary conditions in the longitudi-
nal direction and to retain the same boundary conditions
(for example, periodic boundary conditions) in the
transverse directions.

The scaling stiffness can be determined either in a meta-
stable fashion, valid for short times, or in an equilibrium
calculation. In the former situation one first evaluates the
free energy with one type of boundary condition, or "wall
potential, " and then one envisions letting the system evolve
to adjust to slightly modified boundary conditions. The cor-
responding change AF in the free energy is then evaluated.
However, for the equlibrium calculation, the two boundary
conditions need not be "close" to each other and the equili-
brium free energy (or, at T =0, the true ground-state ener-

gy) is determined independently for both types of boundary
conditions.

In a frustrated system, such as a spin-glass, there is noth-
ing to choose between the two boundary conditions, so that
in both the metastable and the equilibrium situations AF is

equally likely to be positive or negative. The scaling stiff-
ness energy is then defined as the root-mean-square AF
over thc distrlbutlon of thc cxchangc constants. In a IYlcta-

stable calculation one should also average over different re-
gions of the phase space (or, at T=0, over different ground
states, for a given sample). It is clear that /)r, E, is propor-
tional to 3' . The length dependence, however, requires a
special analysis.

It has been shown in Rcf. 1 that for the three-
dimensional (3D) Heisenberg spin-glass with nearest-
neighbor couplings

(gE ) g)/2/L L(d —3)/2

Equation {I) has been interpreted as indicating that for
short times the system behaves as if its apparent LCD were

( ~Es) equilibrium
= ~L 3 w

Equation (2), written foI' y, Ma(ls

3 „=Ir/(A I/2L/')

(4)

where p =x + 1 „with p = 3 in d =3. The parameter o- and
the exponent p are quantities which, in general, could
depend on the specifics of the system, including the dimen-
sionality d and the temperature T. If p, or x, did not depend
on the dimensionality and were equal to its d =3 value then
the LCD of the system would be equal to 5. In this Brief
Report we study the size dependence of AE„calculated in
an equilibrium fashion, for the system in d =2 and d =4.

Our results of numerical calculations of y for the two-
dimensional {2D) system at T =0 confirm the algebraic

three. One may speculate that Eq. (I) should hold up to
some finite freezing temperature Tf. Above Tf thc system
should behave as a paramagnet even on short time scales,
and AE, should decay exponentially with L The short time
properties of hE, for the system would seem then analogous
to those found in the d =2 XÃmodel. '

On the other hand, numerical calculations3 of thc equili-
brium behavior of AE, for the 3D Heisenberg spin-glass at
T =0 are consistent with

(gE ), g)/2/LX L(d —2x —1)/2

where, numerically, x =2. This suggests that the 3D sys-
tem is below its LCD, implying, in turn, a T=0 phase
transition. At nonzero temperatures (AE, ),q„,);b„;„should
be an exponential function of L The crossover between the
algebraic and exponential laws has been demonstrated4 ex-
actly for a toy model of an Ising spin-glass in which the
spins are located on the Sierpinski gasket. Similar crossover
(but not necessarily at T =0) in unfrustrated random sys-
tcnls is discussed ln Rcf. 5.

In Ref. 3 the two different boundary conditions were
chosen to be periodic and antiperiodic, respectively. In this
case, EF=FAp —Fp, where FAP and Fp denote the corre-
sponding free energies. If one defines the characteristic
free-energy difference per spin as

(3)

where ( . ), denotes the configurational average over the
distribution of the exchange constants, then
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form of y, and the exponent p is found to be =3, as in
the 3D system. While this in itself might suggest an ex-
ponent p independent of the dimensionality of the system,
our results for the four-dimensional (4D) spin-glass show
that this may not be the case. The data for the 4D system
are consistent with a p = —.This, in turn, suggests that the

4D system behaves as if it were at its LCD, This result is
somewhat surprising. A ferromagnet is characterized by an
exponent p equal to 2. A spin-glass, on the other hand, due
to the multiplicity of ground states, is better able to adjust
to changes in the boundary conditions resulting in a value
of p necessarily greater than or equal to 2. A decrease in
the value of p on increasing the dimensionality seems to im-

ply that the multiple ground states do not play as important
a role in the 4D system. We have attempted to verify that
this is not an artifact caused by the small sizes of the sys-
tems investigated. (It should be noted that the largest size
studied had 64 spins. ) The reason why p decreases on going
to 4 dimensions and trends on increasing the dimensionality
further are yet to be elucidated. For d &4, one may specu-
late on two simple scenarios: Either p may remain fixed at

and the spin-glass may well be above its LCD. On the

other hand, p may change further with d keeping the spin-
glass at its equilibrium LCD.

T~o-dimensional Heisenberg spin-glass. Consider the 2D
Heisenberg system given by the Hamiltonian

L —1 A

(+i S;,, S(+i, '
i 1 j 1

states. Sufficient equilibration was usually achieved within
500 to 1300 alignments per spin.

The quantity y was obtained by calculating the root
mean square of FAp Fp over the samples, where F~ and FAp

denote the true ground-state energies for periodic and an-
tiperiodic boundary conditions, respectively. The results of
the calculations are shown in Fig. 1, where the error bars in-
dicate the size of statistical error due to the finite number of
samples considered. It is seen that the data points are con-
sistent with the algebraic law described by Eq. (5) with

p =3. This implies that AE, decreases to zero as L
suggesting a T =0 phase transition.

It should be pointed out that for each value of L studied,
covers several typical energy differences per spin

between the ground states. As we have argued in Ref. 7,
this indicates that the regime of the asymptotically large L's
has already been reached for the sizes studied. For a 2D Is-
ing spin-glass with Gaussian couplings' and 3 equal to 32,
the asymptotic regime was reached at L =8. This difference
in behavior can be explained as follows. Due to the discrete
nature of the Ising spin states the energy differences
between the Ising system ground states are larger, for small
L's, than the ground-state separation in the Heisenberg
spin-glass. On the other hand, the y 's for the discrete and
continuous symmetry systems are comparable with each
other,

Four-dimensional Heisenberg spin-glass. The 4D Heisen-
berg system is described by the Hamiltonian as in Eq. (7)

with
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(7)
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Here q takes on the values of +1 for periodic and an-
tiperiodic boundary conditions, respectively, and in the
transverse direction periodic boundary conditions are im-
posed. The spins s „" are classical unit vectors located on a
square lattice. The exchange constants couple nearest
neighbors, and their values are determined from a Gaussian
distribution characterized by unit variance and zero mean
value.

In order to determine the L dependence of y at T =0 we
investigated systems with 3 =32 and L =4, 6, 8, and 12.
For L =4 and 6 we generated 40 samples (sets of the ex-
change couplings), and 30 samples for L =g and 12. On
the other hand, the 3 dependence was obtained for L =8
and 3 =12, 16, 24, and 32. For the three lowest A's we
generated 45 samples. The bigger number of samples stud-
ied for the smaller-sized systems is to lower the statistical
error related to the fewer spins in these systems.

Following Walker and Walstedt and proceeding as in Ref.
3, "ground states" of the system for a given boundary con-
dition were determined by starting from a random config-
uration of spins and aligning them sequentially in the direc-
tion of their instantaneous local fields. In the study of the
L dependence, 40 initial configurations were found to be
sufficient in selecting the true ground-state energy with ade-
quate accuracy for each L. For 3 =12 there were 25 initial
configurations and for 3 =16 and 24 we used 30 initial
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FIG. 1. Plot of lny„vs lnL and vs lnA for the 2D Heisenberg
spin-glass with Gaussian couplings. The L dependence is for 3 =32
and the A dependence is for L = 8.
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but the spins are located on the sites of a four-dimensional
hypercubic lattice. Since the 3 ' ' law for y„ is expected
on general grounds and has been confirmed for many spin-
glass systems, we have studied only the length dependence.

We investigated systems with A =6&&6 &6 and L =4, 5,
and 6. For L =4 and 6 we generated 25 samples, in the
manner described earlier. For L =5 we considered 15 sam-
ples. We selected the ground-state energy, for a given
boundary condition, by starting from at least 75 initial con-
figurations. Adequate equilibration was usually achieved
within 1500 alignments per spin.

The results of the calculations are shown in Fig. 2. The
error bars for L =5 are bigger than for the other two
lengths because of the smaller number of samples which
were taken into account. The results are again consistent
with Eq. (5) but with p = —, , suggesting that the system is

at its LCD (AE, is scale invariant). As shown in Fig. 2, the
data points seem to rule out the algebraic decay with p =3.
For each of the three values of L, y„ is several times bigger
than a typical difference in energy per spin between the
lowest-lying "ground states. " Judging at least by this cri-
terion, the systems studied seem to be large enough to ob-
tain the asymptotic L dependence.

The basic idea of probing the nature of ordering by study-
ing the sensitivity of systems to changes in boundary condi-
tions may be applicable to a variety of magnetic systems.
Such a technique may be useful even in instances when
there is no obvious ordering but only an algebraic decay of
correlations. The crucial point is that the boundary condi-
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tions should couple to the long-range correlations. The ulti-
mate value of such a picture would be if a scaling relation
for o. appearing in Eq. (5) could be worked out in analogy
with the work of Abrahams, Anderson, Licciardello, and
Ramakrishnan, 8 who worked out a scaling description of the
localization transition.

FIG. 2. Plot of lny„vs lnL for the 4D Heisenberg spin-glass with

Gaussian couplings. The L dependence is for A =6&6&6. The
5

data points are consistent with P = —(solid line). The broken line
2

represents the behavior of y if p were equal to 3.
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