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A theory of acousto-optic scattering from solid-state plasmas, which, on the basis of the
Boltzmann equation, takes into account nonlocal electronic transport effects is established. To em-
phasize the influence of nonlocal effects on the principles of acousto-optic scattering the treatment
is limited to the case where the scattering takes place from a purely transverse bulk sound wave
which does not ripple the surface. The coherent inelastic scattering from both the incident and re-
flected acoustic field is considered. The integro-differential equation for the anti-Stokes field is
solved with the assumption that the conduction electrons are scattered specularly from the surface.
It is demonstrated that the scattering from a p-polarized incident electromagnetic field besides a
well-known contribution from the plasmaritonlike part of the incident field is composed of free and
forced wave terms arising from the plasmonlike part of the incident field and from branch-cut con-
tributions which are of non-plane-wave character. The scattering from a fully degenerate plasma is
considered in the fully nonlocal and almost local regimes. Resonant anti-Stokes scattering is treated
and a general condition for resonance in the opaque nonlocal frequency regime is given. A few nu-
merical calculations on Al and n-InSb are presented and it is shown that first-order Brillouin
scattering via the nonlocal part of the incident light field should enable one to scatter from acoustic
phonons far out in the Brillouin zone. The theoretical methods used in the present work are similar
to those used in studies of the anomalous skin effect and the photoemission process. These methods
almost seem to have been overlooked in light scattering studies. It is shown that the present theory
is in agreement with the well-known results of local theories of acousto-optic scattering in opaque
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media in the appropriate limit.

I. INTRODUCTION

In the wake of the pioneering experimental and theoret-
ical Brillouin-scattering investigations on opaque semicon-
ductors and metals, carried out by Sandercock? and Ben-
nett et al.,> an increasing number of papers have been
concerned with the inelastic scattering of light from
acoustic phonons in opaque media.

A remarkable feature of the Brillouin-scattering spectra
is the so-called opacity broadening of the spectral peaks
caused by the breakdown of optical-wave-vector conserva-
tion normal to the surface, a collapse which leads to cou-
pling of the light to acoustic phonons with a spread of
wave vectors and hence of frequencies.*> Another prom-
inent feature which can be explained by taking into ac-
count phonon reflection at the sample boundary®’ is the
observed asymmetry of the line shape of the Brillouin
spectra.!

A competitive mechanism for inelastic light scattering
from opaque media is the scattering from surface ripples
generated by acoustoelectrically amplified bulk phonons,?
by thermally excited transverse and longitudinal bulk
waves,” or by Rayleigh surface waves produced thermal-
ly® The calculated Brillouin spectra from thermally ex-
cited surface ripples'®~!# show good agreement with mea-
sured spectra on solid’ and liquid'® metals.

Recently, detailed investigations based on Green’s-
function calculations of the power spectra of acoustic vi-
brations in slabs or semi-infinite media have dealt with the
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line shapes of Brillouin-scattering spectra in opaque ma-
terials having flat surfaces.!®~!® Moreover, rather general
theories which take into account the interference between
the photoelastic and surface corrugation contributions to
the Brillouin scattering have been put forward.!>!®

An acoustic wave may give rise to a bunching of the
conduction electrons in metals and semiconductors
through various coupling mechanisms.?’ The bunching in
turn can cause inelastic scattering of light.?! With the
main emphasis on acousto-optic diffraction in piezoelec-
tric semiconductors, where also the screened indirect pho-
toelastic effect contributes,?? the inelastic light scattering
by nonthermal free-carrier density fluctuations has been
studied both theoretically?® and experimentally.?* Also, in
thermal Brillouin-scattering investigations in metals the
free-carrier contribution has been incorporated.!>!%13

It has been pointed out that when the crystal is opaque
to the incident and scattered light interference effects
among the incoming and diffracted beams seem to be of
importance.”> For x rays the necessity of incorporating
interference effects to explain, for instance, the Borrman
effect’® has been known for a long time.?” To treat in-
terference effects one must use a dynamic theory of inelas-
tic light scattering. On the basis of local*®?* or nonlocal*®
optical models dynamic light scattering effects have been
studied theoretically in a so-called two-wave interference
approximation. A review article dealing with inelastic
light scattering from opaque crystals has been published
recently.?!
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In the present work we focus our attention on some of
the new aspects of inelastic light scattering in opaque
media that occur by incorporating nonlocal electronic
transport properties in the description of the incident and
scattered light beams. It is well known that these nonlocal
transport effects play an essential role for the understand-
ing of the linear plasma-optical properties of metals.’?—37
To keep the discussion at a simple level it is assumed that
the scattering takes place from a single transverse acoustic
mode polarized in such a way that the surface remains flat
when the acoustic wave is reflected from it. Basically and
in its method of approach the present work is closely re-
lated to other nonlinear nonlocal optical studies in solid-
state plasmas such as those on light-induced material en-
ergy flow,3®% second-harmonic generation,?® and the ve-
locity of stationary energy transport.* The results
presented in the succeeding sections agree with those ob-
tained on the basis of local theories valid, when the mean
free path of the free carriers, essentially in comparison to
the wavelength and the penetration depth of the elec-
tromagnetic wave in the medium, is negligible. To the
present author’s knowledge all experimental investigations
so far have been done with visible light. However, it is ex-
pected that substantial deviations will occur between local
Brillouin-scattering theories and experiments if these are
done by means of (far-) infrared light in (semiconductors)
metals. It is the aim of the present nonlocal theory of
acousto-optic scattering to take a first step towards the
description of (far-) infrared light scattering in opaque
media.

The main body of this paper is organized as follows.
With the integro-differential equation of the scattered

electromagnetic field as a starting point the general frame- .

work of the nonlocal theory of acousto-optic scattering is
established in Sec. II. We summarize a nonlocal descrip-
tion of the incident electromagnetic field inside a semi-
infinite solid-state plasma. The description is based on the
Maxwell equations and the Boltzmann-Vlasov equation in
the relaxation-time approximation. By letting the per-
turbed distribution function relax, not toward thermal
equilibrium, but toward equilibrium at the local electron
density we keep a plasmonlike term in the incident field.
This term opens so to speak a new channel of acousto-
optic scattering. We proceed by giving the acoustic dis-
placement field associated with pure transverse (T1) in-
cident and reflected sound waves polarized parallel to the
surface and perpendicular to the scattering plane. Next,
the nonlinear driving polarization is calculated. Finally,
the general expression for the scattered electromagnetic
field inside and outside the plasma is determined. The
method used to calculate the incident and scattered fields
resembles that applied in studies of the anomalous skin ef-
fect and the photoemission process from metal sur-
faces.¥ 37 For light scattering investigations this kind of
approach almost® seems to have been overlooked in the
literature.

In Sec. III we treat the scattering process in the case
where the incident electromagnetic field is p polarized.
The structure of the scattered anti-Stokes field, which be-
comes s polarized, is investigated by contour integration.
It is shown that the pole contributions, which give rise to
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exponentially damped plane-wave components, consist of
(i) forced-wave terms originating in the scattering of the
plasmaritonlike and plasmonlike parts of the incident
field, and (ii) free-wave terms necessary for the fulfillment
of the boundary conditions for the scattered field at the
surface. For a fully degenerate plasma the branch-cut
contributions which are associated with single-particle ex-
citations show up in the scattered field inside the plasma
as nonexponentially decaying terms. For the fully degen-
erate plasma we emphasize a discussion of the scattered
field in what we shall call the near-local regime, i.e., the
regime where nonlocal effects are incorporated in lowest
order.’®*% The near-local approach is valid for frequen-
cies around the plasma edge. Finally, we consider phase
matching and derive a general condition for resonant
anti-Stokes scattering in the opaque frequency regime.

In Sec. IV we stress a few qualitative results for
acousto-optic scattering via a s-polarized incident field.
In Sec. V some quantitative numerical calculations on a
metal (Al) and a semiconductor (n-type InSb) are present-
ed. Spectra are shown both as functions of the frequency
of light and as functions of the acoustic wave vector. It is
demonstrated that the scattering strength via the plasmon-
like part of the incident field should enable one to pick up
acoustic waves far out in the Brillouin zone. Some con-
cluding remarks which concern a comparison with local
acousto-optic theories and which point out important lim-
itations of the present approach are made in Sec. VI

II. FUNDAMENTAL NONLOCAL THEORY

A. Integro-differential equation of the scattered
electromagnetic field

Let us consider the ionic and free-carrier responses of
an absorbing crystal to a time and space-varying self-
consistent electromagnetic field, and let us assume that
the inelastic scattering of light is dominated by scattering
from the modulations in the ionic part of the dielectric
tensor. The neglect of the free-carrier contribution to the
nonlinear polarization can be justified for instance in
scattering configurations where the contribution from the
direct photoelastic effect is polarized perpendicular to the
contribution from the bunched free carriers.?>?*30 In
piezoelectric semiconductors such as n-type InSb the use
of acoustoelectrically inactive sound waves® avoids the
bunching of the free carriers and hence their contribution
to the nonlinear polarization.

By assuming the free-carrier response to the self-
consistent electromagnetic field of the incident light to be
linear (L) and nonlocal in space, and by making use of the
time invariance of the material properties of the
conduction-electron system, one obtains the following re-
lation between the Fourier transforms in time of the linear
free-carrier current density, 3 L(%,t), and the self-

consistent electric field, E(T,?),
Tige= [ [° [ 64570 BT o,
(2.1)

where & X(T,7',w) is the linear conductivity tensor kernel
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at the frequency w.

For the ionic system we shall adopt a description where
the response to the self-consistent field, composed of a
linear and a nonlinear (NL) part giving rise to the inelastic
light scattering, is local in space. This approach implies
that the Fourier transform of the dielectric polarization,
P T,), can be written

PNYT0), (2.2)

—15(?’@)=€0Y L(a))‘ﬁ(?,w)—}-

(V V —T[V2+ (0, /co)?]— (@5 /co)*X Hw,)} B, (T,0,)

—ipe, [ [T

where V is the nabla operator, T is a unit dyadic of di-
mension 3X 3, ¢ is the velocity of light in vacuum, and
Ho is the vacuum permeability. Subscript s has been im-
posed on various quantities in the above integro-
differential equation to stress that they belong to the fre-
quency w; of the scattered (s) field. In the following, for
simplicity, we shall assume that the crystal is isotropic as
far as local effects are concerned.

B. Incident electromagnetic field

Let us assume that the solid occupies the half-space
z>0, the rest of space being vacuum, and let a harmonic
electromagnetic wave of angular frequency w;, i.e.,

E;o(T,0)=Ejo(kl, 0, exp{i [(; /c)*— (k]1)2]1/%2}

Xexpl[i( k! ‘T—aw;t)] 2.4)
be incident on the surface at an oblique angle determined
by EI-', the component of the vacuum wave vector of the
electromagnetic field parallel to the surface. For conveni-
ence, the plane of incidence is chosen to coincide with the
x-z plane of our Cartesian coordinate system. The reflect-
ed field outside the crystal is given by

E,o(T,0) =E,o(k) 0, )exp{ —i [(w; /o> — (k[)?]"%2}
xexpli (kK ' T—aw;1)] . (2.5)

In a recent work®® the incident electric field inside the
solid and the amplitude of the reflected field have been

|

FL) ko)) =[T—R&) k0K, 175 k) kL o;)
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where X X(o) is the local and linear dielectric susceptibility
tensor of the homogeneous medium under study, and
PNY(F,0) is the nonlinear driving polarization, which is
the source of the inelastically scattered electromagnetic
field.

By means of the Maxwell equations and the constitutive
relations in Egs. (2.1) and (2.2) the time-independent wave
equation of the scattered electric field in the kinematic ap-
proximation takes the form

) fw‘aL(?,?',w,)-'E’s(f",ws @3 =P VH(T0,) , (2.3)

[

determined by combining the Maxwell equations and the
Boltzmann-Vlasov equation in the relaxation-time approx-
imation. In summary, the transmitted field takes the
form

= 1 e I
E,-(r,t):tz;exp[t (k l-l-r—a),-t)]

x [ Bkl ki opexplikiziaki . (2.6)
where the Fourier amplitude E-(ki”,kil,wi) is given by
—E’,(k,ll,k,l,a),)zg(kt”rkxl’wt )
tP(k H,(J), )E,"o(ki||,wi)
S(kt“’wz )E O(ktnawi) (27)

0

For brevity, we have introduced the second-order tensor
Bk ko) =2({(@; /e[ 1+ X 0] -k T

+ ﬁi E,' +l'ﬂ0a)i3L(k,“,kil,0)i ))_1 ’
(2.8)

where k =K/! I+kle,, €, being a unit vector m the posi-
tive z dlrectlon The Fourier transform &X(k)! ki, o;) of
the linear conductivity tensor kernel is obtalned from the
nonlocal constitutive relation between the free-carrier
current density and the self-consistent field. By assuming
the conduction electrons to be scattered specularly at the
surface, and by assuming the relaxation of the perturbed
distribution function of the electrons to be toward equi-
librium at the local electron density, the explicit expres-
sion for G L(k}| k},w;) becomes®>4!

(2.9)

where the conductivity tensor kernel ‘&’L”(k,“, ki',w;) appropriate to s-polarized mode propagation is given by>?

afo(ff)

"’L”(k” k,l,w, )_

o

and

d (2.10)

l+l(E, —; )T



4662 O. KELLER 29

m*

v e S
It should be emphasized that the relaxation of the free-carrier distribution function toward the local electron density al-
lows us to incorporate charge-density fluctuations caused by p-polarized light. This turns out to be essential for the in-
frared acousto-optic light scattering process discussed in the following as well as for studies of kinetic energy transport
associated with p-polarized light-induced free-carrier flows.*! In Eqs. (2.10) and (2.11), fo( &) is the Fermi-Dirac distri-
bution function, m* is the scalar effective mass of the free carriers, and 7, &, V, and —e are the momentum relaxation
time, the kinetic energy, the velocity, and the charge of the free carriers. The derivative of the chemical potential p with
respect to the local electron density N is to be evaluated at the thermal equilibrium electron density Nj.

The normalized field gradients of the incident field at the surface [Eq. (2.7)] are given by*%>°

Rik) ko) =—

3fo(#) -
- f° ’ v d% . @.11)
7TCU

1+i(K;V—o;)7

ts(k,'“,&),')= 1 4 (2.12)
f°° 1+_1— :W(k,'”,k,'l,a),' )dkil
- kio
and
(k) ;)= i dm : , (2.13)
IS 2 e ekt on— <2 = ko) | ak
— wl cokt‘b X (AR AAd I Aad | i —xz AR AAd Ib And | 1
where

,0—-[(60, /00)2_(k ||)2]1/2
The amplitudes of the s- and p-polarized incident fields in vacuum have been denoted by E;, and EF;, respectively.

C. Acoustic displacement field

To emphasize the influence of nonlocal electronic transport effects on the principles of acousto-optic scattering we
shall avoid the complications arising from the scattering of light by surface corrugations. Hence we limit ourselves to
the most simple case where the inelastic scattering takes place from acoustic displacement field gradients associated with
a purely transverse (T1) sound wave polarized parallel to the surface along the y direction. The sound wave will be re-
flected from the surface of the isotropic medium, and the acousto-optic scattering from both the incident and reflected

mode will be considered.
Let the displacement of the incident (i) sound wave be given by

U 7U(E D=4 (Q,0)€, exp[i (Q - F— Q1) Jexp(—iQ'2), Q, >0 (2.14)

where () is the acoustic angular frequency, u,-Tl((-j,Q) is the amplitude of the wave, and €, is a unit vector in the positive
y direction. By assuming that the lifetime of the mode is infinite and that the damping of the wave in space can be
neglected, the frequency  and the wave vector Q become real quantities. In Eq. (2.14) the wave vector has been split

into its components parallel (||) and perpendicular (L) to the surface, i.e., Q=Q!—Q'%,, 0! >0.
Reflection of the sound wave at a stress-free boundary gives total reflection with zero phase angle so that the displace-

ment associated with the reflected () mode becomes

7T =u1(Q,0)8,expli (QI-F— Qn) Jexp(iQ'z) (2.15)

remembering that () and 6 Il are conserved in the reflection process.
The total displacement field, i T'=4 '+ 1 [, is of standing-wave character in the z direction, and does not ripple the

surface. The acoustic wave vector and frequency are related via an appropriate dispersion relation.

D. Nonlinear driving polarization

When the inelastic scattering of light takes place through the elasto-optic effect the nonlinear driving polarization can
be written in the form

PNYT,0,) =€ X NUT,0;,0,,Q) E(T,0;) , (2.16)

where we have introduced a transition susceptibility X NL for transition from the initial state i to the final state s as fol-
lows:

X NHF, 01,05, Q) = +X L TU(T, 0) 180, —0; — Q)+ X > " VT, D) *8(0; —0; +Q) . .17
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. Co,0,0 < ag,0;,—0 . . .
The quantities X “* " and X are the fourth-order elasto-optic susceptibility tensors corresponding to anti-Stokes

(A4) and Stokes (S) scattering processes, respectively. These tensors are discussed in the book by Nelson.*? The trivial
factor of  in Eq. (2.17) which does not appear in the treatment of Nelson*? results from the fact that the Fourier ampli-
tudes of the fields here (F) are related to those of Nelson (Fy) by ?=2§N. The space-dependent parts of the acoustic
displacement and the incident electric field are denoted by d(r,Q) and E,-( T,w;) in Egs. (2.16) and (2.17) and the Dirac 8
function by 6.

In contracted notation the fourth-order elasto-optic susceptibility tensor of an isotropic solid has the form

X1 Xi2 X 0 0 O
X2 Xu Xiz2 0 0 O
o oo X Xexy 0 0 0
X T = 0 0 0 Xy O O |° (2.18)
0 0 0 0 Xy O

0 0 0 0 0 Xg

1 . . WDy Djs 0 . . . .
where X44=7(X11—X12). For brevity we have written X;; =X;;. When the acoustic displacement field is given by
the sum of Egs. (2.14) and (2.15) one obtains via Egs. (2.17) and (2.18) the following expression for the transition suscep-
tibility:

- 7 N A,ﬂ — =2 —
X NYUT,0;,05,Q)= éX:{ * u,-Tl(Q,ﬂ)exp(lQ Il.7)

o ol o o ol o
X |expi@'z) |Q!l 0 Q' |+exp(—iQ'z) [Q!l 0 —Q!
0 ¢t 0 0 —Q* o

[ L 0,0,— — =21
XS(ms—w,-—Q)—-;—Xd' [(Q, Q) *exp(—iQ - 7)

o ol o o ol 0
X |exp(—iQ'z) |@Il 0 Q' |+expliQ'2) |Q!l 0 —Q'||8(w;—w;+Q). 2.19
0 ¢t o 0 -0t o

When the incident electromagnetic wave is s polarized the nonlinear driving polarization becomes p polarized and vice
versa. By combining Eqs. (2.16) and (2.19) it is a straightforward matter to write the explicit expressions for the non-
linear polarization in these cases.

E. Scattered electromagnetic field

By combining Egs. (2.6), (2.16), and (2.19), it is realized that the nonlinear driving polarization can be written as fol-
lows:

T;SNL( f’,cos)=i; ,I;IL(k,L‘,mA ,z)exp(il_{,u T)(ws —wy )+P ?L(k}l,ms,z)exp(iEg-?)ﬁ(co, —wg) , (2.20)

where the x and z dependence have been separated. The explicit expressions for the nonlinear polarizations at the anti-
Stokes (w4 =w; + ) and the Stokes (vg=w; — ) frequencies, i.e., P,TL(k,l,',wA ,Z) and P?L(k}[,ws,z), can easily be writ-
ten by means of Egs. (2.6) and (2.19). The wave-vector components of the anti-Stokes and Stokes scattered fields parallel
to the surface which were introduced in Eq. (2.20) are given by

kKl=k/+qQ! @21
and

E§=l_fl~|—6“ , (2.22)
respectively.

Let us determine now the scattered anti-Stokes field inside, EA(ﬁwA Jexp(—iwyt), and outside,
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EA ol T, 4 Jexp( —iw 41), the solid-state plasma. By making the ansatz

E (T, )—EA(kA,coA,z)exp(zk ‘7)), (2.23)
one obtains, via Eq. (2.3), the following integro-differential equation for the anti-Stokes field:
X% [kj,l,wA, ;z S Bkl 04,2)+ipow f Lo,z —2'VE (kY 0,4,2))d2 = —poi PNk 0,,2),  (2.24)
where the linear tensorial operator Zis given by

Z |kl o4 j jzz ,:“ ;2 + [1+XL<w,,)] (k§)?|-00. (2.25)

The vectorial operator O, introduced for brevity, has the
form

o (2.26)

d|_2l, =4
kA’dz] lkA+Czdz .

In deriving Eq. (2.24) we have made use of the redefini-
tion of the electric field E 4 Jc(k,,,a)A,z)—EA x(kA,w ,—2),
Ey (k) ws,2)=E4 (ki 04, —2), and E,,(kf,04,2)
=—E, z(kA ,a)A —2z) for z <0, and introduced the Fourier
amphtude o kj,w 4,2 —2') corresponding to Fourier in-
tegral transformations of the conductivity tensor kernel in
the coordinates x —x' and y —y' parallel to the surface.
The final step in the determination of the scattered
anti-Stokes field is taken by inserting the Fourier integral

transformations
ﬁA(kL!’wA,Z)=J— fw E (k) k},w4)explikjz)dk}
2 Y -
(2.27)
and
— 1 ©
PYkopa=5— [ Bkl kiop)
X explik}z)dk;} (2.28)

into Eq. (2.24), and using a technique identical to that
described in Ref. 38. Hence one obtains

EA (k/lllakj’wA =2( k)llykzji.,wA )

gkl 0 ,z—0%)

_ i‘zﬂwﬁ%k,',',kj,w,,) ,

(2.29)

where the second-order tensor = 1s glven by Eq. (2.8) with
the replacements k,“,k, " @; —k) ) Lk} 4>04. The vector g

consists of appropriate field derivatives of the anti-Stokes
field at the surface, i.e.,

aEA,x(ky,coA, z—0%)
oz

- 3E,, (k) 04, z—0")
g(kly,coA, z—0%)= 2 32

0

(2.30)

The scattered anti-Stokes field EAO(?,t) outside the
crystal can be expressed as follows:

EAQ(Kt)=—éA0(k|',wA )
Xexp{ —i[(wy /co)z—(k,',l)z]‘/zz}

xexpli (K| -T—aw, )] . (2.31)

In principle, the scattered anti-Stokes field inside and
outside the solid-state plasma now is completely deter-
mlned if the field derivatives g, (k) 0,,z2—0%) and
gy(kA,wA, z—0%) at the surface and the field amplitude
EAO(kA,coA) are known. These quantities are determined
by means of the boundary conditions for the electric and
magnetic fields at the sharp, nonmoving boundary. Since
= has the general form [see Eq. (2.8)]

(2.32)

and the acoustic wave vector 6 is parallel to the xz plane,
the cases where s- and p-polarized modes are incident
upon the crystal can be treated separately. Note that = is
symmetric, i.e., =,,=Z,,. In the next two sections we
shall consider the uncoupled s- and p-scattering configura-
tions in turn. The results derived in this section for the
anti-Stokes field does of course hold for the Stokes field if
one makes the replacement A-—S, i.e., essentially

kJ——»k and w4 —og.
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III. SCATTERING OF A p-POLARIZED INCIDENT FIELD

A. General results

Let us consider the case where the incident electromagnetic wave is p polarized. By combining Egs. (2.6), (2.7), (2.16),
(2.19), and (2.32) one obtains the following expression for the s-polarized driving polarization at the anti-Stokes frequen-

cy:
— ’ a
PEL’S(k oy )Z)= Tfouz Qy tp k,”,co, ) O(kaJ(‘)t )XwA “ e}’

X |Q[exp(iQiz)+exp( —iQ'2)] f Z (kL K 00 explikiz)dk}
+ Q'[expl(iQ'z) —exp(—iQ'2)] f_“’ = (ki ko explikiz)dki | . ' 3.1)

With the redefinition
P};""s( ,coA,z)ey =P}y ”(kA,wA,——z)'e’y forz <0,

the Fourier amplitude P}™ k ,k4,04) of the nonlinear driving polarization is obtained by inserting Eq. (3.1) into the
inverse of Eq. (2.28), interchangmg the order of integration, and using the 8 function expansion

_1 [in ,
8(x)=2m)~" [ explikx)dk .
Doing this, one gets

??L’s(k/‘!,akj’w,i)*—eout l(Q’ tp(kinng )E O(k; ,(0,) ("A’w ey{Q”[Exx(le’kj—Ql’ml)+Exx(kl“’kj+Ql’w‘)]
+QUE Lk k) — 00— E (kL ki + 0501}
(3.2)

Continuity of the tangential component of the anti-Stokes scattered electric and magnetic fields at the surface gives by
means of Egs. (2.27), (2.29), (2.31), and (2.32) two linear equations among the yet unknown quantities g, and Ej,. Solv-

ing these one obtains

1+—- }_yy(kA,kA,w,, PN ek 0)dKS (3.3)

gy(kAywAy Z—~>0+)——8—-w,4t ( A,CDA) f

and

Ho
ES (k”, — Zt’(k”, )
A0(kq,04) (47T)2(‘)A A0 4

X |7 ntkdich o |

w ki
[ ﬁEyy(k,E},kj,wA PN ek o0 )k
A0

o o ki
- [ [ Bkl ki 00P (kY ki 0,)dk} [ [ ﬁ*Eyy(ky,kj,a)A )dkj” , (3.4)
o - 0 40

where ko =[(w4/co)?—(k ,',})2]‘/ 2is the component of the vacuum wave vector of the anti-Stokes scattered field Perpen-
dicular to the surface, and where #5(k | 4,04) is given by Eq. (2.12) if one makes the replacements k; ',k, ,@j ——»k,, kg,04.
Outside the crystal the field will be given by Eq. (2.31) with

E okl 0)=Ejo(k},04)%, ,

where Ej, is taken from Eqgs. (3.4). Inside the crystal the field takes the form

‘E;(f:t)=5%;exp[i<1?1}-?_wm]e,

X [ 2yl ki gy(kA,wA,z——+O+)—7m PNk kb 0,) |explikiz)dks (3.5)
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where g, and PANL’S are now known.

Immediately, it appears from Eq. (2.19) that the expres-
sion for the scattered anti-Stokes field derived in this sec-
tion can be used for the scattered Stokes field if, in Eq.
(3.2) for the Fourier amplitude of the nonlinear driving
polarization, one makes the replacementg
Q.0 -[u" Q) Ql->—Ql, and X
XS ™" and besides that, in all relevant equations
make the substitution 4 —S.

B. Pole contributions

The structure of the scattered anti-Stokes field inside
the crystal [Eq. (3.5)] can be investigated more closely by
deforming the path of integration along the real axis into
an appropriate path in the complex ki plane. Thus by
contour integration in the upper (or lower) part of the
complex kj plane one picks up contributions from branch
cuts and poles of the integrand in Eq. (3.5). The pole con-
tributions, corresponding to exponentially decaying
plane-wave modes, will be examined in this section.

Let wus consider the linear conductivity tensor
Lkl k) given in Egs. (2.9)—(2.11), omitting for sim-
plicity any subscripts on the wave vector and the frequen-
cy. Since the conductivity tensor for specular electron
scattering is identical to that of an infinite medium,**343®
and since K in Eq. (2.9) is a real quantity, the conductivity
tensor will be diagonal in a coordinate system which is ob-
tained by a rotation of the original one about the y axis.
The angle of rotation must be such that the z axis is
brought to coincide with the direction of K. Thus in the
rotated coordinate system (x’,y’,z’) the diagonal elements
of the conductivity tensor become o"'x:=a}’,"yr=01f(k,w)
and ok, =0F(k,w), where o and of are the transverse
and longitudinal linear conductivity response functions of
an infinite medium, respectively. The explicit expressions
for these response functions need not be specified in this
section. The relations between the conductivity tensor ele-
ments in the original and rotated coordinate systems are

oL (kL kY0)=(k*/k )2okk,w)+ (kI /K)ot (k,w) ,  (3.6)
oh (kL kt0)=0f(k,0) , 3.7
ok (kL kt,0)= (k! /k) 2ok k,0)+ (k1 /k)ok(k,w), (3.8)
and
ok (kL ktw)=0L (kI kL 0)
gL
=kk’2‘ [okkw)—oktko)],  (3.9)

where k2=(k!l)>+(k')%. The remaining components are
equal to zero.

To determine the pole contributions to the scattered
anti-Stokes field one must determine Z,,, E,,and E,; ex-
plicitly.

By means of Eqgs. (2.8), (3.6), (3.8), and (3.9) it appears
that

(k*)?

Ny(k,w)

2 | (kM
k2 NL(k,CO)

Bkl kt0)= (3.10)

and
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2k K 1 1
= (k! kL o) = -
xz (K1, k%,0) k? |Npolkow) Nrlko) |’

(3.11)
where
Nrlk,w)=(w/co*[1+ X 0) | +ipwokik,w)—k?

and

(3.12)

Ni(k,0)=(w/co)[1+ XX )]+ ipwot(k,w) . (3.13)
By combining Eqgs. (2.8) and (3.7) one gets
2
NT(k,w) )

The zeros of the denominators in Eqgs. (3.10), (3.11), and
(3.14) are determined by the dispersion relations for trans-
verse (T) and longitudinal (L) polarized waves propagating
in an unbounded medium, i.e.,

Nkl k™ 0)=0

g,k k' o)= (3.14)

(3.15)
and

Np(k!Lkb™ 0)=0, (3.16)

respectively. In Egs. (3.15) and (3.16) we have split the
wave vector into its components parallel and perpendicu-
lar to the surface to stress the fact that the wave-vector
component parallel to the surface is a given real quantity
in the present context (essentially k,~|| or k,',l). The un-
known complex wave-vector components perpendicular to
the surface, denoted by xx" and k", which are to be
determined by the above equations, have been given super-
script n to indicate that more than one solution eventually
exists to Eqs. (3.15) and (3.16) in the nonlocal regime.
Thus n=1,2,..., denotes the various solutions.
Throughout the paper zeros in the upper (or lower) half-
plane of the complex plane only are to be considered. In
the following we shall denote the complex wave-vector
components perpendicular to the surface which are ob-
tained by solving Egs. (3.15) and (3.16) for
(k!Lo)=(kll,;) and (k},w,) by k37, k1], k1%, and i,
respectively. With this notation the zeros of the “dis-
placed” dispersion relations

Nr(k\ ki FQ 0)=0 (3.17)
and

Nkl ki 704 0;)=0 (3.18)
are given by

ki=rzi+Q" (3.19)
and

ki=xpi+Q'. (3.20)

Now we are prepared to take the last step in the deriva-
tion of the pole contributions to the scattered anti-Stokes
field. By means of Egs. (3.10), (3.11), and (3.14) the non-
linear driving polarization in Eq. (3.2) can be written in
the form



29 THEORY OF ACOUSTO-OPTIC SCATTERING IN OPAQUE MEDIA ... 4667
— , ﬂ
P/I?Ls(kzliI,kAawA)—“?Oux Q’ Q)ek( k,”,co,)E (k'H’wl)X“’A “r €y
le “k,”—+- _L(kl$ l) kl— L Il kl-— y_ lkH
%S [P+ ki F0h2]! [Q : 1Q_ ,: Q9]  (k4FQ )[QH( f+Q) Q'] '
= Nyp(ki', kg1 FQ%0;) Ny(ki', ki FQ" ;)
(3.21)

Finally, by combining Egs. (3.5) and (3.14)—(3.21) and by performing a contour integration along an expanding semicir-
cle in the upper half of the complex k3 plane one obtains the following expression for the scattered anti-Stokes field in-

side the absorbing solid:

E%(T,0)=3,expl[i (k

L’ —w4t)] 3, 3 {a%expl mT 2)+bT, +CXp[l(KT +Q)z] 457, +exp[1(KL +04H21} +

+,— n
(3.22)
where the ellipsis includes unspecified branch-cut contributions and
3.0 pkll )Ep(k” )X“’Aw 0
_ L . | zut (Q’ t( i @i ) Ejo\K; »®;
a’t =Rk K1,04) |2igy (kg 04,20 ) (w4 /co) P+ (o, 7017
o |raFehlos 70—k | KOk +0* et 701)] 323
NT(ki”,KTA¢Ql;0)i NL(kian%",i'*'Q »@;) ’ '
" wpa ki@t — 'kl Ak e, 0)
bE L =(wy /co)u O, )Pk} 0 ER (k) o Xl " (3.24)
T,+ A/ ¢t0 i i i /= 0\ R i/ 44 (ki”)z‘}‘(KT,i)z NT(kA,KT;in,OJA
and
Lo kN QUK o™y ALk kb w;)
b . =(w, /co)uT (O, Q)eP(k) 0 ER (k) o, Xl " LT (3.25)
Lt 0 Q i i Mo\ i /A 44 (k”) (KL,)2 NT(kAaKt':in,wA)
By means of Eq. (3.3) the field derivative at the surface gy(kA ,04,Z—071), appearing in Eq. (3.23), becomes
+ 1 Kl,{ti L Kl,n
gy(k,l;l,wA,Z—>0+)=—--ts(kA,wA 2 2 T'—Q. bT,t+ 1+_L”li bi,i 414 TL’A ?t + - ,
+,— n 40 k4o kio
(3.26)
where the ellipsis includes unspecified branch-cut contributions and
2 = (] ,w‘.,.().
o — _ag; Tl(Qy tp(ktllrwx)EfO(ka’wt)X44/" n(kIIKl,n @4)
+ co (k” +(K ¢Ql T\R4HKT, 4,04
k'1Qk!'+ Q' (ker s FOH] TNk, FQH— 0 k] 527
NL(ki“’KJl.",'/; ¥0h0;) NT(ki”,K%",ﬁ:FQl,wi) .
[
and The branch-cut contributions to the scattered field nor-

TA

S(kA,tL)A)"‘ lEl {1+ k

-1
'%T(kA’KTA’wA)‘*' o } ’

40
(3.28)

where the ellipsis includes unspecified branch-cut contri-
butions. In deriving Egs. (3.22)—(3.28) we have assumed
simple first-order poles of the integrand in Eq. (3.5), and,
for brevity, introduced

kt—xt

—L =K 3.29
N(klLkt o) (3.29)

Ak kt,0)= lim
kit

with the appropriate subscripts and superscripts on #, N,
k!l ki, and w.

mally disappear rather rapidly for large z.*' Hence, the

sum of the exponentially decaying inhomogeneous plane
waves in Eq. (3.22) represents the asymptotic solution to
the scattered anti-Stokes field. Furthermore, the analysis
of the asymptotic behavior often is facilitated by the fact
that merely a single solution exists to each of the disper-
sion relations [Egs. (3.15) and (3.16)]. Omitting for con-
venience the index n, the asymptotic solution is comgosed
of (i) one free-wave contribution (a, +a_)exp(ikt, 42),
which is necessary for the fulfillment of the boundary
conditions of the scattered field at the surface, (ii) two
Sforced-wave terms b, +exp[z(KT ;1Q1)z], arising as a re-
sult of the plasmaritonlike* (or solenoidal) part of the in-
cident field from the incident (minus sign) and reflected
(plus sign) parts of the acoustic disturbance, and (iii) two



4668

Jforced-waved terms by, +[i (Ki,iin)Z], originating in the
scattering of the plasmonlike (or irrotational) part of the
incident field from the incident (—) and reflected (+)
sound waves.

It should be mentioned that the factor [( k,-”)2
+(k5+0*)?]17! in Eq. (3.21) does not give poles in the
upper half-plane at kj:ik,-”in since NL——Nch(k,-“)2
+(k}FQ")? as these points are approached. This follows
by realizing that we are in the realm of local optics close
to the above points (see Sec. III C). The pole contributions
to the scattered Stokes field are obtained by making the
usual replacements 4 —S, #7'(Q,Q) —[4(Q,2)]*, Q'
——0ll, and X" Sxef T in all the relevant
equations of Sec. III B. ’

C. Scattering in a fully degenerate plasma

To gain some further insight in the structure of the
inelastically scattered field by analytical methods we shall
in this section be concerned with heavily doped semicon-
ductors and metals. Thus fully degenerate Fermi-Dirac
statistics, i.e., 9fo(&)/0&=—8(& — &), 6 being the
Dirac 8 function, and &y the Fermi energy of the conduc-
tion electrons, will be applied. The use of degenerate
statistics leads to the following expressions for the trans-
verse and longitudinal linear conductivity response func-

tions:33:40:41

1+22
Z

30’0 1

2l —iwr) Z2

Rk kL 0)= arctanZ—l)

(3.30)

and

ob(k!L k)=

309 1 1— arctanZ
l—iwr Z? z

—1
X 1——,1—{1_2‘-’12‘—“5” . (331

ioT Z

where the nonlocal expansion parameter Z is given by
2 [(k||)2+(ki)2]1/2vFT

- l1—ioT ’
One should emphasize that the conductivities in Eq. (3.29)
and (3.30) have been obtained on the basis of a microscop-
ic classical Boltzmann-equation calculation. If the
characteristic de Broglie wavelength of the conduction
electrons cannot be neglected one must, of course, replace
the conductivity response functions above by the Lindhard
quantum mechanical response functions.***

(3.32)

1. Branch-cut contributions

Let us return now to the expression (3.5) for the anti-
Stokes scattered field inside the solid. Since arctanZ is
singlevalued and analytic in the Z plane cut along the im-
aginary axis from i to o and —i to —i o it follows by
combining Egs. (3.5), (3.12)—(3.14), (3.21), and
(3.30)—(3.32) that the integral in Eq. (3.5) has three (hy-
perbolic) branch cuts in the upper half part of the com-
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plex kj plane extending from the singularities at

. 21172
1—iwy ]

VrT

(3.33)

kj=ny=i [(k,',')2+
and

+Q*,

. 2
kj=77,4in=i[(ki“)2+ [1:_150_{]

VpT
(3.34)

toward infinity as shown in Fig. 1.

The detailed calculation of the branch-cut contributions
to the scattered anti-Stokes field (€% pc) inside the plasma
will not be presented in this work. Emphasizing the spa-
tial dependence of the field the results can be summarized

via the formula
&% pc(T0=—%,expli (K |- T—w )]

X |eoz " 2exp(—K42)

+ 3 (efz 2 4efz™%?)

+’_
xexp(—Kiz) |,  (3.35)
where
1—iwyt
Ky=——[1+1Z}7] (3.36)
UVpT
and
1—iw;
KE= —i’l[ 1+ 1z)h+igt, (3.37)

Ur
with the “parallel” components of the nonlocal expansion
parameters given by Z,~”=k,-”vFT/ (1—iw;7) and
Z,’):k,',’vpr/(l*iwAT). Note that the factor in front of
the exponentials in Eq. (3.35) is proportional to z =2 for

Imk}
Ll
=t @
o
K'Jf‘,i -Q*

Y

1
Reky

FIG. 1. Contours for evaluation of the scattered anti-Stokes
field inside the solid-state plasma. The sum of the integral along
the real ks axis, around the poles %4, k},;+Q*, and i ;+Q",
and along the three branch cuts C4, Ciy, and C; must equal
zero.
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the terms (0,T) arising from the solenoidal part of the in-
cident field, whereas it is proportional to z~3/2 for the
terms (L) of irrotational origin.

2. Scattering of a coupled plasmariton-plasmon field:
Fully nonlocal regime

As pointed out in Sec. III B often merely a single solu-
tion exists to each of the dispersion relations
Nr(k!lkk,0)=0 and Ny (k!l,ki,w)=0. As typical exam-
ples are shown in Figs. 2 and 3 the real and imaginary
parts of the transverse, ie., Kp=kr(w)KkT
=[(k!12+(k%)?]'/%, and the longitudinal, ki =xp(w),ky
=[(k!)24(k1)?]'/? dispersion relations of a free-
electron-like metal (Al) and a heavily doped semiconduct-
or (n-type InSb), respectively. The dispersion relations
shown have been obtained on the basis of Egs. (3.12),
(3.13), (3.15), (3.16), and (3.30)—(3.32) using the following
qualitatively representative material data at 300 K (Ref.
39). Al: Ny=1.81X10Y m~3, m*/my=1.15, r=8.0

10"

TTTTTIT

Imukp,

———
.

10]0

T T TTTTTy

Keps Kp (m™)

10°

T T TTTTIT

108

\ llllll!]

107

T T TTTTTI

10¢

]
1
A
108 1 1\ Loyl

107! 10° 10! 10? 10°
wT

T T TTTTT]

LAl T | Lol

FIG. 2. Real (solid curves) and imaginary (dashed curves)
parts of the transverse (x7) and longitudinal (k) wave vectors of
the electromagnetic field in Al as functions of the dimensionless
optical frequency wr. Note that 10Xkt has been plotted in the
figure. With the adopted relaxation time 7=8.0X 10! sec; the
positions of the 0.63-um He-Ne laser line and the 10.6-um CO,
line are at wT=24 and 1.4, respectively.
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X 1071 sec, and X£=0; n-type InSb: N,=1.20%x10*
m~3, m*/my=3.20X10"2, r=4.0x10""* sec, and X~
=14.68.

For o7— 0, it appears from the longitudinal dispersion
relation [Eq. (3.16)] that the nonlocal expansion parameter
approaches i. Thus for Z-—i, one obtains «y(w)
=(w/vp)+(i /vpT), as indicated in Figs. 2 and 3. Note
that the complex wave vector k(@) just equals the charac-
teristic free-wave branch-cut wave vector at perpendicular
incidence, i.e., k (w4)=iK (w4 ) for @ 47— o and ZAl =0.

It can be shown*! that the pole contribution to the scat-
tered anti-Stokes field outside the solid, obtained on the
basis of Eq. (3.4), is given by

—1
kjo +Ké‘,A

X 3 [(kg;+Q —kt 4)b7,+
+’_

E5olkl o )=

+(KL,; 2Q ' —k1 4)br+].  (3.38)

Outside the solid, the ratio between the magnitudes of
the time-averaged ({ )t) Poynting vectors of the s-
polarized anti-Stokes field (§jo) and the p-polarized in-
cident field (S%,) becomes

10°
- ImrcL
108 - R SN
T C
8 -
] L
N
$ o107 L
i me, ) 7
10° |- eSS mm—————,
c 7 \
r - 3
F }
Rekq !
10° 2 é
F H
104 PR Ll Ll RN SR L
10! 10° 10! 10?

FIG. 3. Real (solid curves) and imaginary (dashed curves)
parts of the transverse («x7) and longitudinal (k) wave vectors of
the electromagnetic field in n-type InSb as functions of the di-
mensionless optical frequency wr. With the adopted relaxation
time 7=4.0%X 10~ sec, the positions of the 10.6-um CO, laser
line and the 337-um HCN line are at wr=71 and 2.2, respec-
tively. The band edge (~0.16 eV at 300 K) corresponds to
0T=98.
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| <Sf40(kz|1|’wA)>T| | @4 | G Q)IZIXmA,w 2 (ki w;)
l b —
l (S O(kl ’0)1)>T| €o kj() +K%’,A

K%‘,i(kiHQl—K’lr,iQH)

| Ll
KT, TQ™ —KT 4

X '@T(ki”ﬂ(%‘,ha’i)

(k"2 ok, 2

& Np(k k0N 0,)

k”(k” ||+Kl 1y A0tk 2
— ALk et i 001) = ,,Q2 LzQ = © T (3.39)
(ki) +(kp)* £2 Nplkgkr, £Q%0,)
with 2(k)|, ;) given by
i (k“)2 CoK%‘,‘ a)i(K:}- -)2 -1
(k) o;) = —i - (k) et i)+ —+ > Rk et i 0;) .
i @ cok [(k” +(KL )2] L\Ki LKL, i, @; o; Cokilo (k,-”)2+(K-lr,,~)2] TR HKT,i, D
(3.40)

I

3. Scattering of a coupled plasmariton-plasmon field:
Near-local regime

sociated with the solenoidal component of the electromag-
netic field not only around the plasma edge, but over the

entire optical frequency spectrum.

A numerical calculation of the scattered anti-Stokes
Poynting vector in Eq. (3.39) is impeded by the fact that
the nonlocal expressions for the linear conductivity

Thus in the so-called near-local regime where the con-
ductivity response functions are expanded to lowest, i.e.,
second order in Z; and Zy the dispersion relations take

response functions [Eqgs. (3.30) and (3.31)] are quite com- 1. form
plicated. However, for optical frequencies around the '
plasma edge Eq. (3.39) can be simplified considerably. Lol oy ay(k',w) i _
Thus it appears from Fig. 4 that the magnitude of the *M (klo)= Bur(k!l ) » Imiye >0, M=L,T
longitudinal nonlocal expansion parameter Z; is some-
what less than unity close to the plasma frequency. This (3.41)
makes it appropriate to utilize a Taylor-series expansion ~ Where
around Z; =0 for of. It is known® that for Al and n- 2
type InSb a Taylor series expansion to lowest order in Zy arklLo)= [1+X5%w)]+ipow
. C . . . l—ior
is appropriate in the study of linear optical properties as-
2
kllpr
X (1ot [ |~k (342)
10° + 1—ioT
- AR [ i/J'OCUO'O(UFT)Z
Brlko)=14+———""7— (3.43)
L 5(1—ioT)
10? g
= E n—Insb ap(klhw)= |2 | [14+X5w)]
) o — Co
- . 0 3 1
i _ |2
100 | Fikow l—ioT [5 JioT
E k ”UFT
L l—ioT
10 | (3.44)
- and
- ipgwog(vpr)? 1
ol o) = L0200r T )3 .
10~ Lol Lol Lo vrind iy BL( CL)) (l_le)3 5 3ioT (345)
107 10° 10! 10? 10°

wT

FIG. 4. Magnitude of the longitudinal nonlocal expansion pa-
rameter Zy as a function of the dimensionless optical frequency
o7 in fully degenerate Al (solid curve) and n-type InSb (dashed
curve) plasmas. The deep minima are located at the respective
plasma edges.

been introduced.

For brevity the compact notation xki= Klr, or KT A>
ki=ki; or ki 4, and (k| w)=(kll0;) or (k{,04) has

In Figs. 5 (Al) and 6 (n-type InSb) we have, for frequen-
cies around the plasma edge, compared the irrotational
dispersion relation obtained on the basis of the near-local



29
1010 .
ImicL o
= i Rexp,
o B
S 100 |
: 4
108 = ! ! L :
170 175 180 185 190

wT
FIG. 5. Real and imaginary parts of the longitudinal wave
vector of the electromagnetic field in Al as functions of the di-
mensionless optical frequency w7 for frequencies around the
plasma edge. The solid curves correspond to a nonlocal calcula-
tion, the dashed curves to a near-local approximation.

formula in Eq. (3.41) with that obtained via the fully non-
local model. Explicitly, one can estimate (see also Ref. 39)
that the near-local approximation holds for
|Zy |?<107, i, in the ranges 174 <7< 185 (Al) and
34<wr< 36 (n -type InSb). The local approximation
which holds for | Zy |?< 1072, apart from at the plasma
edge in Al, cannot be met anywhere in the spectra of Al
and n-type InSb.
In the near-local regime readily one obtains

NT(kAaK Ql,GOA)—~01T(k,4,ab1)—(Kl +0YBr(kl,w,),
(3.46)
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108

KL(m-l )

107

10¢

wT

FIG. 6. Real and imaginary parts of the longitudinal wave
vector of the electromagnetic field in n-type InSb as functions of
the dimensionless optical frequency w7 for frequencies close to
the plasma edge. The solid and dashed curves correspond to
nonlocal and near-local calculations, respectively.

where k' ;=xt; or ki, By inserting Eqgs. (3.41) and
(3.46) into Eq. (3.39) and calculating the appropriate resi-
dues, the final expression for the ratio between the magni-

tude of the time-averaged Poynting vectors (S%0)r and
{S%,) 1 takes the form

2

(S50k04)) wg |* Bz (k) w4)
l #’AO 4>04))7]| _ | @4 | u TI(Q’Q)‘Z ltp(k“ Nk __Tz__él_f‘
| (S2(k!\ ) | o kio+KT4
_ QHK’lI‘i_QlkiH KT, + KT 4 k!
X |BT (ko) =2 Eeh +BC (kLo >——
T I (k) (kA aek P —(QE2 T sy
Okl + o'ui KL,i +KT 4 2
X Ily2 L 2 (L 1 2 132 (3.47)
(ki )+ (w1 ) (kp;+67,4)°—(Q7)
in the near-local regime. The corresponding formula for ##( k,“,a),-) is given by
c kh2et =B ke kBT K ] @ |7
Pk ) =2i | =B (k) o)+ | ———F B’l P T'nﬁf || - (3.48)
w; (k, ) +(KL,1') (k, ) +(KT,,') Cokio
4. Phase matching and resonance scattering
To discuss the structure of the scattered anti-Stokes intensity we note that
l,z——Qi“‘K%‘,A L 1 L L I
—Brlk},wyq) 2 = 3 [Relk ;+k14) Q" +ilm(k* ;+x1,0]7", (3.49)

NT(kA,K QL,CDA) +,—
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in the near-local regime. As in Sec IIIC3 we have used
the compact notation k' ; =« ; or & ;.

Phase matching occurs when

Rex'; +Rext 4 +0'=0, (3.50)

where the plus sign corresponds to matching with the re-
flected sound wave. The four phase-matched processes
given by Eq. (3.50) are illustrated schematically in Fig. 7.
Two of the processes describe phase matching of the
solenoidal and the irrotational parts of the field with the
incident acoustic mode, respectively; the two other pro-
cesses stem from matching with the reflected sound field.
To obtain a phase matched anti-Stokes scattering process
in reflection spectroscopy one must have Rex';+Q* <0.
Since Rex'; >0 and Q*>0, it immediately follows that
only scattering from the incident mode (minus sign) can
cause phase matching in reflection spectroscopy (see Fig.
7). The reflected acoustic field, of course, can give reso-
nance in Stokes scattermg According to Eq (3.22) one
must demand ImKT 4>0. This 1mp11es RCKT 4>0 con-
sistent with the requirement — Rext. ; =Rex';— Q"' <0.

Normally, the resonance with the irrotational and the
solenoidal parts of the incoming field are well separated
(see Sec. V). If so, the condition for maximum intensity,
taken as a function of the magnitude of Q, approximately
is given by

(Rek! ; +Rex%,,4 )2+ (Imx* ; +Imx%-,A P2=(Q4)?,
(3.51)

@ R ° e
4

<4

(@ R N (d)

(e)

FIG. 7. Schematic diagrams showing different phase
matched anti-Stokes scattering processes with p-polarized in-
cident light. The T1 polarized acoustic wave vector is indicated
by the solid arrow, the optical wave vectors of the incident and
scattered fields by broken arrows. The direction of polarization
of light is shown by thin double arrows and circles. (a)—(d) and
(e)—(P) correspond to phase matching in transmission and reflec-
tion spectroscopy, respectively. In (a) and (b) phase matching of
the solenoidal and irrotational parts of the incident field with
the incident acoustic mode is shown. The (c) and (d) diagrams
stem from matching with the reflected acoustic field. As illus-
trated in () and (f) phase matching with the solenoidal or irrota-
tional parts of the incident light field in reflection spectroscopy
only can occur via the incident sound field.
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for incident and reflected sound waves propagating at an
arbitrary fixed angle with respect to the surface. In the
transparent regime, i.e., for Imk'; <<Rex';, Eq. (3.51)
reduces exactly to the phase-matching condition in Eq.
(3.50).

Furthermore, when opacity effects are unimportant so
that KT ; and KL ;» are essentially real quantities the inelas-
tic scattering from the T mode vanishes for
Qllek —Qlk” and the scattering from the L mode for
Q”k”— —Q‘LKL This conclusion holds even in the fully
nonlocal regime [see Eq. (3.39)]. Remembering that (i) the
solenoidal and irrotational modes become purely trans-
verse and longitudinal in the transparent regime, and (ii)
total and specular scattering of the acoustic wave at the
surface makes the solid-state plasma equal to an infinite
medium as far as elastic properties are concerned, the
zeros in the scattering intensity are related to geometrical
scattering configurations where the polarization of the
electromagnetic mode in consideration is perpendicular to
the acoustic wave vector and the acoustic displacement as
shown in Fig. 8.

To obtain the condition for a local maximum in the
scattering intensity in the fully nonlocal case one makes a
Taylor expansion of NT(kH,K +0%w,) around KT 4-
Remembering that NT(k,L,K%, 4,04)=0 one gets to
second-order

1 1
,1 ;t Q" —KT,4

_Ql,CDA)

| PNkl ki,04)
4 0k )?

2

kj=lc{-,A +,— NT(kA,K

D (klkk g 00) 4+ —Kk 4

= . - ’ (3.52)
R _K%,A]2“

(42’

[D(k,LI,K%,A,wA )+xct

where

(b)

FIG. 8. Schematic diagrams showing combined wave-vector
and polarization geometries in the transparent frequency regime
where the acousto-optic scattering intensity vanishes. In (a) the
polarization (thin double arrow) of the solenoidal part of the p-
polarized incident electromagnetic field (dashed wave vector) is
perpendicular to the acoustic polarization (circle), the wave vec-
tor of the reflected sound field (solid arrow), and the mirror im-
age of the incident acoustic wave vector in the surface plane
(dashed-dotted arrow). Thus, in (a) the scattering from the T
mode vanishes. In (b) a configuration in which the scattering
from the irrotational (L mode) part of the incident electromag-
netic field disappears is shown.
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AN(kY kb a4)
dk
L
ad NT(kA’kA’wA)
(3k1)?

1L
ka =KT 4

D (kzlil,K'Ji‘,A’wA )=

k,i:"'er

(3.53)

By combining Egs. (3.39) and (3.52) the irrotational and
solenoidal resonances, taken as functions of the magnitude
of the acoustic wave vector, approximately occur when

| Dk}t 4r04)+ K =K 4 | 2=(Q1? . (3.54)

In the near-local regime the resonance condition in Eq.
|

E4(T,t)=exp[i(K | T—a,)] > > {é'q-’iexp(ik-if,',"z)+?1’iiexp(ikf’_'j,z)+g¥,texp[i(K%,',5in)z]}+ el

+— n

where the ellipsis includes unspecified branch-cut contri-
butions and the vectors &% 4, @7 +, and b% . are con-
fined to the x-z plane. The interpretation of the result in
Eq. (4.1) is easy. Thus, apart from a summation (n) over
solutions to the dispersion relations in Egs. (3.15) and
(3.16) and branch-cut contributions, the field is composed
of (i) solenoidal,

- .1,
(31, 4+ 7T _explikgyz) ,
and irrotational,
— .1,
(3L, +3aL,_Jexplikyyz) ,

free-wave contributions, which are necessary for the ful-
fillment of the boundary conditions of the scattered field
at the surface, and (ii) two forced-wave contributions,

g%,iexp[i(x%,'}in)z] s

originating in the scattering of the incident plasmariton
field from the incident (—) and reflected (+ ) sound
waves. Schematic illustrations of the p-s and s-p scatter-
ing kinematics are shown in Figs. 9 and 10.

1
kip
K
~ T
S K%.in
/ ~~o
/ W, =
/ | ey 2ttt A
Z /]
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KE, S~ /\w '\—\9\<
|
L

FIG. 9. Schematic illustration of the acousto-optic anti-
Stokes p-s scattering kinematics. The acoustic, the plasmonlike
(irrotational), and the plasmaritonlike (solenoidal) wave vectors
have been indicated by different types of arrows. The thin ar-
rows and the circles denote the state of polarization of the field
associated with a given mode. Each wave vector has been la-
beled with its component perpendicular to the surface.
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(3.54) is reduced to that given in Eq. (3.51), since Eq.
(3.46) implies D =2k 4.

IV. SCATTERING OF AN s5s-POLARIZED
INCIDENT FIELD

In the preceding section a detailed treatment of the
anti-Stokes scattering of a p-polarized incident elec-
tromagnetic field has been presented. By imitating this
investigation, albeit tedious, it is a straightforward matter
to analyze in a quantitative manner the inelastic scattering
of an s-polarized incident field. However, we shall desist
from doing this in the present paper and merely stress a
few qualitative results of such an analysis.

Inside the solid-state plasma the anti-Stokes scattered
field becomes p polarized and is given by

4.1)

Let us assume that only n=1 contributes to the field
pattern inside the plasma. If so, in p-s scattering the num-
ber of components necessary to describe the state of polar-
ization of light is 2X2=4 for the incident field and
2 + 2 + 1=>5 for the anti-Stokes scattered field, i.e., in to-
tal 9. For the s-p scattering process the corresponding
number of components is 1 for the incident field and
2X2 + 2 + 2=38 for the scattered field. Hence, altogether
we have 9 as for the p-s process.

V. NUMERICAL RESULTS

To emphasize the importance of nonlocal optical effects
for acousto-optic light scattering studies in metals and
semiconductors we shall present some quantitative numer-
ical calculations of anti-Stokes intensities in this section.
Our results, apart from a slight change discussed below,
will be expressed in terms of the function

N
— ,0.,0Q
| M@0 |2 | X7 |2

| <§f40(kle’wA)>T|

IP=%6,¢,0;,Q)=

— ’ (5.1)
| (S8o(kl )1
Kb
) Kf,A
° £ _______ .

7\"’\ ! kko
KJ’i‘,i 1'

+ol

¢ KJ’i’,A

K'JI",ith
FIG. 10. Schematic illustration of the acousto-optic anti-
Stokes s-p scattering kinematics. The wave-vector and polariza-

tion symbols and the labeling of the wave vectors are as in
Fig. 9.
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where N is an appropriate normalization factor for the
and
0= arctan(k /k ) denote the angles of incidence towards
the surface of the acoustic and the incident electromagnet-

spectra. The

quantities ¢=arctan(Q!l/Q")

ic waves, respectively.

In conventional local theories of acousto-optic scatter-
ing one can neglect elastic dispersion effects since the
acoustic wave vectors involved are much smaller than a
characteristic Brillouin-zone boundary wave vector. How-
ever, resonance scattering via the irrotational part of the
electromagnetic field involves acoustic wave vectors of
magnitudes comparable to the extension of the Brillouin
zone. Hence, at least for metals as well as we shall see,
one must incorporate the phonon dispersion effects via a
wave-vector dependent phase velocity VPTI( (3), ie.,

2=r7Q)Q . (5.2)
In consequence of this we shall express 7~ in terms of Q
instead of Q. This is very adequate since { occurs in the
Poynting vector ratios in Eqgs. (3.39) and (3.47) only
through wy , KT 4, and NT(kA',K +QY0,). Since Q << w;
these quantities are almost mdependent of the precise Q
value. In the calculations of I?™* presented below we
have used ¥, '=2.30% 10° m/sec (n-type InSb) (Ref. 46)
and ¥, '=3. 2% 10° m/sec (Al (Ref. 3) for all values of

In the following we shall limit ourselves to cases where
the angles 0 and ¢ are kept fixed. We choose ¢=0° corre-
sponding to perpendlcular incidence of the acoustic wave
on the surface (Q!l -—0 To obtain anti-Stokes scattering
one must demand k ;&0 for Q=0 according to Eq.
(3.39). We take 6=5".

Let us consider the acousto-optic scattering in n-type
InSb. In Fig. 11 is shown I”™* as a function of the acous-
tic wave vector Q' =0 (Q!l=0) for w;7=50, i.e., for a
frequency above the plasma edge, w,7=35. The two
peaks at Q'=2.36X10° m~! (Q=5.43x10° Hz) and
9.17x 10" m~! (2.11x 10" Hz) correspond to the reso-
nances with the plasmariton and plasmonlike parts of the
electromagnetic field, respectively. The numbers in the

parentheses are the associated acoustic frequencies. Since
the acoustic wave vectors are small in comparison with
the reciprocal lattice constant, these frequencies lie in the
elastically nondispersive regime. The half widths of the
peaks are AQ'=0.04x10° m~! (AQ=0.09 %X 10° Hz) and
0.43% 10" m~! (0.11x 10! Hz), respectively. The normal-
ization factor N has been chosen in this and subsequent
figures on n-type InSb so that I ~*=1 at the plasmariton
resonance corresponding to w;7=50, ¢=0°, and 0=5",
Note that the ratio between the L- and T-mode intensities
at resonance is ~ 45 at w;7=50. The skew distribution of
the intensity around the peaks, showing the most rapid de-
cay on the low-wave-vector (or frequency) side, stems
from the presence of acoustic phonon reflection at the
crystal surface in agreement with the calculations by Der-
visch and Loudon.” For comparison also we have shown
a calculation of 1?7 based on the near-local approxima-
tion [Eq. (3.47)]. As expected, the near-local model
predicts the localization, the intensity, and the shape of
the plasmariton resonance quite accurately. The plasmon
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FIG. 11.

Normalized anti-Stokes intensity I”™* in n-type
InSb for the p-s scattering configuration as a function of the
acoustic wave vector Q. The dimensionless optical frequency
has the value w;7=50. The optical and acoustic angles of in-
cidence are 6=5° and ¢=0°, respectively. The solid curve
represents a nonlocal and the broken curve a near-local calcula-

tion. The plasmaritonlike and plasmonlike resonances have been
denoted by T and L, respectively.

resonance is shifted towards higher wave vectors, i.e.,
Q'=1.40x10® m~! (Q=3.22x10"" Hz) as one would
‘guess from the plasmonlike dispersion relation in Fig. 6.
The halfwidth has increased to AQ'=0.09Xx10® m~!
(AQ=0.21x10'! Hz) and the peak intensity by a factor
of ~3.3. A numerical calculation shows that the localiza-
tions of the L and T resonances are in complete agreement
with the prediction made in Eq. (3.54). In the near-local
model the peak positions coincide with those calculated by
means of Eq. (3.51).
In Fig. 12 is shown I”~* as a function of Q* for three
optical frequencies around the plasma edge. The results
presented are based on the nonlocal approach. However,
since the nonlocal expansion parameter is somewhat
smaller than unity for frequencies close to the plasma
edge (see Fig. 4), calculations based on the near-local ap-
proximation only deviate slightly from those shown in
Fig. 12. Note that close to the edge the strengths of the
plasmariton and plasmon resonances are of the same order
of magnitude. Approaching the plasma frequency
(w,7=35) from below and above, the peak positions of the
L and T modes are displaced towards lower wave vectors
(Q') and hence frequencies (). Furthermore, the
linewidths increase drastically as one goes to frequencies
below the plasma edge.

Now, let us consider the acousto-optic scattering from a
single acoustic mode taken as a function of the frequency
of light. In Fig. 13 is shown the normalized scattered
intensity I?~*° for Q'=10° m~! (Q=2.3 GHz) and
0'=2x10° m~! (Q=4.6 GHz) vs w;7. The resonances
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FIG. 12. Normalized anti-Stokes intensity I”~* in n-type
InSb for the p-s scattering configuration as a function of the
acoustic wave vector Q! for the three different dimensionless
optical frequencies w;7=33, 35, and 38 around the plasma edge.
The optical and acoustic angles of incidence are 6=5° and
¢=0°, respectively. The plasmaritonlike and plasmonlike reso-
nances have been labeled by T and L, respectively. The nonlocal
and near-local models give essentially the same result.
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FIG. 13. Normalized anti-Stokes intensity I?~° in n-type
InSb for the p-s scattering configuration as a function of the di-
mensionless optical frequency ;7 for two acoustic wave vectors
0'=10° m~! and 2X 10° m~!. The optical and acoustic angles
of incidence are 6=5° and ¢=0°, respectively. The resonances
essentially stem from the interaction with the plasmaritonlike
part of the incident field. Nonlocal and near-local calculations
of I?™* give the same result.
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at w;7=38.0 and 46.2 stem from the interaction with the
plasmaritonlike part of the electromagnetic field, mainly.
As expected from the plasmariton dispersion relation in
Fig. 3 the resonance is displaced toward higher w;7 with
increasing Q' in the transparent regime. Besides the
acousto-optic resonance there occurs a resonance at the
plasma edge (w;7==35.1) independent of the acoustic fre-
quency. This resonance is associated with the dramatic
changes in the real and imaginary parts of the plasmariton
dispersion relation around the plasma edge. Also, one
should note the shoulder on the low-frequency side of the
plasma edge resonance for Q*=2x10° m~!. In Al this
shoulder develops into a peak. A calculation of the
scattering intensities based on the near-local approxima-
tion gives a result which deviates insignificantly from that
shown in Fig. 13.

By increasing the acoustic wave vector 1 or 2 orders
of magnitude the acousto-optic scattering can be tuned
into resonance with the plasmonlike part of the elec-
tromagnetic field. This is illustrated in Fig. 14, where we
have plotted the normalized scattering intensity I?~* as a
function of w;r for Q' =4x10" m~! (=92 GHz) and
Q0'=8x10"m~! (Q=184 GHz). For comparison is
shown also the result of a near-local approximation,
demonstrating the incorrect predictions of the scattering
intensity provided by this model away from the plasma
edge in the L-mode case. As in the preceding figure the
acousto-optic resonances are displaced toward higher opti-
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FIG. 14. Normalized anti-Stokes intensity I?~* in n-type
InSb for the p-s scattering configuration as a function of the di-
mensionless optical frequency ;7 for two acoustic wave vectors
Q'=4x10"m~! and 8 X10" m~!. The optical and acoustic an-
gles of the incidence are 6=5° and ¢=0°. The nonlocal and
near-local calculations have been indicated by solid and broken
curves, respectively. The resonances essentially stem from the
interaction with the plasmonlike part of the incident field.
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cal frequencies with increasing acoustic frequency in the
transparent regime. Thus the resonances occur at
@;7=37.9 and 46.5. The corresponding resonances in the
near-local approximation are at ;7=37.4 and 424,
respectively. Furthermore, note the plasma edge reso-
nances.

Finally, let us turn our attention to Al. Thus in Fig. 15
is shown I?~* as a function of Q* for three frequencies
(w;7=178, 180, and 184) around the plasma edge. The
calculations are based on the nonlocal approach but
the near-local theory gives essentially the same results.
Qualitatively, the curves are as those for n-type InSb
showing characteristic T- and L-mode resonances at
Q'=3.25x10'm™! and 3.35X10°m~!, respectively.
However, one should note that the resonance with the
plasmonlike part of the electromagnetic field occurs at an
acoustic wave vector halfway out in the Brillouin zone.
The scattering intensity has been normalized to unity at
the T resonance shown in Fig. 16.

The scattering intensity taken as a function of the di-
mensionless optical frequency is shown for Q'=6x10’
m~! (=193 GHz) in Fig. 16 and for Q'=6X10° m™!
(corresponding to a frequency a little bit less than that
predicted on the basis of a dispersion-free phonon model,
ie, 0~1.93X10* GHz) in Fig. 17. The resonance at
@;7==193.8 in Fig. 16 stems from the plasmaritonlike part
of the incident field, and that at w;7=194.7 (Fig. 17) from
the plasmonlike part. As for n-type InSb resonances
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FIG. 15. Normalized anti-Stokes intensity I?~* in Al for the
p-s scattering configuration as a function of the acoustic wave
vector Q' for three different dimensionless optical frequencies
w;7=178, 180, and 184 around the plasma edge. The optical
and acoustic angles of incidence are 0=5° and ¢ =0°, respective-
ly. The plasmaritonlike and plasmonlike resonances have been
labeled by T and L, respectively. The nonlocal and near-local
approaches give essentially the same result.
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FIG. 16. Normalized anti-Stokes intensity I?~* for the p-s
scattering configuration as a function of the dimensionless opti-
cal frequency w;7 for an acoustic wave vector Q'=6x 10" m~".
The optical and acoustic angles of incidence are 6=5" and
¢=0°, respectively. The resonances essentially stem from in-
teraction with the plasmaritonlike part of the incident field.
Nonlocal and near-local approaches give the same result.

occur at the plasma edge, too. The near-local approach
shifts the L-mode resonance to w;7==192.3.

VI. CONCLUDING REMARKS

The theory of acousto-optic scattering of opaque media
presented in this work has been established essentially by
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FIG. 17. Normalized anti-Stokes intensity I~ in Al for the
p-s scattering configuration as a function of the dimensionless
optical frequency w;r for an acoustic wave vector Q'=6x 10°
m~!. The optical and acoustic angles of incidence are =5° and
¢=0°, respectively. The nonlocal and near-local calculations
have been indicated by solid and dashed curves, respectively.
The resonances essentially stem from the interaction with the
plasmonlike part of the incident field.
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means of methods used in studies of the anomalous skin
effect'’ and the photoemission process.*> As mentioned in
the Introduction these methods almost® seem to have been
overlooked in light scattering investigations. Dresselhaus
and Pine,>*® however, have made calculations of light
scattering line shapes in opaque materials in the spirit of
skin-effect studies. Their analyses are restricted to the
case where the optical and acoustic waves are propagating
perpendicular to the surface. Unfortunately, it turns out
that the line shape they obtain differs from that obtained
by Dervisch and Loudon,” who have used the mathemati-
cal devices which are conventional for light scattering
studies. The disagreement can be traced back to the fact
that Dresselhaus and Pine neglect the field derivative g of
the anti-Stokes (or Stokes) field at the surface [compare
Eq. (48) of Ref. 38 and Eq. (3.3) of this paper with the
equations (unnumbered) for the Fourier components of the
incident and scattered fields in the paper by Dresselhaus
and Pine®]. By taking into account the appropriate field
gradient at the surface we obtain for the scattered light in-
tensity the result in Eq. (3.47). In the local limit, where
the inelastic scattering from the plasmonlike part of the
incident field vanishes, Eq. (3.47) exactly reduces, for per-
pendicular incidence of the light and sound waves, to the
local result obtained by Loudon’ [see Eq. (8) of Ref. 7].

The value of using the “skin-effect method” does not lie
in the fact that this method gives the same result as the
conventional one, but in the circumstance that nonlocal
optical properties of the metal (or semiconductor) can be
taken into account. Of these properties it has been
demonstrated in the present paper that the branch-cut and
the plasmon-like contributions are of significant impor-
tance.

The present work has been limited in several aspects.
First of all, we have considered the scattering from a sin-
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gle acoustic mode only. To treat thermal Brillouin
scattering one must consider the effect of superimposing
the scattering from the thermal spectrum of surface and
bulk waves, including for instance the scattering from the
surface ripple mechanism. Secondly, the importance of
the nonlocal optical properties of the metal (or semicon-
ductor) not least in the opaque frequency regime shows
that the properties of the electromagnetic field close to the
surface are of significance. This implies that one must
study the effect of replacing the sharp electron-density
profile in the surface with a smooth one. At this stage in
the development of the theory the Boltzmann-equation
treatment must be abandoned, and a quantum theory,
based on the density matrix formalism, which treats the
nonlinear Brillouin-scattering response of an inhomogene-
ous jellium must be established.*’ Thirdly, the calculation
of inelastic scattering cross sections is inseparably con-
nected with a study of energy-transport velocities, a sub-
ject of importance in itself. Finally, dynamic inelastic
scattering effects which cannot be treated within the
framework of a parametric approximation, seem to be of
importance in the opaque frequency regime.”

In this analysis it has been assumed that the scattering
of the electrons from the surface is specular. For well-
polished surfaces, it is known>*~3¢ from the linear optical
properties of the metals, that the specular scattering
model is in fair agreement with experimental observations.
From a theoretical point of view the analytical treatment
of diffuse scattering is much more involved than that
presented here as it is demonstrated in Ref. 37. Further-
more, to develop nonlocal theories toward the description
of smooth electron surface profiles, at the present state of
the art, it seems most appropriate to take as a starting
point the specular scattering model.
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