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A theory of acousto-optic scattering from solid-state plasmas, which, on the basis of the
Boltzmann equation, takes into account nonlocal electronic transport effects is established. To em-

phasize the influence of nonlocal effects on the principles of acousto-optic scattering the treatment
is limited to the case where the scattering takes place from a purely transverse bulk sound wave
which does not ripple the surface. The coherent inelastic scattering from both the incident and re-
flected acoustic field is considered. The integro-differential equation for the anti-Stokes field is
solved with the assumption that the conduction electrons are scattered specularly from the surface.
It is demonstrated that the scattering from a p-polarized incident electromagnetic field besides a
well-known contribution froID the plasmaritonlike part of the incident field is composed of free and
forced wave terms arising from the plasmonlike part of the i.ncident field and from branch-cut con-
tributions which are of non-plane-wave character. The scattering from a fully degenerate plasma is
considered in the fully nonlocal and almost local regimes. Resonant anti-Stokes scattering is treated
and a general condition for resonance in the opaque nonlocal frequency regime is given. A few nu-

merical calculations on Al and n-InSb are presented and it is shown that first-order Brillouin
scattering via the nonlocal part of the incident light field should enable one to scatter from acoustic
phonons far out in the Brillouin zone. The theoretical methods used in the present work are similar
to those used in studies of the anomalous skin effect and the photoemission process. These methods
almost seem to have been overlooked in light scattering studies. It is shown that the present theory
is in agreement with the well-known results of local theories of acousto-optic scattering in opaque
media in the appropriate limit.

I. INTRODUCTION

In the wake of the pioneering experimental and theoret-
ical Brillouin-scattering investigations on opaque semicon-
ductors and metals, carried out by Sandercock'* and Ben-
nett et al. , an increasing number of papers have been
concerned with the inelastic scattering of light from
acoustic phonons in opaque media.

A remarkable feature of the Brillouin-scattering spectra
is the so-called opacity broadening of the spectral peaks
caused by the breakdown of optical-wave-vector conserva-
tion normal to the surface, a collapse which leads to cou-
pling of the light to acoustic phonons with a spread of
wave vectors and hence of frequencies. ' Another prom-
inent feature which can be explained by taking into ac-
count phonon reflection at the sample boundary ' is the
observed asymmetry of the line shape of the Brillouin
spcct.rs.

A competitive mechanism for inelastic light scattering
from opaque media is the scattering from surface ripples
generated by acoustoelectrically amplified bulk phonons,
by thermally excited transverse and longitudinal bulk
waves, or by Rayleigh surface waves produced thermal-
ly. The calculated Brillouin spectra from thermally ex-
cited surface ripples' ' show good agreement with mea-
sured spectra on solid and liquid' metals.

Recently, detailed investigations based on Green's-
function calculations of the power spectra of acoustic vi-
brations in slabs or semi-infinite media have dealt with the

line shapes of Brillouin-scattering spectra in opaque ma-
terials having flat surfaces. ' ' Moreover, rather general
theories which take into account the interference between
tile pllotoelastlc alld surface corrugation contrlbut1ons to
the Brillouin scattering have been put forward. ' '

An acoustic wave may give rise to a bunching of the
conduction electrons in metals and semiconductors
through various coupling mechanisms. ~o The bunching in
turn can cause inelastic scattering of light. With the
main emphasis on acousto-optic diffraction in piezodec-
tric semiconductors, where also the screened indirect pho-
toelastic effect contributes, the inelastic light scattering
by nonthermal free-carrier density fluctuations has been
studied both theoretically and experimentally. Also, in
thermal Brillouin-scattering investigations in metals the
free-carrier contribution has been incorporated. ' ' '

It has been pointed out that when the crystal is opaque
to the incident and scattered light interference effects
among the incoming and diffracted beams seem to be of
importance. For x rays the necessity of incorporating
interference effects to explain, for instance, the Boiiii|an
effect has been known for a long time. To treat in-
terference effects one must use a dynamic theory of inelas-
tic light scattering. On the basis of local or nonlocal
optical models dynamic light scattering effects have been
studied theoretically in a so-called two-wave interference
approximation. A review article dealing with inelastic
light scattering from opaque crystals has been published
recently. '
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In the present work we focus our attention on some of
the new aspects of inelastic light scattering in opaque
media that occur by incorporating nonlocal electronic
transport properties in the description of the incident and
scattered light beams. It is well known that these nonlocal
transport effects play an essential role for the understand-
ing of the /incar plasma-optical properties of metals. 3

To keep the discussion at a simple level it is assumed that
the scattering takes place from a single transverse acoustic
mode polarized in such a way that the surface remains flat
when the acoustic wave is reflected from it. Basically and
in its method of approach the present work is closely re-
lated to other nonlinear nonlocal optical studies in solid-
state plasmas such as those on light-induced material en-

ergy fiow, ' second-harmonic generation, and the ve-
locity of stationary energy transport. The results
presented in the succeeding sections agree with those ob-
tained on the basis of local theories vahd, when the mean
free path of the free carriers, essentially in comparison to
the wavelength and the penetration depth of the elec-
tromagnetic wave in the medium, is negligible. To the
present author's knowledge all experimental investigations
so far have been done with visible light. However, it is ex-
pected that substantial deviations will occur between local
Brillouin-scattering theories and experiments if these are
done by means of (far-) infrared light in (semiconductors)
metals. It is the aim of the present nonlocal theory of
acousto-optic scattering to take a first step towards the
description of {far-) infrared light scattering in opaque
ITlcdla.

The main body of this paper is organized as follows.
With the integro-differential equation of the scattered
electromagnetic field as a starting point the general frame-
work of the nonlocal theory of acousto-optic scattering is
established in Sec. II. %e summarize a nonlocal descrip-
tion of the incident electromagnetic field inside a semi-
infinite solid-state plasma. The description is based on the
Maxwell equations and the Boltzmann-Vlasov equation in
the relaxation-time approximation. By letting the per-
turbed distribution function relax, not toward thermal
equilibrium, but toward equilibrium at the local electron
density we keep a p/asmonlike term in the incident field.
This term opens so to speak a new channel of acousto-
opt1c scattering. %c proceed by g1v1ng thc acoust1c dis-
placement field associated with pure transverse (Tl) in-
cident and reflected sound waves polarized parallel to the
surface and perpendicular to the scattering plane. Next,
the nonlinear driving polarization is calculated. Finally,
the general expression for the scattered electromagnetic
field inside and outside the plasma is determined. The
method used to calculate the incident and scattered fields
resembles that applied in studies of the anomalous skin ef-
fect and the photoemission process from metal sur-
faces. Fol' light scattcrillg illvcstigRtiolls tllis k111d of
approach almost seems to have been overlooked in the
literatur'e.

In Sec. III we treat the scattering process in the case
where the incident electr'omagnetic field is p polarized.
The structure of the scattered anti-Stokes field, which be-
comes 5 polarized, 1s investigated by contour 1ntcgratlon.
It is shown that the pole contributions, which give rise to

exponentially damped plane-wave components, consist of
(i) forced-wave terms originating in the scattering of the
plasmariton!ike and plasmonlike parts of the incident
field, and (ii) free-wave terms necessary for the fulfillment
of the boundary conditions for the scattered field at the
surface. For a fully degenerate plasma the branch-cut
contributions which are associated with single-particle ex-
citations show up in the scattered field inside the plasma
as nonexponentially decaying terms. For the fully degen-
erate plasma we emphasize a discussion of the scattered
field in what we shall call the near-local regime, i.e., the
regime where nonlocal effects are incorporated in lowest
order. ' The near-local approach is vahd for frequen-
cies around the plasma edge. Finally, we consider phase
matching and derive a general condition for resonant
anti-Stokes scattering in the opaque frequency regime.

In Sec. IV we stress a few qualitative results for
acousto-optic scattering via a s-polarized incident field.
In Sec. V some quantitative numerical calculations on a
metal (Al) and a semiconductor (n-type InSb) are present-
ed. Spectra are shown both as functions of the frequency
of light and as functions of the acoustic wave vector. It is
demonstrated that the scattering strength via the plasmon-
like part of the incident field should enable one to pick up
acoustic waves far out in the Brillouin zone. Some con-
cluding remarks which concern a comparison with local
acousto-optic theories and which point out important lim-
itations of the present approach are made in Sec. VI.

A. Integro-differential equation of the scattered
electromagnetic field

I.et us consider the ionic and free carrier resp-onses of
Rll RbsorblIlg crystal to R tiI11c RIld space-varying sclf-
consistent electromagnetic field, and let us assume that
the inelastic scattering of light is dominated by scattering
from the modulations in the ionic part of the dielectric
tensor. The neglect of the free-carrier contribution to the
nonlinear polarization can be justified for instance in
scattering configurations where the contribution from the
direct photoelastic effect is polarized perpendicular to the
contribution from the bunched free carriers. In
piezoelectric semiconductors such as n-type InSb the use
of acoustodectrically inactive sound waves avoids the
bunching of the free carriers and hence their contribution
to the nonlinear polarization.

By assuming the free-carrier response to the self-
consistent electromagnetic field of the incident light to be
linear (L) and nonlocal in space, and by making use of the
time invariance of the material properties of the
conduction-electron system, one obtains the following re-
lation between the Fourier transforms in time of the linear
free-carrier current density, I ( r, t), and the self-
coIlsIstcIlt clcctric field, E( I', t),

J {r co)= f f f cr {r r'co) E(r', t0)d r',

where o (r, r ', t0) is the linear conductivity tensor kernel
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at the frequency ro.
For the ionic system we shall adopt a description where

the response to the self-consistent field, composed of a
linear and a nonlinear (NL) part giving rise to the inelastic
light scattering, is local in space. This approach implies
that the Fourier transform of the dielectric polarization,
P( r, co), can be written

P(r, ~o)=eoX (a)) E(r,co)+P "(r,ro),

where X (to) is the local and linear dielectric susceptibility
tensor of the homogeneous medium under study, and
P {r,co) is the nonlinear driving polarization, which is
the source of the inelastically scattered electromagnetic
field.

By means of the Maxwell equations and the constitutive
relations in Eqs. (2.1) and (2.2) the tiine-independent wave
equation of the scattered electric field in the kinematic ap-
proximation takes the form

I & & I—[& +(~,/co)'] (~—, /co)'X (co, )I E,(r, co, )

—lp~g 0 rq r qd)g Eg r, Q)g p =pgQ)gP g F,Qpg

where V is the nabla operator, I is a unit dyadic of di-
mension 3&3, co is the velocity of light in vacuum, and

po is the vacuum permeability. Subscript s has been im-
posed on various quantities in the above integro-
differential equation to stress that they belong to the fre-
quency to, of the scattered (s) field. In the following, for
sllllp11clty, wc 811811 assuiiic t11a't thc crystal is Isotrop1c as
far as local effects are concerned. X f E;(kj~,k;,co;)exp(ik;z)dk;, (2.6)

determined by combining the Maxwell equations and the
Boltzmann-Vlasov equation in the relaxation-time approx-
imation. In summary, the transmitted field takes the
form

E;(r,t)= exp[i(k; r e;t)]—

8. Incident electromagnetic field
where the Fourier amplitude E;(k;,k;, to; ) is given byli ~ ~

I.et us assume that the solid occupies the half-space
z&0, the rest of space being vacuum, and let a harmonic
electromagnetic wave of angular frequency t0;, i.e.,

tt'(k;", co; )Et' (k;,rd; )

t'(k ,co;)E (k ,co;) (2.7)

E;0(r, t) =Ego(k) ~, c)g )expIi [(to(/co) —(kI ) ]'~ z I

y exp[i ( k; .r —s;t)]

be incident on the surface at an oblique angle determined

by k;, the component of the vacuum wave vector of theIl

electromagnetic field parallel to the surface. For conveni-
ence, the plane of incidence is chosen to coincide with the
x-z plane of our Cartesian coordinate system. The reflect-
ed field outside the crystal is given by

E, (r, t)=E„o(k;, ;)e p[ —[(;/c )'—(k; ) ] ~
I

Xexp[i(k I~ r —co;t)) .

In a recent work the incident electric field inside the
solid and the amphtude of the reflected field have been

For brevity, %'e have introduced the second-older tensor

:(;, , ;)= (I(; o)'[ + (;)]— I

+ ktk;+ippcoto ~(k) I k~, cot))
(2.8)

where k; =k; +k; e„e, being a unit vector in the posi-
tive z direction. The Fourier transform o (k),k;~, co;) of
the linear conductivity tensor kernel is obtained from the
nonlocal constitutive relation between the free-carrier
current density and the self-consistent field. By assuming
the conduction electrons to be scattered specularly at the
surface, and by assuming the relaxation of the perturbed
distribution function of the electrons to be toward equi-
librium at the local electron density, the explicit expres-
sion forP {k k. c0. ) becomes

Bf0( 8')

. 1+i(k; v e;)~—
where the conductivity tensor kernel P '(k), k;,co; ) appropriate to s-polarized mode propagation is given byes

't 3

s"(k)~,k,',~, )=-'', „ f" f" f" — '" d'U
I~

(2.10)
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3
c)fp( 8')

. 1+i(k; v —co;)r
(2.11)

It should be emphasized that the relaxation of the free-carrier distribution function toward the local electron density al-
lows us to incorporate charge-density fluctuations caused by p-polarized light. This turns out to be essential for the in-
frared acousto-optic light scattering process discussed in the following as well as for studies of kinetic energy transport
associated with p-polarized light-induced free-carrier flows. In Eqs. (2.10) and (2.11),fp(8') is the Fermi-Dirac distri-
bution function, m is the scalar effective mass of the free carriers, and 7, N', v, and —e are the momentum relaxation
time, the kinetic energy, the velocity, and the charge of the free carriers. The derivative of the chemical potential p with
respect to the local electron density N is to be evaluated at the thermal equilibrium electron density No.

The normalized field gradients of the incident field at the surface [Eq. (2.7)] are given by

t'(kI~, co;)= 4m.

1+ i =ry (k;,k;,co; )dk;yy s~ s~

(2.12)

and

coki i
+ J

~okio

tt ~ co
iIzz(kj pkI ycoi ) zz(ki pkj y co)id'

co;

(2.13)

where

k;p ——[(co;/cp) —(k; ) ]'~

The amplitudes of the s and p-p-olarized incident fields in vacuum have been denoted by E;p and Etp, respectively.

C. Acoustic displacement field

To emphasize the influence of nonlocal electronic transport effects on the principles of acousto-optic scattering we
shall avoid the complications arising from the scattering of light by surface corrugations. Hence we limit ourselves to
the most simple case where the inelastic scattering takes place from acoustic displacement field gradients associated with
a purely transverse (Tl) sound wave polarized parallel to the surface along the y direction. The sound wave will be re-
flected from the surface of the isotropic medium, and the acousto-optic scattering from both the incident and reflected
mode will be considered.

I.et the displacement of the incident (i) sound wave be given by

u; '(r, t)=u; '(Q, Q)e~exp[i(Q ~~ r —Qt)]exp( —iQ z), Qi )0 (2.14)

where Q is the acoustic angular frequency, u; (Q, Q) is the amplitude of the wave, and e~ is a unit vector in the positive

y direction. By assuming that the lifetime of the mode is infinite and that the damping of the wave in space can be
neglected, the frequency Q and the wave vector Q become real quantities. In Eq. (2.14) the wave vector has been split
into its components parallel (

~ ~
) and perpendicular (l) to the surface, i.e., Q =Q ~~ —Q e„Q )0.

Reflection of the sound wave at a stress-free boundary gives total reflection with zero phase angle so that the displace-
ment associated with the reflected (r) mode becomes

u, (r, t)=u; (Q,Q)e~exp[i(Q~~ r —Qt)]exp(ig z), (2.15)

remembering that Q and Q ~ ~ are conserved in the reflection process.
The total displacement field, u '= u; '+ u „', is of standing-wave character in the z direction, and does not ripple the

surface. The acoustic wave vector and frequency are related via an appropriate dispersion relation.

D. Nonlinear driving polarization

When the inelastic scattering of light takes place through the elasto-optic effect the nonlinear driving polarization can
be written in the form

P, "(r,co, )=epX„. (r,co;,co„Q) E;(r,co;), (2.16)

where we have introduced a transition susceptibility X„ for transition from the initial state i to the final state s as fol-
lows:

X„. (r,co;,co„Q)=—,'X ' ":[Vu(r,Q)]5(co, —co; —Q)+ —,'X *' ":[Vu(r,Q)]"5(co,—co;+Q) . (2.17)



gp
The quantities X ' ' and X ' ' are the fourth-order eiasto op-tic susceptibility tensors corresponding to anti-Stokes
(A) and Stokes (S}scattering processes, respectively. These tensors are discussed in the book by Nelson. ~2 The trivial
factor of —,

' in Eq. (2.17) which does not appear in the treatment of Nelson results from the fact that the Fourier ampli-

tudes of the fields here (F) are related to those of Nelson (F~) by F=2F~. The space-dependent parts of the acoustic
displacement and the incident electric field are denoted by u(r, 0) and E;(r,m;) in Eqs. (2.16) and (2.17) and the Dirac 5
function by 5.

In contracted notation the fourth-order elasto-optic susceptibility tensor of an isotropic solid has the form

Xii Xip Xi2 0 0

XI2 X$] X l2

Xi2 Xiz Xii 0 0

0 0 0 X44 0 0 (2.18)

~ ~~.~+
where X44———,

' (X»—Xi&). For brevity we have written X~~/ ':—X;J. When the acoustic displacement field is given by

the sum of Eqs. (2.14) and (2.15) one obtains via Eqs. (2.17) and (2.18) the following expression for the transition suscep-
Hbl11tg:

X„(r,ro;,ai„Q)=—X~ '
u; (Q, Q)exp(igII r)

2

gII 0 g II 0

exp(iQ z) QII 0 Q +exp( ig z)—QII 0 —Qog'0 () gl ()

X5(r0, —r0; —0)——X44
' [u; '(Q, Q)]*exp( igII—r)

g II 0 0 g II 0

exp{ ig z) Q—II 0 Q +exp{&Q z) QII 0 —Q 5(co —m +0) .
0 Q 0 0 —Q' 0

When the incident electromagnetic wave is s polarized the nonlinear driving polarization becomes p polarized and vice
versa. By combining Eqs. (2.16) and (2.19) it is a straightforward matter to write the explicit expressions for the non-
linear polarization in these cases.

E. Scattered electromagnetic field

By combining Eqs. {2.6), (2.16), and (2.19), it is realized that the nonlinear driving polarization can be written as fol-
lows:

P, "(r, a)g )=P ~ "(kg,ci)g,z)exp(i k g r }5(a),—a)g )+P s (ks, ros, z)exp(i k s r )5(a), —@os),
where the x and z dependence have been separated. The explicit expressions for the nonlinear polarizations at the anti-

Stokes (~~ ——m;+0) and the Stokes (sos ——co; —0) frequencies, i.e., Pq (k)~,co~,z) and Ps (kJ,sos, z), can easily be writ-

ten by means of Eqs. (2.6) and (2.19). The wave-vector components of the anti-Stokes and Stokes scattered fields parallel
to the surface which were introduced in Eq. (2.20) are given by

k II = k II+& II

ks ——k; —Q

fCSPCCf.lVC1$.

I Ct QS CiCtCfG11QC now the scattered anti-Stokes f'ield inside, Ez (r,uz )exp{ i coq t), and outside—,



E„o(r, coq )exp( i—co~ 1), the solid-state plasma. By making the ansatz

II.-E~(r ~~) =E~(4 ~~ z)exp(i k~ r»
one obtains, via Eq. (2.3), the following integro-differential equation for the anti-Stokes field:

r

'Eg (kg, mg, z)+ipooig u (kg, mg, z —z') Eg (kg, roy, z')dz'= —@~~P ~ (k»u»z),
dZ dz CQ

where the linear tensorial operator 3' is given by
r '2

~ 4 ~» =& + [1+& (~~)]—(4)d A
tl 2

'

dZ dZ dZ Co

(2.23)

(2.24)

The vectorial operator 0, introduced for brevity, has the
orm

consists of appropriate field derivatives of the anti-Stokes
field at the surface, i e.

0 k„, =ikg+e,
z dZ

(2.26) "de „(kgII,cog, Z~O+)

In deriving Eq. (2.24) we have made use of the redefini-
tion of the electric field E~ „(k&,ro&,z) =E~ „(k~,co~, —z),
Eg @(kg,cog z)=Eg y(k~, coq, —z), and Eg, (kg, a)g, z)

Ez, (kz, o—iz —z) for z ~ 0, and introduced the Fourier
amplitude o (kq, coq, z —z') corresponding to Fourier in-
tegral transformations of the conductivity tensor kernel in
the coordinates x —x' and y —y' parallel to the surface.

The final step in the determination of the scattered
anti-Stokes field is taken by inserting the Fourier integral
transformations

~E~,1(4 ~~ Z~O )

8Z

0

(2.30)

The scattered anti-Stokes field E„o(r,t) outside the
crystal can be expressed as follows:

IlE~o(r r)=E~o(4*~~)

II 1 "-
jlE~ (kq „coq,z) = Ez (kz, kq, co~ )exp(ikzz)de

2%

(2.27)

&exp I
—i [(~&/co )& (kill)1 ]

i nz

yexp[i(k~ r oi„t)] .. — (2.31)

ljP „(kg,~g, z) = P g (kg, kg, ~g )
2'It

Xexp(i' z)de

into Eq. (2.24), and using a technique identical to that
described in Ref. 38. Hence one obtains

In principle, the scattered anti-Stokes field inside and
outside the solid-state plasma now is completely deter-
mined 1f the field derivatives g (kAIINA z 0+) and
g&(kill, co&, Z~O+) at the surface and the field amplitude

Ezo(kz, co&) are known. These quantities are determined
by means of the boundary conditions for the electric and
magnetic fields at the sharp, nonmoving boundary. Since
:- has the general form [see Eq. (2.8)]

ll & -„ ljE~(4 4 ~~)==-(4 4 ~~)
(2.32)

g (kg, co„,z —+0+ )

2 NL Il I
2

~~P~ (4*4 ~~)

where the second-order tensor = is given by Eq. (2.8) with
the replacements k;,k;,co;~k~, kq, co&. The vector g

and the acoustic wave vector Q is parallel to the xz plane,
the cases where s- and p-polarized modes are incident
upon the crystal can be treated separately. Note that = is
symmetric, i.e., =~==~. In the next two sections rve
shall consider the uncoupled s- and p-scattering configura-
tlolls 111 turn. T1M 1cslllts derived 111 tllis scctioil fol tl1c
anti-Stokes field does of course hold for the Stokes field if
one makes the replacement A —+S, i.e., essentially
k g ~k g and Ng ~Kg.



Let us consider the case where the incident electromagnetic wave is P polarized. By combining Eqs. (2.6), (2.7), (2.16),
(2.19), and (2,32) one obtains the following expression for the s-polarized driving polarization at the anti-Stokes frequen-
Cg:

Qll[exp(iQ~z)+exp( —iQ~z)]f: (kIl, k;,to;)exp(ik;z)dk;

+ Qua[exp(iQ~z) ex—p( iQ—~z)] f:" (kjl, k;, to; )exp(ik; z)dk;

P„~'(k„ll,to„,z) ey Pq '(——k~l, top, —z) ey for z & O,

the Fourier amplitude Pz '(kzl, kz, mz) of the nonlinear driving polarization is obtained by inserting Eq (3.1. ) into the
inverse of Eq. (2.28), interchanging the order of integration, and using the 5 function expansion

5(x)=(2m) ' f exp(ikx)dk .

Pg ' (kg, kg, top)= —&ott; (Q, &)t~(k;, to;)Et'o(k;, to;)X4g
'

eyIQl [ (k;,k~ —Q', t0;)+ (k, ,k~+Q~, to,.)]2

+Q ["~(kI,kg —Q, to;) =~(k—; I kg yQ, ro;)]I.

Continuity of the tangential component of the anti-Stokes scattered electric and magnetic fields at the surface gives by
means of Eqs. (2.27), (2.29), (2.31), and (2.32) two linear equations among the yet unknown quantities g~ and Zzo. Solv-
ing these one obtains

k,'0+) ~2t (k„ll ~ ) 1+
8n-

(3.3)

E~o(k~ ~~)=,~~t (4 ~~)
(4n )

kf " = (kll k„„)P„,(kll k „)dk
I j. 3'3'

f:"yy(4*4 ~ )P~ '*(4 4 to~ )d4

where k~o ——[(~q /co ) —(kill) ]'» is the component of the vacuum wave vector of the anti-Stokes scattered field perpen-
dicular to the surface, and where t'(kill, toq ) is given by Eq. (2.12) if one makes the replacements k) I k;,co; +k~lI k~, t0~. —

Outside the crystal the field will be given by Eq. (2.31) with

jjE~o(4 t0~) =&~o(4 ~)ey

where Eqo is taken from Eqs. (3A). Inside the crystal the field takes the form

Eg(r, t)=—exp[i(kill r togt)]e. —

X f:"~„(k~,kg, roy ) g~(k~, to~,z~o+) — coqPq ""'(k&~I kz, to& ) exp(ikzz)dk„,
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where g„and Pz 'are now known.
Immediately, it appears from Eq. (2.19) that the expres-

sion for the scattered anti-Stokes field derived in this sec-
tion can be used for the scattered Stokes field if, in Eq.
(3.2) for the Fourier amplitude of the nonlinear driving
polarization, one makes the replacements

ug (q, n) —+[ug (q, n)]*, gII~ —Q II, and /4~A

"s ~., -O
~744 ', and besides that, in all relevant equations
make the substitution A ~S.

B. Pole contributions

o (k,k,co)=(k Ik) oT(k, co)+(k Ik) crL(k, co),

oyy(kII, k, co) =oT(k, co),

o (kII, ki, co)=(kII/k) oT(k, co)+(k /k) O'L(k, co),

and

(3.6)

(3.7)

(3.8)

The structure of the scattered anti-Stokes field inside
the crystal [Eq. (3.5)] can be investigated more closely by
deforming the path of integration along the real axis into
an appropriate path in the complex kz plane. Thus by
contour integration in the upper (or lower) part of the
complex kz plane one picks up contributions from branch
cuts and poles of the integrand in Eq. (3.5). The pole con-
tributions, corresponding to exponentially decaying
plane-wave modes, will be examined in this section.

Let us consider the linear conductivity tensor
cr (k II,k, co) given in Eqs. (2.9)—(2.11), omitting for sim-
plicity any subscripts on the wave vector and the frequen-
cy. Since the conductivity tensor for specular electron
scattering is identical to that of an infinite medium,

and since k in Eq. (2.9) is a rea/ quantity, the conductivity
tensor will be diagonal in a coordinate system which is ob-
tained by a rotation of the original one about the y axis.
The angle of rotation must be such that the z axis is

brought to coincide with the direction of k. Thus in the
rotated coordinate system (x',y', z') the diagonal elements
of the conductivity tensor become o„„=oyy ——oT(k, co)
and o, , =oL(k, co), where or and oL are the transverseL L L L

and longitudinal linear conductivity response functions of
an infinite mediuin, respectively. The explicit expressions
for these response functions need not be specified in this
section. The relations between the conductivity tensor ele-
ments in the original and rotated coordinate systems are

2 IIk'
:-„,(k II,k', co) =

k

1 1

Ni (k, co) NT(k, co)

(3.11)

where

NT(k, co) =(co/co) [1+7 (co)]+tpo'coo T(k, co) k— (3.12)

yy(kll, kl, N) =
Nr k, co

(3.14)

The zeros of the denominators in Eqs. (3.10), (3.11), and
(3.14) are determined by the dispersion relations for trans-
verse (T) and longitudinal (L) polarized waves propagating
in an unbounded medium, i.e.,

( k I I

» lcT'
"

~ co ) —0 (3.15)

Ni, (k ll~lcL", co)=0, (3.16)

respectively. In Eqs. (3.15) and (3.16) we have split the
wave vector into its components parallel and perpendicu-
lar to the surface to stress the fact that the wave-vector
component parallel to the surface is a given real quantity
in the present context (essentially k,ll or kAII). The un
known complex wave-vector components perpendicular to
the surface, denoted by Icr'" and IcL'", which are to be
determined by the above equations, have been given super-
script n to indicate that more than one solution eventually
exists to Eqs. (3.15) and (3.16) in the nonlocal regime.
Thus n = 1,2, . . . , denotes the various solutions.
Throughout the paper zeros in the upper (or lower) half-
plane of the complex plane only are to be considered. In
the following we shall denote the complex wave-vector
components perpendicular to the surface which are ob-
tained by solving Eqs. (3.15) and (3.16) for
(k, co) =(k;,co;) and (kq, co~) by KT';, &i„& Icr,g, and IcL"~,

respectively. With this notation the zeros of the "dis-
placed" dispersion relations

NT(k)I, kg+Q, co;)=0 (3.17)

Nr (k,co)=(co/co)'[1+X'(co)]+ipococy', (k, co) . (3.13)

By combining Eqs. (2.8) and (3.7) one gets

cr (kII,k, co) =o (kII,k, co)

k»a'
[oi(k, co) —o T(k,co)],

k
(3.9) Ni (k)I, k~+Q, co;)=0 (3.18)

and

2 (kII) (k )

Ni (k, co) NT(k, co)
(3.10)

where k =(kII) +(k ) . The remaining components are
equal to zero.

To determine the pole contributions to the scattered
anti-Stokes field one must determine =~, =yy, and:- ex-
phcitly.

By means of Eqs. (2.8), (3.6), (3.8), and (3.9) it appears
that

are given by

k„=Icr'";+Q (3.19)

(3.20)

Now we are prepared to take the last step in the deriva-
tion of the pole contributions to the scattered anti-Stokes
field. By means of Eqs. (3.10), (3.11), and (3.14) the non-
linear driving polarization in Eq. (3.2) can be written in
the form
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P„, (kll k„„);e„. (Q II)ti(k.ll ~.)gI (k.ll .)y""'""

k; [Q k +Q'(4+Q')] (4+Q')[Q (4+Q') —Q"k ]
NT(k;, kq +Q, co; )

(3.21)

Finally, by combining Eqs. (3.5) and (3.14)—(3.21) and by performing a contour integration along an expanding semicir-
cle in the upper half of the complex kq plane one obtains the following expression for the scattered anti-Stokes field in-
side the absorbing solid:

Eq(r, t)=ezexp[t(k J~ r coq—t)] $ $ Ia+exp(ivT'qz)+br +exp[i(Icr'";+Q")z]+bi +exp[j(IcL",.+Q )z]I+
(3.22)

where the ellipsis includes unspecified branch-cut contributions and

~ j
cog, co-, Q

u; (Q, Q)t (ik;, co)E, (ok;, co)X 44a+ =8'T(k&,~T'"„,co„) 2ig~(k„, cd, 0+)+(cd/ o)
ll z i „ i 2(k; )'+(IcT'g+Q')'

(Ic '"+Q )[Qll(Ic '"+Q )—Q k l] kl [Qllk l+Q (Ic '"+Q )]
NT(kIl, aT'q+Q, co;) Ni (k;,IcT'q+Q, co;)

~„,~., tiIcT';(Q IcT'; —Q k; } AT(k;, Icr';, co;}
n Il i.n

bT+ =(co„/co) u; (Q,Q)ti'(k;, co;)Eto(k;,co;)X44
(k; )'+(~T',";)' Nr(4 ~T',"+Q' ~~ )

(3.23)

(3.24)

, cik; (Q k; +Q L;) RI(k;, i';, ;)z j., n n ]I ~, n

bL+ —(co„/co) u; (Q, Q)ti'(k;, co;)Epo(k;, co;)X44
(k; ) +(ai'";) NT(k&, ~L";+Q,coq )

By means of Eq. (3.3) the field derivative at the surface g„(k„,co~,z0+ ), appearing in Eq. (3.23), becomes

gy(kill, cog,z —+0+)=—, t'(kill, co—g) g g 1+ i br++ 1+ i bi + + 1+ c+
+,— Pl k,', 40 k~o

where the ellipsis includes unspecified branch-cut contributions and

(3.25)

(3.26)

6)g
C+ =

0

u; (Q,n)t (k;,co; )Epo(k;, cog)X44

(k) l)'+(~,'"„+Q')' ~T(4 &T',~ co~)

k [QllkIl+Q'(~'"+Q')] (~'"+Q')[Qll(~'"+Q') —Q'k ]
NL(k;, a T'q +Q, co; ) NT(k;, IcT'g+Q, co;)

(3.27)

i,n

t'(4, ~~)= g»+, ~T(4 ~T'~ ~~)+. . .
Pl k,',

where the ellipsis includes unspecified branch-cut contri-
butions. In deriving Eqs. (3.22)—(3.28) we have assumed
simple first-order poles of the integrand in Eq. (3.5), and,
for brevity, introduced

kl
9P(k ll,a, co) = lim (3.29)

N (k ll, k, co)

with the appropriate subscripts and superscripts on 9P, N,
k, K, and Qp.

The branch-cut contributions to the scattered field nor-
mally disappear rather rapidly for large z. ' Hence, the
sum of the exponentially decaying inhomogeneous plane
waves in Eq. (3.22) represents the asymptotic solution to
the scattered anti-Stokes field. Furthermore, the analysis
of the asymptotic behavior often is facilitated by the fact
that merely a single solution exists to each of the disper-
sion relations [Eqs. (3.15) and (3.16)]. Omitting for con-
venience the index n, the asymptotic solution is composed
of (i) one Pee ioaue contribution -(a++a )exp(iaT„z},
which is necessary for the fulfillment of the boundary
conditions of the scattered field at the surface, (ii} two
forced-ioaue terms br +exp[i (IcT;+Q )z], arising as a re-
sult of the p/asmaritonlike" (or solenoidal) part of the in-
cident field from the incident (minus sign) and reflected
(plus sign) parts of the acoustic disturbance, and (iii) two



forced-maued terms bL+[i(xL;+Q )z], originating in the
scattering of the pklsmonlike (or irrotational) part of the
incident field f'rom the incident ( —) and reflected (+ )

sound waves.
It should be mentioned that the factor [(k)~)

+(kq+Q ) ] ' in Eq. (3.21) does not give poles in the

pp r a -p a e at q =ik; +Q since NL NT—(kI )
+(kq~+Q ) as these points are approached. This follows
by realizing that we are in the realm of local optics close
to the above points (see Sec. III C). The pole contributions
to the scattered Stokes field are obtained by making the
usual replacements A ~S, u; '(Q, Q) —+[u; '(Q, Q)]*, Q~~

AP+, N-, Q N+, 6)I, —0—+ —Q ~ ~, alld 744 ~X44 111 Rll tllc I'clcvant
equations of Sec. IIIB.

C. Scattering in a fully degenerate plasma

To gain some further insight in the structure of the
inelastically scattered field by analytical methods we shall
in this section be concerned with heavily doped semicon-
ductors and metals. Thus fully degenerate Fermi-Dirac
statistics, i.e., Bfo($')/BS'= —5lS' —g'z), 5 being the
Dirac 5 function, and 8'z the Fermi energy of the conduc-
tion electrons, will be applied. The use of degenerate
statistics leads to the following expressions for the trans-
verse and longitudinal linear conductivity response func-
tjOnS +35140&4 1

plex k& plane extending from the singularities at

1
2 1/2

(3.33)

k~1 I)I+QI; (k.ll)I+
2 1/2

1 —I NI"7

(3.34)

+ g (eTz +cL-+z I~I)

Xexp( E z)—-+

toward infinity as shown in Fig. 1.
The detailed calculation of the branch-cut contributions

to the scattered anti-Stokes field ( e z IIc ) inside the plasma
will not bc plcsclltcd ill this wol'k. Elllpllaslzlllg tllc spa-
tial dependence of the field the results can be summarized
via the formula

ez IIc(r, r)= —e~exp[i(kz~~ r el~I)]—

X eoz zexp( Eqz )—

Ir T(k,k,nl)=
2 1 —IN7 Z

(3.30)

[1+ I (Z~)']
1 —

ENg
"7

Up%

L(k ~~ kl )
~0 1

1
Rl'ctR11Z

1 —IN% Z Z

(3.31)

E; = — [1+—,(Z) ) ]+iQ
Up%

with the "parallel" components of the nonlocal expansion
parameters given by Z =k uFr/(1 iso r) and— .II

Zg kyar/(1 ——icogr). Not—e that the factor in front offl Il

thc cxpoIlclltlals 111 Eq. (3.35) is proport101181 to z for

where the nonlocal expansion parameter Z is given by

[(k~~) +(k ) ]'~ u rZ=
1 —I,N'7

One should emphasize that the conductivities in Eq. (3.29)
and (3.30) have been obtained on the basis of a microscop-
ic clRsslcal Boltzmann-equation calclllatloll. If thc
characteristic de Broglie wavelength of the conduction
electrons cannot be neglected one must, of course, replace
the conductivity response functions above by the I.indhard
quantum mechanical response functions.

1. Branch-cut eonfributions

~i„., —ql Q @~l„,. + q'

~ KT;+ ql

I.et us return now to the expression (3.5) for the anti-
Stokes scattered field inside the solid. Since arctanZ is
singlevalued and analytic in the Z plane cut along the im-
aginary axis from i to i oo and i to i ao it—follo—ws by
combining Eqs. (3.5), (3.12)—(3.14), (3.21), and
(3.30)—(3.32) that the integral in Eq. (3.5) has three (hy-
perbolic) branch cuts in the upper half part of the com-

FIG. 1. Contours for evaluation of the scattered anti-Stokes
field inside the solid-state plasma. The sum of the integral along
the real kz axis, around the poles xrz, aT;RQ~, and sL;kg,
and along the three branch cuts C~, C;~, and C;p must equal
zero.
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the terms (0,T) arising from the solenoidal part of the in-
cident field, whereas it is proportional to z for the
terms (L) of irrotational origin.

2. Scattering ofa cottpied plasmariton pla-smon field:
I'u/Ey nonloeal regime

As pointed out in Sec. III 3 often merely a single solu-
tion exists to each of the dispersion relations

T(k ll~itT, to) =0 and Nt (k ll~itt, to) =0. As typical exam-
ples are shown in Figs. 2 and 3 the real and imaginary
parts of the transverse, i.e., ttT ——ttT(to), itT
=[(k~~)2+(it~)2]'~2, and the longitudinal, xt, ——~L(to), ttL

=[(k ) +(ttt„) ]' dispersion relations of a free-
electron-like metal (Al) and a heavily doped semiconduct-
or (n-type InSb), respectively. The dispersion relations
shown have been obtained on the basis of Eqs. (3.12),
(3.13), (3.15), (3.16), and (3.30)—(3.32) using the following
qualitatively representative material data at 300 K (Ref.
39). Al: No 1.81X——10 m, m*/mo ——1.15, v=8.0

X10 ' sec, and X =0; n-type InSb: No ——1.20X10
m, m'/mo ——3.20)&10, v=4.0)&10 ' sec, and X~
= j.4.68.

For to~~ oo, it appears from the longitudinal dispersion
relation [Eq. (3.16)] that the nonlocal expansion parameter
approaches i. Thus for Z~i, one obtains ~L(to}
=(to/UF)+(i/Upr), as indicated in Figs. 2 and 3. Note
that the complex wave vector ttt (co) just equals the charac-
teristic free-wave branch-cut wave vector at perpendicular
lncldence, t.e., IcL(top }=EEg (cog ) for cog 'r~ oo and Zg —0.II

It can be shown that the pole contribution to the scat-
tered anti-Stokes field outside the solid, obtained on the
basis of Eq. (3A), is given by

E~o(4 ~~)=Il
—1

kgo+KT g

(3.38)

Outside the solid, the ratio between the magnitudes of
the time-averaged (( )T) Poynting vectors of the s
polarized anti-Stokes field (Szo) and the p-polarized in-

cident field (Sfo) becomes

Nle ae w may we w ae w w w aaaw mum m w w mmmm am wan m w ma ~ ~
%lag~

EI

10'

~W W W &&W%W W W W W &40&W %%W W W W %~gy yy ~%A W a ey g~ +,~ ~lag+

]p8

10'—

&04
-I QO2

FIG. 2. Real (solid curves) and imaginary (dashed curves)

parts of the transverse (~T) and longitudinal (xI.) wave vectors of
the electromagnetic field in Al as functions of the dimensionless

optical frequency mv. Note that 10&xI has been plotted in the
figure. With the adopted relaxation time ~=8.0& 10 sec; the
positions of the 0.63-pm He-Ne laser line and the 10.6-pm CGq
line are at ms=24 and 1.4, respectively.

FIG. 3. Real (sohd curves) and imaginary (dashed curves)
parts of the transverse (~T) and longitudinal (xL) wave vectors of
the electromagnetic field in n-type InSb as functions of the di-
mensionless optical frequency mv. With the adopted relaxation
time ~=4.0/10 ' sec, the positions of the 10.6-pm C02 laser
hne and the 337-pm HCN line are at ~~=71 and 2.2, respec-
tively. The band edge (-0.16 eV at 300 K) corresponds to
a)v=98.
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~
(S,o(kdi ) Cp

4 p ll~ Ard. , n 2
t (ki &COl )

( u; (Q, Q) /'/X~

J KT,i(ki 0 KT, ia ) KT,i —~J +
&( O'T k;,KTI, ;)

)) i 2
(ki ) +(KTi), +, —+T(kA ~ KT,I+0 ~A )

(k; ) +(KL,;) +, &T(kA~ Ki., i+—Q COCOA)

(3.39)

with t~(k;, co;) given by

ti'(k;~~, co; ) = i—
ll 2 2co;(k; ) J Cp+T, i COi(KT i )J[/2J2L(ki ~Kg I ~col )+ +J

f
f2J2Tkl &T i

coki0[(ki ) +(KLi) ], ~I cokio[(k' ) +(
(3.40)

3. Scattering of a coupled plasmariton plosmo-n field:
Near-local regime

A numerical calculation of the scattered anti-Stokes
Poynting vector in Eq. (3.39) is impeded by the fact that
the nonlocal expressions for the linear conductivity
response functions [Eqs. (3.30) and (3.31)] are quite com-
plicated. However, for optical frequencies around the
plasma edge Eq. (3.39) can be simplified considerably.
Thus it appears from Fig. 4 that the magnitude of the
longitudinal nonlocal expansion parameter ZL is some-
what less than unity close to the plasma frequency. This
makes it appropriate to utilize a Taylor-series expansion
around ZL ——0 for oi. It is known that for Al and n

type InSb a Taylor series expansion to lowest order in ZT
is appropriate in the study of linear optical properties as-

sociated with the solenoidal component of the elec«omag-
netic field not only around the plasma edge, but over the
entire optical frequency spectrum.

Thus in the so-called near-local regime where the con-
ductivity response functions are expanded to lowest, i e.
second order in Zz and ZT the dispersion relations take
the form

' 1/2

KM(k,CO)=, ImKM p0, I=I.,TJ ~~(KM(k /CO)J
P~«~' ~)

(3.41)

'2

CCT(k~~, CO)= [1+X (CO)]+iPOCO
Cp 1 —LNv

10',—

kttU ~
X 1 ——

5 1 —EN'II

2

(k II ) (3.42)

10'
n —I XL(k II~CO)

PT(k, co) = 1+
5(1—icor )

r

[1+X (co)]
Cp

(3 43)

10'

10o

Op+lPpN
I —lNV

3 1

5 3l N'7

k t tU~~
X

1 —EN7

(3.44)

1p-i I I I I I lllI I I I I I llll I I I I I l III I J I I I lll'

10 ' 10' 10' 10' 10'

Pi(k, co) =
ipococro( U~r)

(1—I cor) 5 3i cow
(3.45)

FIG. 4. Magnitude of the longitudinal nonlocal expansion pa-
rameter ZL as a function of the dimensionless optical frequency
co~ in fully degenerate Al {solid curve) and n-type InSb (dashed
curve) plasmas. The deep minima are located at the respective
plasma edges.

For brevity the compact notation ~T =—aT; or 1

Ki =KL; or K„A, and (k,co)=(k;,co;) or (kA, coA) hasll, '
ll

been introduced.
In Figs. 5 (Al) and 6 (n-type InSb) we have, for frequen-

cies around the plasma edge, compared the irrotational
dispersion relation obtained on the basis of the near-local
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FIG. 5. Real and imaginary parts of the longitudinal wave

vector of the electromagnetic field in Al as functions of the di-

mensionless optical frequency uw for frequencies around the
plasma edge. The solid curves correspond to a nonlocal calcula-

tion, the dashed curves to a near-local approximation.

formula in Eq. (3.41) with that obtained via the fully non-
local model. Explicitly, one can estimate (see also Ref 39).
that the near-local approximation holds for

~
Z1

~
&10 ', i.e., in the ranges 174&cur&185 {Al) and

34 (cor (36 (n-type InSb). The local approximation
which holds for

~
ZL

~

(10,apart from at the plasma
edge in Al, cannot be met anywhere in the spectra of Al
and n-type InSb.

In the near-local regime readily one obtains

NT(k„!,i~;+Q, coq )=aT(k~, o1~ )—(i~,;+Q ) PT(kg, oiq),
(3.46)

FIG. 6. Real and imaginary paIts of the longitudinal wave

vector of the electromagnetic field in n-type InSb as functions of
the dimensionless optical frequency ~v. for frequencies close to
the plasma edge. The solid and dashed curves correspond to
nonlocal and near-local calculations, respectively.

where ii'; =KT; o1" KL;. By 111sertlng Eqs. (3 41) and
(3.46) into Eq. (3.39) and calculating the appropriate resi-
dues, the final expression for the ratio between the magni-

tude of the time-averaged Poynting vectors (Szz)T and

( S i'o) T takes the form

~
(Sfo{k)!,co;))T

~

iu; '(Q, Q)
i i

tt'(k) I co;)
i

r (4 ~~)
k„', +~~T ~

Q icT i Q ki KT 1+IcT g II
kiI lj

x pr '(k;, o1;)
II

'
1

' * +p„'(k;,co;)
(k; ) +(&r,;) (~r, ;+&T,~) —(Q )

Q ki +Q itL, i +L,i++T,A
jj 2

(k)I) +(i~L;)' (irL +irTg)' —(Q')'
(3.47)

in the near-local regime. The corresponding formula for tt(k, !I,to; ) 1s g1ven by

Co
tt'{k)I to; )=2i pT '(k)!,to;)+

NI. (k; ) +(a.L;) (k; ) +(aT; ) cok;()
(3.48)

4. Phase matching and resonance scattering

= g [Re(a;+i'&)+Q +ilm(ii;+iizz)]

To discuss the structure of the scattered anti-Stokes intensity vie note that

jlpr{4 ~~) g-
+ XT(kz, it;+Q, coq ) +

(3.49)
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in the near-local regime. As in Sec. III C3 we have used
the compact notation ~; =—~z; or ~z;..l.

Phase matching occurs when

Res;+Reit& z+Q =0, (3.50)

where the plus sign corresponds to Inatching with the re-
flected sound wave. The four phase-matched processes
given by Eq. (3.50) are illustrated schematically in Fig. 7.
Two of the processes describe phase matching of the
solenoidal and the irrotational parts of the field with the
incident acoustic mode, respectively; the two other pro-
cesses stem from matching with the reflected sound field.
To obtain a phase matched anti-Stokes scattering process
in veflection spectroscopy one must have Rel~;+Q &0.
Since Rec; &0 and Q &0, it immediately follows that
only scattering from the incident mode (minus sign) can
cause phase matching in reflection spectroscopy (see Fig.
7). The reflected acoustic field, of course, can give reso-
nance in Stokes scattering. According to Eq. (3.22) one
must demand Im~zz ~0. This implies Re~~q g0 con-
sistent with the requirement —Re@'r q ——Rely; —Q & 0.

Normally, the resonance with the irrotational and the
solenoidal parts of the incoming field are well separated
(see Sec. V). If so, the condition for maximum intensity,
taken as a function of the magnitude of Q, approximately
is given by

for incident and reflected sound waves propagating at an
arbitrary fixed angle with respect to the surface. In the
transparent regime, i.e., for Ima; «Res;, Eq. (3.51)
reduces exactly to the phase-matching condition in Eq.
(3.50).

Furthermore, when opacity effects are unimportant so
that ~~; and ~I;, are essentially real quantities the inelas-
tic scattering from the T mode vanishes for
Q~~lr~; ——Q k) and the scattering from the L mode for
Q~~kj = —Q aL;. This conclusion holds even in the fully
nonlocal regime [see Eq. (3.39)]. Remembering that (i) the
solenoidal and irrotational modes become purely trans-
verse and longitudinal in the transparent regime, and (ii)

total and specular scattering of the acoustic wave at the
surface makes the solid-state plasma equal to an infinite
medium as far as elastic properties are concerned, the
zeros in the scattering intensity are related to geometrical
scattering configurations where the polarization of the
electromagnetic mode in consideration is perpendicular to
the acoustic wave vector and the acoustic displacement as
shown in Fig. 8.

To obtain the condition for a local maximum in the
scattering intensity in the fully nonlocal case one makes a
Taylor expansion of N~(k~, x;+Q,co&) around ~~q.
Remembering that Ng(kg, ar g, cog ) =0 one gets to
second-order

(Re~', +Re~~r, )'+(1m'', +1m~,'„)'=(Q')',
(3.51)

1 ~'Nr(4 4 ~~)
4 (Bkq )

IC j —Q KTA

I,'=6 „+ Nz(kq', Ir';+Q', co~ )

(a) (b)
(3.52)

where

(c)

(b)

Veils &P

FIG. 7. Schematic diagrams showing different phase
matched anti-Stokes scattering processes with p-polarized in-

cident light. The Tl polarized acoustic wave vector is indicated

by the solid arrow, the optical wave vectors of the incident and
scattered fields by broken arrows. The direction of polarization
of light is shown by thin double arrows and circles. (a}—(d) and

(e)—(f) correspond to phase matching in transmission and reflec-
tion spectroscopy, respectively. In (a) and (b) phase matching of
the solenoidal and irrotational parts of the incident field with

the incident acoustic mode is shown. The (c) and (d) diagrams
stem from matching with the reflected acoustic field. As illus-

trated in (e) and (f) phase matching with the solenoidal or irrota-
tional parts of the incident light field in reflection spectroscopy
only can occur via the incident sound field.

FIG. 8. Schematic diagrams showing combined wave-vector
and polarization geometries in the transparent frequency regime
where the acousto-optic scattering intensity vanishes. In (a) the
polarization (thin double arrow) of the solenoidal part of the p-
polarized incident electromagnetic field (dashed wave vector) is
perpendicular to the acoustic polarization (circle), the wave vec-
tor of the reflected sound field (solid arrow), and the mirror im-

age of the incident acoustic wave vector in the surface plane
(dashed-dotted arrow). Thus, in (a) the scattering from the T
mode vanishes. In (b) a configuration in which the scattering
from the irrotational (L mode) part of the incident electromag-
netic field disappears is shown.
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aX, (k

ll l Bkg
D(kg, aT „,cog }=2—

8 NT(k~, k~, coq )

(ak„')'
A T,A

(3.54) is reduced to that given in Eq. (3.51), since Eq.
(3.46) implies D =2t~T z.

(3.53)

ID(4,~T,~ ~~}+~„—~r,~ I
=(Q }ll & .L l 2 l 2 (3.54)

In the near-1ocaj. regime the resonance condition in Eq.

By combining Eqs. (3.39) and (3.52) the irrotational and
solenoidal resonances, taken as functions of the magnitude
of the acoustic wave vector, approximately occur when

In the preceding section a detailed treatment of the
anti-Stokes scattering of a p-polarized incident elec-
tromagnetic field has been presented. By imitating this
investigation, albeit tedious, it is a straightforward matter
to analyze ln R quantitative manner thc inelastic scattering
of an s-polarized incident field. However, we shall desist
from doing this in the present paper and merely stress a
few qualitative results of such an analysis.

Inside the solid-state plasma the anti-Stokes scattered
field becomes p polarized and is given by

Eq(r, t)=exp[i(kq r tozt)—] g Q Ia T+exp(llcT'gz)+a L+exp(llcL'gz}+b T+exp[l(lcT', +Q }z]J+ (4.1)

where the ellipsis includes unspecified branch-cut contri-

butions and the vectors a I+, a L+, and bT+ are con-
fined to the x-z plane. The interpretation of the result in

Eq. (4.1} is easy. Thus, apart from a summation (n) over
solutions to the dispersion relations in Eqs. (3.15) and
(3.16) and branch-cut contributions, the field is composed
of (i) solenoidal,

(a T ++ a T )exp(iaT'zz),

and irrotational,

( a i ++a i )exp(lKL'gz),

Pee-waue contributions, which are necessary for the ful-
fillment of the boundary conditions of the scattered field
at the surface, and (ii) two forced-ioaue contributions,

b T +exp[i(AT'";+Q )z],

Let us assume that only n= 1 contributes to the field
pattern inside the plasma. If so, in p-s scattering the num-
ber of components necessary to describe the state of polar-
ization of light is 2&&2=4 for the incident field and
2+ 2+ 1=5 for the anti-Stokes scattered field, i.e., in to-
tal 9. For the s-p scatter1ng process the correspond1ng
number of components is 1 for the incident field and
2)&2 + 2+ 2= 8 for the scattered field. Hence, altogether
we have 9 as for the p-s process.

V. NUMERICAL RESULTS

To emphasize the importance of nonlocal optical effects
for acousto-optic light scattering studies in metals and
semiconductors wc shall present some quantitative numer-
ical calculations of anti-Stokes intensities in this section.
Our results, spRIt from R slight change dlscUsscd below,
will be expressed in terms of the function

originating in the scattering of the incident plasmariton
field from the incident ( —) and reflected (+) sound
waves. Schematic illustrations of the p-s and s-p scatter-
ing kinematics are shown in Figs. 9 and 10.

It' '(H, g, co;,II)= X

I

&"(Q &}
I

'
I

&O' "
I

'

/
(Sfo(k)1,co;))T

J

(5.1)

I

I I I~I»
)1

FIG. 9. Schematic illustration of the acousto-optic anti-

Stokes p-s scattering kinematics. The acoustic, the plasmonlike

(irrotational), and the plasmaritonlike (solenoidal) wave vectors
have bccn indicated by diffcrcnt types of arrows. Thc thin ar-
rows and the circles denote the state of polarization of the field

associated with a given mode. Each wave vector has been la-

beled with its component perpendicular to the surface.

~l + ql
Tsi

FIG. 10. Schematic illustration of the acousto-optic anti-
Stokes s-p scattering kinematics. The wave-vector and polariza-
tion symbols and the labeling of the wave vectors are as in

Fig. 9.
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where X is an appropriate normalization factor for the
spectra. The quantities P=arctan(g~~/Q ) and
8=arctan(kI~/k;o) denote the angles of incidence towards
the surface of the acoustic and the incident electromagnet-
1c waves, rcspcctlvcly.

In conventional local theories of acousto-optic scatter-
ing one can neglect elastic dispersion effects since the
RcoUst1c wRvc vectors lnvolvcd arc much smaller than R

charactcrlstlc Brlllouln-zone bounda1y wave vector. How'-

ever, resonance scattering via the irrotational part of the
electromagnetic field involves acoustic wave vectors of
magnitudes comparable to the extension of the Brillouin
zone. Hence, at least for metals as well as we shall see,
one must incorporate the phonon dispersion effects via a
wave-vector dependent phase velocity V~ (Q), i.e.,

Tj

~i I0
tlll

I
I I
I I
I I
I I

'I

l
I

I l
I I
I 1

1
l I

(5.2)

In consequence of this we shall express II' ' in terms of Q
instead of Q. This is very adequate since Q occurs in the
Poynting vector ratios in Eqs. (3.39) and (3.47) only
through co&, aTq, and XT(kq, a;+Q, co&). Smce Q &&co;
these quantities are almost independent of the precise Q
value. In the calculations of II' ' presented below we
have used Vz

' ——2.30X10 m/sec (n-type InSb) (Ref. 46)
and V» '=3.22X10 m/sec (Al) (Ref. 3) for all values of

In the following we shall limit ourselves to cases where
the angles 8 and P are kept fixed. We choose P =0' corre-
sponding to perpendicular incidence of the acoustic wave
QI1 tllc surfRcc (Q ii=0). To obtain Rlltl-Stokes scattering
one must demand k; &0 for Q =0 according to Eq.It

(3.39). We take 8=5'.
I.et us consider the acousto-optic scattering in n-type

InSb. In Fig. 11 is shown II' ' as a function of the acous-
tic wave vector g =Q (Q~~=O) for co;v=50, i.e., for a
frequency above the plasma edge, co~a=35. The two
peaks at Q =2.36X10 m ' (Q—=5.43X10 Hz) and
9.17X10 m ' (2.11X10" Hz) correspond to the reso-
nances with the plasmariton and plasmonlike parts of the
electromagnetic field, respectively. The numbers in the
parcnthcscs RI'c thc RssoclRtcd acoustic frequencies. Slncc
the acoustic wave vectors are small in comparison with
the reciprocal lattice constant, these frequcncics lie in the
elastically nondispersive regime. The half widths of the
peaks are AQ =0.04X10 m ' (AQ=—0.09X10 Hz) and
0.43 X 10 m ' (0.11X10"Hz), respectively. The normal-
ization factor X has been chosen in this and subsequent
figures on n-type InSb so that I~ '=1 at the plasmariton
resonance corresponding to co;r=50, /=0; and 8=5'.
Note that thc latlo bctwccIl thc I - Rnd I-mode lntcnsltlcs
Rf, I'csollallcc ls 40 Rt coll= 50. Tllc skew dlstrlbutlon of
the intensity around the peaks, showing the most rapid de-
cay on the low-wave-vector (or &equency) side, stems
&om thc pl'cscllcc of acollstlc pllolloll I'cflcctloll Rt thc
crystal surface in agreclnent with the calculations by Der-
vlsch and I oudon. FOI' comparison also wc have shown
a calculation of I~ ' based on the near-local approxima-
tion [Eq. (3.47)]. As expected, the near-local model
predicts the localization, the intensity, and the shape of
the plasmariton resonance quite accurately. The plasmon

1
\
1

~ I ~h

10' 10' 10s 10'
Q~(m I

)

FIG. 11. Normalized anti-Stokes intensity I~ ' in n-type
InSb for the p-s scattering configuration as a function of the
acoustic wave vector Ql. The dimeusionlcss optical frequency
has the VRlue N;v=50. The optical Rnd acoustic Rngles of in-
cideucc are 8=5' Rnd /=0', respectively. The solid curve
represents a nonlocal and the broken curve a near-local calcula-
tion. The plasmaritonlike and plasmonlike resonances have been
denoted bp T and L, respectlvelY

resonance is shifted towards higher wave vectors, i.e.,
g =1.40X10 m ' (Q=—3.22X10" Hz) as one would
guess from the plasmonlike dispersion relation in Fig. 6.
The halfwidth has increased to hg —=0.09X10 m
(b,Q—=0.21X10" Hz) and the peak intensity by a factor
of -3.3. A numerical calculation shows that the localiza-
tions of the L and T resonances are in complete agreement
with the prediction made in Eq. (3.54). In the near-local
model the peak positions coincide with those calculated by
means of Eq. (3.51).

In Fig. 12 is shown II' ' as a function of Q for three
optical frequencies around the plasma edge. The results
presented are based on the nonlocal approach. However,
since thc nonlocRI expansion paramctcI' ls somewhat
smaller than unity for frequencies close to the plasma
edge (see Fig. 4), calculations based on the near-local ap-
proximation only deviate slightly from those shown in
Fig. 12. Note that close to the edge the strengths of the
plasmariton and plasmon resonances are of the same order
of magnitude. Approaching the plasma frequency
(ol~r=35) &om below and above, the peak positions of the
L and I modes are displaced towards lower wave vectors
(Q ) and hence &equencies (Q). Furthermore, the
llncwldths lncI'case drRstlcally Rs onc goes to fI'cqUcnclcs
below thc plaslTlR cdgc.

Now, let us consider the acousto-optic scattering from a
single acoustic mode taken as a function of the frequency
of light. In Fig. 13 is shown the normalized scattered
intensity II' ' for Q =10 m ' (Q=2.3 GHz) and
Q =2X10 m ' (Q=—4.6 GHz) vs co;r. The resonances
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FIG. 12. Normalized anti-Stokes intensity I~ in n-type
InSb for the p-s scattering configuration as a function of the
acoustic wave vector Q' for the three different dimensionless
optical frequencies u;~=33, 35, and 38 around the plasma edge.
The optical and acoustic angles of incidence are 8=5 and
/=0', respectively. The plasmaritonlike and plasmonlike reso-
nances have been labeled by T and I., respectively. The nonlocal
and near-local models give essentially the same result.

at ro;v=38.0 and 46.2 stem from the interaction with the
plasmaritonlike part of the electromagnetic field, mainly.
As expected from the plasmariton dispersion relation in
Fig. 3 the resonance is displaced toward higher co;r with
increasing Q in the transparent regime. Besides the
acousto-optic resonance there occurs a resonance at the
plasma edge (co;r=—35.1) independent of the acoustic fre-
quency. This resonance is associated with the dramatic
changes in the real and imaginary parts of the plasmariton
dispersion relation around the plasma edge. Also, one
should note the shoulder on the low-frequency side of the
plasma edge resonance for Q =2X10 m '. In Al this
shoulder develops into a peak. A calculation of the

scattering mtcnsitlcs based on tllc near-local approxlIIla-
tion gives a result which deviates insignificantly from that
shown in Fig. 13.

By increasing the acoustic wave vector 1 or 2 orders
of magnitude the acousto-optic scattering can be tuned
into resonance with the plasmonlike part of the elec-
tromagnetic field. This is illustrated in Fig. 14, where we
have plotted the normalized scattering intensity IJ' ' as a
function of co;r for Q =4X10 m ' (0—=92 GHz) and
Qi=8X107m ' (0=184 GHz). For comparison is
shown also the result of a near-local approximation,
demonstrating the incorrtx:t predictions of the scattering
intensity provided by this model away from the plasma
edge in the L-mode case. As in the preceding figure the
acousto-optic resonances are displaced toward higher opti-

10o

0
10-2

Cl,

o 10-2

10 ' l i l I i I

10~
30 40 50

30 35 40 45 50

FIG. 13. Normalized anti-Stokes intensity I~ ' in n-type
InSb for the p-s scattering configuration as a function of the di-
mensionless optical frequency co;v for two acoustic wave vectors
Qi=106 m ' and 2X 106 m '. The optical and acoustic angles
of incidence are 8=5' and P=D', respectively. The resonances
essentially stem from the interaction with the plasmaritonlike

part of the incident field. Nonlocal and near-local calculations
of II' ' give the same result.

FIG. 14. Normalized anti-Stokes intensity II' ' in n-type
InSb for the p-s scattering configuration as a function of the di-
mensionless optical frequency ~;r for two acoustic wave vectors

Q =4X10 m ' and SX10' m '. The optical and acoustic an-

gles of the incidence are 8=5' and /=0'. The nonlocal and
near-local calculations have been indicated by solid and broken
curves, respectively. The resonances essentially stem from the
interaction with the plasmonlike part of the incident field.
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means of methods used in studies of the anomalous skin
effect and the photoemission process. As mentioned in
the Introduction these methods almost seem to have been
overlooked in light scattering investigations. Dresselhaus
and Pine, ' however, have made calculations of light
scattering line shapes in opaque materials in the spirit of
skin-effect studies. Their analyses are restricted to the
case where the optical and acoustic waves are propagating
perpendicular to the surface. Unfortunately, it turns out
that the line shape they obtain differs from that obtained
by Dervisch and I oudon, %vho have used the mathemati-
cal devices which are conventional for light scattering
studies. The disagreement can be traced back to the fact
that Dresselhaus and Pine neglect the field derivative g of
the anti-Stokes (or Stokes) field at the surface [compare
Eq. (48) of Ref. 38 and Eq. (3.3) of this paper with the
equations (unnumbered) for the Fourier components of the
incident and scattered fields in the paper by Dresselhaus
and Pine ]. By taking into account the appropriate field
gradient at the surface we obtain for the scattered light in-
tcIlslty thc I'csult ln Eq. (3.47). III t11c local liIIli't, wlicic
the inelastic scattering from the plasmonlike part of the
incident field vanishes, Eq. (3A7) exactly reduces, for per-
pendicular incidence of the light and sound waves, to the
local result obtained by Loudon [see Eq. (8) of Ref. 7].

The value of using the "skin-effect method" does not lie
ili tlM fact tlIRt 'tllls IIMtllod gives tllc saIiic I'csult, Rs thc
conventional one, but in the circumstance that nonlocal
optical properties of the metal (or semiconductor) can be
taken into account. Of these properties it has been
demonstrated in the present paper that the branch-cut and
the plasmon-like contributions are of significant impor-
tance.

The present work has been limited in several aspects.
First of all, we have considered the scattering from a sin-

gle acoustic mode only. To treat thermal 8rillouin
scattering one must consider the effect of superimposing
the scattering from the thermal spectrum of surface and
bulk waves, including for instance the scattering from the
sllrfRcc ripple mcchan1sm. Secondly, tlM IIIlportaIicc of
the nonlocal optical properties of the metal (or semicon-
ductor) not least in the opaque frequency regime shows
that the properties of the dectromagnetic field close to the
surface are of significance. This implies that one must
study the effect of replacing the sharp electron-density
profile in the surface with a smooth one. At this stage in
the development of the theory the Boltzmann-equation
treatment must be abandoned, and a quantum theory,
based on the density matrix formalism, which treats the
nonlinear Brillouin-scattering response of an inhomogene-
ou.s jellium must be established. Thirdly, the calculation
of inelastic scattering cross sections is inseparably con-
nected with a study of energy-transport velocities, a sub-

ject of importance in itself. Finally, dynamic inelastic
scattering effects which cannot be treated within the
framework of a parametric approximation, seem to be of
IIIlportailcc ii1 thc opRquc fl'cqllcIlcy regime.

In this analysis it has been assumed that the scattering
of the electrons from the surface is specular. For well-

polished surfaces, it is known from the linear optical
properties of the metals, that the specular scattering
model is in fair agreement with experimental observations.
From a theoretical point of view the analytical treatment
of diffuse scattering is much more involved than that
presented here as it is demonstrated in Ref. 37. Further-
more, to develop nonlocal theories toward the description
of smooth electron surface profiles, at the present state of
the art, it seems most appropriate to take as a starting
point the specular scattering model.
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