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15 APRIL 1984

R. Del Sole and E. Fiorino
Dipartimento di Fisica "Giuglielmo Marconi, "Uniuersita "I.a Sapienza, "I-00185 Roma, Italy

and Gruppo Xazionale di Struttura della Materia del Consiglio Xazionale delle Ricerche, I-00185 Roma, Italy
{Received 14 July 1983)

We formulate the theory of the macroscopic dielectric tensor for crystals of lower-than-cubic

symmetry, using the local-orbital approach to the dielectric response. In the case of noncubic infi-

nite crystals we give a definition of the macroscopic dielectric tensor that is simpler than any previ-

ous formulation and allows us to perform realistic calculations with roughly the same computation-
al effort needed in cubic crystals. In the case of semi-infinite crystals, we give for the first time a
definition of the macroscopic dielectric tensor and outline a way of computing it from the two-

particle Green s function, which can be computed according to the method of Hanke and Sham, in-

cluding local-field and excitonic effects. A remarkable result is that in both cases the long-range

part of the Coulomb interaction does not affect the macroscopic dielectric tensor. Previous formu-

lations of the optical properties of surfaces, which neglected local-field effects, are shown to be yet

valid, provided that the macroscopic dielectric tensor replaces the microscopic one.

I. INTRODUCTION

The dielectric response of a crystal to external perturba-
tions always produces microscopic fluctuations of the
electric field (local fields), even if the external field is of
long wavelength. Local-field effects have been the object
of extensive theoretical investigation' in the last years,
in connection with both optical and screening properties
of crystals. However, most of this work is confined to the
case of cubic infinite crystals, while only a few papers
consider systems with lower-than-cubic symmetry, as non-
cubic infinite crystals' ' ' or crystals with surfaces.

The main concern of this paper is the effect of local
fields upon the optical properties of surfaces. The under-
standing of these is fundamental in order to give a de-
tailed interpretation of surface optical spectroscopy. In
spite of the large amount of experiinental work done in
the last decade, only recently theory has improved
over the macroscopic model of McIntyre and Aspnes '

and the perturbative approximation. Following the early
work of Feibelman and the later one of Bagchi and Ra-
jagopal on jellium surfaces, more sophisticated theories
have been developed, accounting also for surface anisotro-

py, bulk spatial dispersion, ' and for strong resonances
of the dielectric function at the surface. A recent re-
view has been given by Feibelman.

However, none of these papers considers local-field ef-
fects at the surface. The only exceptions have been classi-
cal (Lorentz-Lorenz) calculations of adsorbate optical ab-
sorption and a short account of this work, 5 both show-

ing the importance of local-field effects.
In the case of semiconductors, local-field effects could

be more important at the surface than in bulk, since the
charge density is more inhornogeneous at the surface, due
to the bigger spacing of atomic orbitals [consider for in-
stance a low-density periodic array of chemisorbed atoms,
or even the dangling bonds at Si(111) and Ge(111) sur-
faces]. Furthermore, surface exciton binding energy may

be drastically affected by local fields through the dipole-
dipole interaction. ' This, originating from the Coulomb
(not exchange) interaction between electrons, is un-

screened, so that it survives the huge dielectric screening
expected at Si(111)and Ge(111) 2X 1, because of the small
optical gaps. ' ' An excitonic instability may occur in
some cases, which would be the driving force of surface
reconstruction. Therefore it is not unreasonable to conjec-
ture a link (through unstable excitons) between local fields
and surface reconstruction.

We believe that the study of local-field effects at crystal
surfaces is an interesting field. Unfortunately, it is also a
very difficult task, involving both conceptual and compu-
tational problems. In order to outline them, let us consid-
er the simpler case of infinite crystals. Macroscopic (cell-
averaged) quantities are usually of interest, and they can
be calculated from macroscopic Maxwell's equations, if
the macroscopic dielectric tensor VM (or polarizability

H~), relating the macroscopic electric displacement D~
(or polarization P~) to the macroscopic electric field EM,
is known. The macroscopic quantities a~ and

VM ——I+4m.a~ cannot be computed directly from the
linear-response theory, since the polarization is induced
by the total electric field (including local fields) and not by
the macroscopic field. More precisely, the macroscopic
eM is not given by simply cell-averaging the microscopic
dielectric susceptibility V(r, r '), and the difference is as-
cribed to local-field effects.

In cubic crystals a simplification results from the iso-

tropy of the response to long-wavelength perturba-
tions ' The macroscopic dielectric tensor reduces to
one independent component only, the macroscopic dielec-
tric constant eM, that can be computed, even in the case of
optical properties, considering the response to longitudinal
fields. Nevertheless, the calculation of eM involves the in-
version of a large matrix ' in the plane-wave representa-
tion. The size of such a matrix can be reduced using the
local representation; detailed calculations have been
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performed for Si and diamond including also excitonic ef-
fects, ' i.e., including the electron-electron (e-e) exchange
interaction. In this paper we outline a formulation of
local-field effects in infinite crystals, which is particularly
suited for noncubic crystals. We show how the macro-
scopic dielectric tensor of a noncubic crystal can be com-
puted using equations similar to those of cubic crystals;
this method is simpler than any previous forinula-
tions.

When dealing with surfaces, the very definition of mac-
roscopic averages is unclear. The lack of periodicity in
the direction perpendicular to the surface (the z direction)
makes cell-averaging near the surface meaningless. We
define macroscopic fields in k space as those with k, com-
ponents smaller than a cutoff wave vector k„' the macro-
scopic dielectric tensor V~(z, z') is then defined, in a way
analogous to our bulk formation. Its shape (z and z'
dependence) near the surface, as that of the macroscopic
field, depends upon k„' nevertheless it provides a meaning-
ful description of measurable quantities, such as reflectivi-
ty and transmission, provided that k, is chosen to be
much smaller than the light wavelength and much larger
than unit-cell dimensions. This definition is general and
does not request any approximation. In particular, it does
not rely on the random-phase approximation (RPA).

A further complication at surfaces (as well as in noncu-
bic crystals) is that the full macroscopic dielectric tensor
is needed to describe optical properties and not only its
long1tudj, nal coI11ponent, as 1Q cub1c crystals. The compu-
tRtiollal effort ls increased also by tllc lack of tl'RllslRtlolial

symmetry perpendicular to the surface. The main result
of this paper is an expression of the macroscopic dielectric
tensor in terms of the two-particle Green's function. The
local representation, which is the natural way of dealing
with surfaces, makes the calculation feasible.

The plan of this paper is as follows. In Sec. II we con-
sider the induced current and charge generated by an elec-
tronic system in the presence of an external disturbance.
We treat systems of arbitrary symmetry in the local-
orbital representation. Though the results of this section
are not completely new, we treat the subject in detail for
the sake of completeness.

In Sec. III we define the macroscopic dielectric tensor
of an infinite crystal of arbitrary symmetry. Two
equivalent definitions are possible, the first one from the
IIlicl'oscoplc diclcctrlc tcIlsol, Rs dollc ill Rcfs. 12 Rlld 15,
RIld thc second Ollc directly fi'01II t11c theory of tllc llIlcal
response to the external field, similar to the treatment of
excitons by Cho and co-workers. ' Adopting the latter,
we bypass two difficult steps, namely the definition of the
microscopic dielectric tensor when transverse fields are
present, and the elimination of microscopic fields from
Maxwell's equations. '

In Sec. IV we show how the macroscopic dielectric ten-
sor of a noncubic infinite crystal can be computed. Ex-
change is accounted for within the many-body perturba-
tion technique. Roughly the same computational effort
as in cubic crystals is requested.

In Sec. V we extend this formulation to the case of sur-
faces, namely to semi-infinite crystals. The macroscopic
dielectric tensor is defined and its expression in terms of

the local-orbital representation of the two-particle Green's
functions is given, which allows realistic calculations of
surface optical properties. A common feature of infinite
and semi-infinite crystals is that the macroscopic dielec-
tric tensor is not affected by the long-range part of the
Coulomb e-e interaction, in agreement with the results of
Ambegaokar and Kohn (AK) (Ref. 44) for cubic crystals.
Some properties of this tensor, which are important to
compute optical properties, are discussed in Sec. VI. A
discussion of the present approach, with special emphasis
on the approximations involved, is given in Sec. VII.

In a planned subsequent paper we will show that the op-
tical properties of surfaces (reflectance, absorption,
transmission, and ellipsometry) are given by a few quanti-
ties ' that are functionals of the macroscopic dielectric
tensor. These quantities (but not the latter) can be com-
puted from the longitudinal dielectric response, leading to
a simplification relevant for computational purposes. A
simple model will be carried out, showing the feasibility
and relevance of these calculations.

In this section we recall the linear response of electrons
in a crystal to an external field in the local representation
Even though we do not derive completely new results, we
prefer to discuss the subject in some detail, since we do
not know any extensive treatment of the general case,
where both transverse and longitudinal fields are present.

I.et us consider a system of electrons in a crystal, in-
teracting via the Coulomb potential, perturbed by an
external electromagnetic field. The induced current can
be computed, using the linear-response theory, in terms
of the current-current response function and of the per-
turbing field EI'. This is the external field E'" plus the in-

duced transverse field E'r.

E~=E'"+Ez ——E—El

where E is the total (microscopic) field and EL the in-
duced longitudinal field. The induced transverse field that
originates from retardation is not accounted for by the
zero-order Hamiltonian, where only the unretarded
Coulomb interaction between electrons is retained. There-
fore, it must be considered as perturbation, in addition to
the external field.

On the other hand, in Ref. 47 the perturbing field is
taken as coincident with the external one. This means
that the full retarded interaction between electrons is in-
cluded into the zeroth-order Hamiltonian. In this case the
excited states of the system already comprehend the in-
teraction with radiation, being just the normal modes dis-
cussed in Sec. III (they are called "real excitons" in the
language of Ref. 57). If the definition (1) is used instead,
the excited states of the electronic system have the usual
meaning, i.e., they are generated by the unretarded
Coulomb interaction between electrons (they are called
"Coulomb excitons" in the language of Ref. 57), and the
norinal modes must be investigated by means of
Maxwell's equations, as in Sec. III. The difference be-
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tween the two definitions is usually unimportant in cubic
crystals, where, because of symmetry, the longitudinal
dielectric function (which is calculated assuming that only
longitudinal fields are present) is sufficient to describe the
propagation of long-wavelength transverse waves. ' How-
ever, it goes without saying that, when transverse fields
must be explicitly consiidered, the approach which in-
cludes retardation into the zeroth-order Hamiltonian is
inainly formal, since practical calculations become exceed-
ingly difficult.

The polarization is defined as

P(r, r)= f J '(r, r')Ch', (2)

where J '(r, t) is the induced current. Its time Fourier
transform is given by

P(r, co)= f d r'a(r, r', co) E (r ',co),

where a(r, r ', co) is the quasipolarizability tensor defined
in Ref. 47, related by the linear-response theory to the
current-current (tensor) response function XJ J ( r, r ', co):

CX P

2

a p(r, r ',a))=[XJ J (r, r ', co) — 5 pp(r)5(r —r ')j/co2,

whei'e p( i' }ls tlie gl'olllld-state elect 1'oil density.
For co yO, the current-current response function is the

Fourier transform of the time-ordered response function:

XJ J (r, r ', t) = 6(t)(0 ~j (r, tj)p(r ',0)
~

0}
+e( —t)(0~jp(r', 0j)(r, t) ~0} .

The relation to the two-particle Green's function
S(ri, ti, r2, t2, ri, t&, r4, t4) is given by

X (r, r ', i)= (e —/4m ) lim (Br —Br~)(Brp Br,p)S(r—„O+;r ',0;r,t;r, t+),

where 0+ =ri, and r+ =r +ri, ri being a vanishing positive time.
We use for the Green's function the same notation as Henke and Sham so that we can use their results from now on.

We perform the time Fourier transform of Eq. (6) and express the Green's function on the basis of localized orbitals

yL, (r), as in Ref. 5, where 1. stands for the orbital v at the site R.
With the use of Eq. (6) we find

2

Xj j (ryr pro) g J I L (r )SL I L L
(~)J I t (r)

I.I,I.),I 2,L2

df~g (1 )

J (~t) Q4 ( +g)

and S, , (co) is the two-particle Green's function matrix. '

The insertion of (7) into (4) leads to an expression for the quasipolarizability in terms of the basis functions and of
S~ ~, , (~). Finally, we perform the space Fourier transform, and get

a~p(k, k', a)}= — g Jp~, ( —k'}S ~, ~, (r0)J, (k) 5p p(k ——k ')
I I,I.),L2,L2

where J, (k) and p(k) are the Fourier transforms ofJ ~, (r) and p(r), respectively.aI.2L2 aL 21.2
Equation (9) is completely general, valid for infinite crystals as well as for systems without any symmetry. In Sec. III

we will specialize it to the case of infinite crystals and in Sec. V to the case of semi-infinite crystals.
Before proceeding, however, we must find similar expressions for the longitudinal-longitudinal part of a(k, k ),

f

klan(k,

k')k
kk'

its right-hund Iongitudinsl contraction,

k'
a ' (k, k')=a(k, k')

and its left-hand longitudinal contraction,
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a (k, k')= —a(k, k'),
k

(12)

which also enter the definition of the macroscopic dielectric tensor of crystals with lower-than-cubic symmetry.
In the following we indicate by V (k) the longitudinal (with respect to k) component of a vector V(k), and by V (k)

its transverse projection.
If the longitudinal contractions of a are computed using Eqs. (10)—(12) in (9), the resulting expressions may be simpli-

fied using the longitudinal sum rule. Alternatively, as we do in the Appendix, we can assume ab initio, in view of the
gauge invariance, that only a scalar potential describes the electric field, when we are interested in the response to a long-
itudinal field (a ' and a ), or we can relate the longitudinal polarization to the induced charge density, when a ' is
of interest. This procedure, described in detail in Appendix A, gives the simplified expressions of the longitudinal con-
tractions quoted below:

(2~)i meek
li 1~ 2~ 2

Jz z, ( —k ')Sz,z, (co)A, (k),
1 1

(13)

(2ir)3 meek
Ll'L1 ~L2, L2

2

(2~)3 kk', ,
r ir i r ~r. ir.2~2

(15)

where

Az, z ( k )= I d r Pz, ( r )exp( i k —r)Pr . ( r ) . (16)

III. MACROSCOPIC DIELECTRIC TENSOR
OF AN INFINITE CRYSTAL

The optical properties of a cubic crystal are described
by the macroscopic dielectric constant, which embodies
local-field effects. ' This is usually computed starting
froin the longitudinal microscopic polarizability, '

describing the response of the system to a longitudinal
field. The applicability of this procedure in the ease of
optical properties, which involve transverse fields, is
founded on the equality of the longitudinal and transverse
components of the dielectric tensor' ' for vanishing light
wave vector, caused by the cubic symmetry.

In noncubic crystals, all the components of the micro-
scopic dielectric tensor must be considered. Johnson' ex-
tended the theory of local-field effects to such crystals,
but his formulation implies repeated inversions of very
large matrices, so that it is not suitable for practical use.
A somehow simpler definition of the macroscopic dielec-
tric tensor, which is appropriate also to noncubic crystals,
has been given by Pick. ' The same formula has been de-
rived by us in a different way, within the RPA approxi-
mation (although this is not really needed) and has been
shown to be suitable for practical calculations in the local
representation.

In this section we give an even simpler formulation of
the macroscopic dielectric tensor, which is suitable for the
extension to surfaces. Most of the complexity of the prob-
lem comes from the definition of the microscopic dielec-
tric tensor when dealing with general fields, ' i.e., not
completely longitudinal. On the other hand, the quasipo-
larizability, that is the crystal response to the external
field, can be easily defined in terms of response func-
tions. From it we directly derive the macroscopic dielec-

2

[E (q)]-= [D (q)]-
c'f q+G f2

(17)

[D (q)] =[E'" (q)]-, (18)

where [D(q)]- is the electric displacement. Equation

(17) implies that the microscopic (G&0) components of
the transverse field E are negligible, since ro /e «G .
Therefore, assuming that the external field is of long
wavelength, the perturbing field E& is such, too, and Eq.
(3) becomes

I

tric tensor, bypassing two difficult steps, namely the defi-
nition of the microscopic dielectric tensor and the elimina-
tion of microscopic fields. 'i Our method is similar to that
used by Cho and co-workers, ' to describe in a simple
way mixed longitudinal-transverse polaritons. The micro-
scopic calculation based on the local representation will be
outlined in Sec. IV. In Sec. V we apply this same method
to the case of surfaces.

In the following we write P( q )- for P( q +G),6
a(q)--, for [(2n. ) /V]a(q+G, q+G'), and analo-

gously for the other quantities. The factor (2m ) /V, V be-

ing the crystal volume, originates froin the transformation
of the integral over k ' [in the space Fourier transform of
Eq. (3)] into the sum over G ', allowed by the translational
symmetry. Here q is limited to the first Brillouin zone

and 6 and 6' are reciprocal-lattice vectors.
Maxwell's equations, in the absence of external trans-

verse currents, read as



[P(q}]-=[«q)]- - [E'(q)]-
From Eq. (18) we get

[E' (q)]- = —4n[P. ~(q)]

= —4m[a~' (q)]- - [Ei'(q)]

By using this equation for G=O, and the first of defini-
tions (1), we get a relation between the macroscopic com-
ponents (G=O) of the total and perturbing fields, that we
solve with respect to [E~(q)]- and substitute into (19) to
find the macroscopic polarization:

—1

[P(q)]-=[a(q)]-- 74'.— [a ' (q)]- - [E(q)]- . (21)

Therefore, the macroscopic dielectric tensor, relating

[D(q)]- to [E(q)]-, is given by
—1

V~(q)=l+4n[a(q)]- -. I—4m' [a ' (q)]--

(22}

%'hich yields

VM( q ) = 1+4@[a(q }]

[a ~(q)]- -[a ' (q)]--
+(4ir)'

1 —4m[o. (q)]--

2

V~(q) —q I+qq =0
e2

(23)

i.e., by Fresnel's equations. '

Equation (22) can be put in a more explicit form invert-

ing the 3 X3 matrix in the right-hand side. It results in
' —1

I—4n'~[a ' (q)]
q 0, 0

=1+4@
1—4m.[a ( q )]

Before discussing this equation in more detail, let us
briefly recall that the knowledge ofV~(q ) determines the
normal modes of the crystal. These are obtained from

Eqs. (17) and (18) for G= 0, in the absence of the external
field. Their dispersion is given by the zeros of the deter-
minant

The longitudinal-longitudinal component ofV~ assumes a
simple form, depending only upon the longitudinal quasi-
polarizabi. lity a ~~:

e~ (q) = [1—4m[a (q)]- -I

This very result is sufficient to describe the dielectric
rcsponsc In cubic crystals~ whclc 8 longitudmal external
field with @~0 induces only longitudinal fields. ' In
noncubic crystals transverse fields are generally induced,
too, but the relation (26) between the external field E'"'
and the longitudinal component of the macroscopic field
[E (q)]- is preserved.

The normal-mode equation (23) can be recast in a more

transparent form, using (24) and (25). By factorizing A in
(23), and choosing the z direction parallel to q for the sake
of simplicity, we get the dispersion relation

1 — i +4m[a-(q)]
4(q)

4m[a~, (q))

4m[a„y(q)]

2 2

1 — +4m[ay@(q)]

where E~(q) is the determinant of the matrix A. If the
first factor is zero, we get purely longitudinal modes, as
can be easily seen from Eqs. (17) and (18), considering that
»so [e~(n)le and [&~(q.)].; v»ish if P~'(q, ) vanishes
[see Eq (25)]. If the second factor, namely the 2~2
determinant is zero, we get mixed longitudinal-transverse
modes. It is worthwhile to note, howcvcr, that thc disper-
sion relation involves only transverse components of
a(q)00. These modes could be thought of as "transverse"
modes, which 111Ust carry also 8 longitudinal electric

field due to the nonvanishing off-diagonal components of
~(q4.

The I.L component of the dielectric tensor describes
also the energy loss of charged particles. If we assume
that the potential generated by a classical particle of velo-
city v and charge e is sufficiently smooth so that it does
not have important microscopic components, we can solve
Eqs. (17) and (18) in terms of E'". However, since q is
much larger than co/c =q v/c, the transverse field can be
neglected, and the perturbing field coincides with the



R. Dcl SOLE AND E. FIGRING

external field. %C can compute the energy loss using Eq.
(101) of Ref. 47, in the case of scalar external field, and
the final result is

d~=" f d' q'ImI[~"(-)]
dx Iru qz

(27)

Comparing this result with Eq. (111)of Ref. 47 and us-

ing (26), we see that the loss function, given by
Im[ —1/eM(co)] in the cubic case [eM(co) is the macro-
scopic dielectric constant], must be replaced by
Im[ —1/@sr ( q, co)] in noncubic crystals. Let us em-
phasize that this result is not as obvious as it. Inight seem.
In fact, it is not obvious that I/eM(ro) must be replaced by

1/@sr (q, co) and not, for instance, by [V~'(q, co)]~~.

IV. MICROSCOPIC CALCULATION
GF THE MACROSCOPIC DIELECTRIC TENSOR

OF AN INFINITE CRYSTAL

Sz z, z z, (co)=X, 'ge ' 'SI I (q, co), (28)
q

where A, I ls sllort foi R I
—Ri, VI, VI, Rlld X 18 tllc Ilunl-

ber of cells contained in the crystal. The insertion of (28)
into (9) gives, for q~O,

elf e2 2

~ gq)oo= —& II
Pl N PO QQP

where n js the average electron density, 0 the cell volume,

A I (Az) stands for the ordered couple of orbit»8 p'IR ip i 0

In the preceding section we have derived an expression,
Eq. (25), for the macroscopic dielectric tensor in terms of
the quasipolarizability [a(q)]- -. The purpose of this0, 0
section is to insert an explicit expression of the latter and
to derive henceforth an explicit expression for the macro-
scopic polafizability.

The quasipolarizability [a(q)]- - is known from the0, 0
linear-response theory, in terms of the Green's-function
matrix S, , (co) [see Eq. (9)]. In an infinite crystal,

according to Ref. 5, we express such a matrix in terms of
the new variables, R], R] —R&, R2, and R2 —R2, and
Fourier transform with respect to R, and RI, yielding
wave-vector dependences q& and q2. By lattice transla-
tional invariance qi ——q2. Therefore we have

e2
[~"(q)]-, -, = —

Z g uI.;SI.,I.,( q~)—VI', ,

(31)

(32)

where p~, is the dipole matrix element between localized

orbitals, coming from the q~O limit of the quantity
A, -, -(q) defined in Eq. (16).

p) R )apt 0

At this point let us consider in more detail the nonana-
lytic behavior of SI I„(—q, co). It can be found by solving

thc Bethe-Salpctcr equation:

S=N [1—(V ——, V )X ]

whcI c matnx indices arc Undci stood in 311 QUantitics.

XI,I,(q, co) is the RPA polarizability matrix, not includ-

ing local-field and excitonic effects, while V(q) and
——,

'
Vs(q) are the Coulomb and exchange parts of the e-e

interaction, given, in the framework of the many-body
perturbation technique, by

[pz(Rzp20], and pl is the momentum matrix element be-

tween localized orbitals, which is proportional to the q —+0
limit ofJ, , (q). The local orbitals here considered

tXp2 R 2,@20

are the Wannier functions of filled and empty bands.
Each couple contains one filled and one empty orbital.
Tlils cllolcc avoids collsldcrlllg collplcs of repeated orbltals
(v2 ——v2) which would make more complicated the calcula-
tion of the macroscopic dielectric tensor, as will be clear
in the following.

Although the q —+0 limit has been taken in calculating
the matrix element pI, , nevertheless a p(q)oo 18 still q
dependent, via the q dependence of SI,I,( —q, co), whose

q~0 limit dcpcnds on thc q diicction with rcspcct to thc
rclcvRIlt dlpolcs. Ill fact, Rs lt will bc sllowI1 latcl, lt coll-
tains the nonanalytic long-range part of the Coulomb po-
tential (the nonanalytic electron-hole exchange, in the ex-
citonic language) which leads, for instance, to the
longitudinal-tI'Rnsvcrsc cxciton splitting.

An analogous treatment of the a contractions entering
Eq. (25) yields

0

[~' (q)]-, -, = & -~ g pI.,SI,,I.,( —q ~)ui, , (30)
J I A 2

4

[~ '(q)]- -=—— g vI. ,
*SI.

,I,,( —q ~)pl.

Vx,l, (q)= g e "f1 r f d r'P„', (r —Rl —R )P„,(r —R )V(r —r')P„',(r')P„, (r' —Rz),
IJ1 Ng P) Nl P,g p

R

VI,I,(q)= g e f d'r f d'r'p*, (r —Ri —R )p„,(r
' R)V, (r, r ')p„* (r ')—p, (r —RI) . (35)



V(r —r ') is the Coulomb potential and Vs(r, r ') is the
statically screened e-e exchange interaction (the electron-
hole Coulomb interaction, in the excitonic language),
which has been discussed in the most general form by
ShRHl Rnd Rlcc.

The sum in (35) is restricted to small R~ values because

of the vanishing (as R~ increases) overlap between the lo-

calized orbitals. Therefore q R is nearly zero at small q,

and the exchange matrix has a well-determined q~ 0 lim-

it. This is not the case of the Coulomb matrix V; here

large R~ valUcs Rrc lnvoIvcd, &herc 8 dlpoIar expansion

of the Coulomb interaction can be applied, transforming

the sum in (34} into a sum of dipole-dipole interactions

(plus a term arising from small R 's), which yields a re-

sult depending on the direction of q, as it tends to zero.
In the excitonic 18nguage, this term is caHed the nonana-

lytic part of the electron-hole exchange interaction. '4

In order to isolate sucli a nonanalytic part, which will
be shown not to affect the macroscopic dielectric tensor, it
is better to transform Eq. (34), using Fourier transforms
and the translational symmetry, to the following form: 5

Vi, ,i,,(q)= g&i., (q+G) -Ai, (q+G) . (36)
f
q+G[iQ

2

Vi",
,~,(q)= —„,(V"~., q)(V~, q» {37)

which depends on the direction of q with respect to the

dipoles p i, and pi, . The sum of the other (6&0) terms

is called the analytic part of the Coulomb matrix, V'.
We assume now to have already solved the Bethe-

Salpeter equation (33), where the nonanalytic part of V is
ncgIcctcd, and call S thc resulting matrix. Then S satis-
fies the following equation:

ga( l Vnaga) —i

The factorized form (37) of V allows an easy solution of
(38), yielding

As q tends to zero, we can neglect it with respect to G in

the G+0 terms, which therefore result to be q indepen-

dent, and expand the G=O form factors Ai, (q) and

Ai, (q) to the first order in q. The G=O term is the non-

analytic part of V,

i.,i,,(q ~)I t;Vi.P,i,,i,,(q ~)
AyA4

~~, ,i.,(q r0) =~~,,~,,(q ~)+-
I y -+ gJ&- g vi.P~,,i.,(q~} i,,

Argy A&4

(39}

The use of this result in Eqs. (29) and (30)—(32)»d their insertion into (25) yield, after t«ious b«sunple algebra, the
following result for the macroscopic dielectric tensor, where the terms nonanalytic in q cancel each other:

e2
, g S i.', ~~, ,i,,( —q, ~)pi. ,'6 6P Pl

This equation is the main result of this section. A few

rcmalks &iH clut. idate its Qlca111ng. First, the IHRcroscopic

dielectric tensor results to be an analytic function of q, as

already shown by Pick." Equation (40) is a generalization
of AK's result to noncubic crystals. These authors
found that in cubic crystals the macroscopic dielectric
constant can be computed cutting off the long-range part
of the Coulomb potential. We find that the same is true
ln Qoncubic cfystaIs foI' thc 1Tlacroscopic dielectric tensor.
A similaI' result has been recently obtained by Ehara and
Cho in the case of an excitonic system.

Finally, we emphasize that Eq. (40) is a very simple way
of describing many-body effects in noncubic crystals. It is

much simpler, not only than Johnson's formulation, ' but

also than Pick's' definition of the macroscopic dielectric
tensor, which has bccn shoW'n to bc suitable fox' practical
calculations on 8 localized basis. This tc11sor can bc

computed in noncubic crystals via Eq. (40), basically with
the same computational effort that is requested in cubic
crystals, namely that needed to solve the Bethe-Salpeter
equation for S'.

V. MACROSCOPIC DIEI.ECTRIC TENSOR
OF A SEMI-INFINITE CRYSTAI.

The definition of the macroscopic dielectric tensor for a
semi-infinite crystal has been given in Refs. 25 and 56,
starting from the microscopic dielectric tensor. We repeat
it here in more detail for the sake of completeness. We
consider a crystal occupying the half-space z ~0 and

showing two-dimensional {2D) periodicity in the xy direc-

tions. Let q~~ (—+0) be a vector in the 2D Brillouin zone

Rnd thc GII s bc thc rcclprot 81 vectors.
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We define the macroscopic field as having Fourier com-

ponents E(qll, k, }- limited to GII=O and
~
k,

~

small-
li

er than a cutoff wave vector k„such that

CO

C

The other Fourier components are called microscopic
fields and are, to a good approximation, longitudinal, as
can be seen from Eq. (17), recalling that co/ck, or co/cGII
are small numbers.

The microscopic fields are eliminated using Eq. (18),
that in the surface case, reads

k~I dk,'e (qll, k„k,') E(qll, k,')0++ I dk,'[e (qll, k„k, }]- -, [E (qll, k, )]- =0
~ii

(42)

for GII~O, or Gll
——0 and

~
k,

~
& k, . The microscopic components of the external fields are assumed to be negligible.

The subscript (m) below the integral means that k,
'

is limited to the microscopic fields, namely that
( k,'

~
&k„ if

G
tl
=0. Here [V( q ll, k„k,'],is the microscopic dielectric tensor, defined in Ref. 12. This approach is particularly

useful in the RPA, where the microscopic dielectric tensor can be easily computed from one-electron wave functions.
The microscopic fields are found from Eq. (42) inverting

[e (qll, k„k,']-
Gii ~

ii

i.e.,

[e (qll, k„k,')]-
Gii 6

ii

restricted to microscopic fields. Substituting into Eqs. (17) and (18} for the macroscopic components (GII=O and

~
k,

~
& k, ) yields the propagation equation for the macroscopic field EM(qll, k, ):

2 k

qll+k*}& qli+k XE~ qll =
z I I,

dk VM qll k k E~ qll'k z [3 '"
qll' ]0 ' (43)

where k, means k, times the versor of the z axis.
The first term on the right-hand side of Eq. (43) is just co /c [D(qll, k, )]- which is related to the macroscopic field

EM(qll, k,') via the macroscopic dielectric tensor. This is given by (for
~
k,

~

and
( k,

'
~

&k, )

VM(qll, k„k,')=[V(qll'k, k')] —P I dk P I dk'[e' ' (qll, kz, kz)]o o [& qll'k, k')]

X[e '
(qll, k,', k,')] 6 iio

The external current appearing in (43) does not have any role in the definition of VM. It has been kept, for the sake of
generality, to be able to describe the energy loss of charged particles.

The solution of (43) yields the macroscopic field, that is enough to determine optical properties, which are given by
the behavior of the electric field far away from the suf'ace. Even subrace abso~tion can be computed from the energy
balance, knowing reAectivity and transmission. However, other properties, such as the photoemission cross section, im-
ply the explicit determination of the microscopic fields, which in principl can be achieved from (42).

The main sho~coming of this approach is that the macroscopic dielectric tensor has a complicated definition, in te~s
of the microscopic one, which in turn is not simple, ' except as in the RPA. Although it is possible to carry out explicit
calculations of the optical properties using this definition, however, it is difficult to control the spatial behavior ofV~
near the surface. A crucial assumption of all the methods of solution of light-propagation equations ' is that the
surface perturbation onVM vanishes after a distance much smaller than the light wave vector This is d. ifficult to check
using the expression (44).

In order to get a clearer expression of VM, it is possible to use an approach similar to that of Sec. III, based on the
linear response to the external field. Repeating the arguments of Sec. III, with minor changes appropriate to the semi-
infinite crystal, we get

k

~(qll, k„k,')=5(k, —k,')I+4~I, dk [8(qll, k„k,")] A(qll, k,",k;), (45)

The tensor operaor A is the solution of the equation



k,
g A qjjp gp g I g g 'fP + qjjp g p g ~ ~ I g g

i.e., is the inverse of the tensor integral operator in the large parentheses.
If we multiply by [a( q ~~, k,'",k, )]-- and integrate over k, from —k, to k„we get an integral equation for the mac-g 0 g

roscopic polarizability aM(q ~~, k„k,' ). lf we take the right-hand longitudinal contraction of this equation, it reduces to a
vector equation for a~' (q~~, k,"',k,

' ):

C

~~
~

~I~ ~
~

~t

k
dk, aM' (q~(, k,'",k, )OI (q~~, k„k,')=[a '

(q~~, k,'",k,')]--, (47)

where the integI'aI operator 0& is given by

Oq(qadi, k„k,' )=5(k, —k,
'

) —4m.[a (qadi, k„k,' )]- (48)

I.et us assume that we are able to invert such operator. Then we can solve (47) and get the macroscopic polarizability
k k

a~(q(), k, ,k, )=u(q)), k, ,k, )]- -+4IrI „dk,j dk [a ' (q((,k, ,k, )]--
XO~ '(qadi, k„k,")[a '

(qadi, k,",k,')]- (49)

The inversion of the operator Oz( q ~~, k„k,' ) is the main step of this section. It can be achieved using the local expan-
sions of the response functions. Henceforth, before solving Eq. (49), we proceed to express the quasipolarizability and its
longitudinal contractions in the localized orbital basis, in a way appropriate to a semi-infinite crystal.

In this case we write [a(q~~, k„k,')]- -, for [(2m.) /A, ]a(q~~+G~~, k„q~~+GI~, k,'), where A, is the surface area.
II

Then we exPloit the 20 Periodicity and exPress SL, I„'I, I., (co) in terms of the new variables RI~~, R
I~~

—Rl~~, R», R I„
Rill —Rzll, RI~, Rild Ri, Rild Fouricr transform wltll I'cspcct to RI[~ alld RI~~, yicld1ng wave-vector dcpcildciiccs

Rlld qI~~. By suIfRcc trRIlslaflollal Invarlancc, q i~~
= qI~~. Thcl'cfol'c wc 11Rvc

(50)

where N, is the number of unit cells in the surface plane, and s I is short for R'I
~~

—RI ~~, VI at R i„and v'I at R I,.
Insertion of Eq. (50) into (9) gives for small q

~
~, k„and k,',

[aalu(q~), k k')] =(2Ira)I) g exp[i(k,'Ri, —k,Rp )]S,,g, (
—

q~(, r0)@gal,',
~

m2A~ ~o, ,

where Ao is the unit-cell area and po(k, —k,' ) is the z Fourier transform of the ground-state electronic density p(r), aver-

aged 011 tlM surface plallc.
Analogously we have, using Eqs. (13)—(15):

2

[& '
(q~~, k„k, )]--= g p,,(q~~+k, )S...,( —q~~, ro)ps, exp[I(k, RI,—k,RI,)],

S) I$2

e2
[a '

(q~~, k„k, )]--=— g p, ,S...,( —q~~, co)p, ,'(q~~+k, )exp[i{k,'Ri, —k,R2,)],
2&HO Pl AN

(53)

ez
[a~~(q~~, k„k,')] -== — g p, ,(q~~+k, )S...,( —q~~, ra)p,*, (@~~+k, )exp[i(k,'R» —k,RI,)],

$1,$2

(54)

where p, (q ~~+ k,') is the longitudinal component of p, , with respect to q ~~+ k, .
The matrix S satisfies the Bethe-Salpeter equation, in analogy with the infinite-crystal case equation (33). The only

difference is that the index si (or sI) stands for R I, {orR I,), in addition to other labels, rather than for R I,—R i„as A, I
in the bulk case. The matrix to be inverted at the surface has a larger size than in bulk, in strict similarity with band cal-
culations. The Coulomb e-e interaction matrix is given by (34). An alternative form, analogous to (36), in terms of the
Fourier transform of the Coulomb potential, can be simply worked out:
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z 2

V, , (qii) =20 'g A, ,(qii+Gii, k, )Ag*, (qii+Gii, k, ) .
21T (~ +G )2+k2q It II

We want to separate at this point the long-range (small-k) Coulomb interaction, which gives rise to the nonanalytic

behavior of S(qii, r0) as qii 0. We define the nonanalytic Coulomb matri~ V™as the Gii =0 term of (55), where the k,
integral is limited to

~
k,

~
& k, . The remaining part of V is called the analytic Coulomb matrix V which results to be

qII independent, as q ~~~0:
dk,

V, , (qii)=20 '
i qA, (qii, k, )A,*, (qii, kg)s,s,

1 k, I & k, 2~ q

00 g 4n.e+~o ' g, ;~,,(qii+Gii k. )~:,(qii+Gii
pii~~o) I qil+Gli I +k,

dk,
V..., (qii)=4ne Ao

' f '
exp[ik, (Ri,—Ri, )]p,*, (qii+&, )p,,(qii+&, ) .

C

(56)

(57)

In order to derive (57) we have used the dipole approximation in computing 2,* (q ii, k, ) and A, ,( qii„k, ), which is justified

since q ii
0 and

~
k,

~
& k, && 1 ld, where d is a typical spacing of layers in the z direction. The orthogonality of the or-

bitals vi and v'i is here important and is achieved by using conduction- and valence-band Wannier functions.
We define, also in the surface case, the matrix S,'...{qii, ro); which satisfies the Bethe-Salpeter equation where the non-

analytic Coulomb interaction is omitted. The relation between S and S' is again shown in Eq. (38), which can be formal-

ly solved with respect to S'.
Now we go back to Eq. (48) and invert the operator Oz, which can be written, using (54), as

O~(qii, k„k,')=5(k, —k,')+2e Ao
' g p, (qii+k, )S, , ( —qii, m)p,

' (qii+k,')exp[i(k,'Ri, —k,R2, )] . {58)

We try a solution of the form

(qii, k, ,k, )=5(k, —k, )—2e Ao g p, (qii+k, )X...p, , (qii+k,")exp[i(k,"Ai, —k,'R2, )], (59)

getting a matrix equation for ¹

S( qii,—ri)) %=+X V ( —qii)S( —qii, co} .

To derive this equation, we have use the property

V,",', , (qii) = V,",',, ( —qii)

which can be easily demonstrated from the definition (57), if real orbitals are used.
We solve Eq. (60) with respect to X, and compare with S obtained by inverting (38), yielding, finally,

(60)

(61)

X =S'( —qii, ~) . (62)

We are now able to find the macroscopic polarizability from (49), using (51)—(53) and the inverse operator O~ given
by (59) and (62). After long but simple algebra, the final result for the macroscopic dielectric tensor is

4m'e

, iio{k.—k' )(2~)
Ptl N

2

eM.p(qii, k„k,')=8., 5(k, k; )—— 2828 (~ )
2 y ~ —IktRgzSg (~

)
IkgR)g + (63)

0 $),$2

This is the main result of this paper. Again we find that
the nonanalytic part of the Coulomb interaction does not
affect the macroscopic dielectric tensor, according to
AK's results for cubic crystals and to the formulation of
Ehara and Cho for crystals of general symmetry in the
excitonic approximation.

Insertion of (63) into the propagation equation of the
macroscopic field, Eq. (43), enables one to describe the
dielectric properties of the semi-infinite crystal. The ap-
proximations needed to derive such results are (i) the
long-wavelength character of the radiation involved,

namely ~/c &&G, and (ii) the macroscopic character of
the external current and field, i.e., with Fourier com-
ponents only for Gii ——0 and

~
k,

~
&k, . The solution of

Eq. (43) yields the macroscopic field, which is enough to
determine optical reflectivity and absorption. However,
this is not yet the complete solution, which should also in-
volve microscopic field components. For instance, we
cannot compute from (43} the photoemission yield from
surface states, which depends on the actual (microscopic)
profile of the electromagnetic field at the surface. The
microscopic fields, which are approximately longitudinal,



VI. SOME PROPERTIES GF THE MACROSCOPIC
DIELECTRIC TENSOR OF SEMI-INFINITE CRYSTALS

The optical properties of crystal surfaces are found
solving the light-propagation equations, i.e., Eq. (43), for
the macroscopic electric field. Such equations are similar
to those studied by a number of authors in the case
of jellium or crystal surfaces, who did not consider
local-field effects. The difference is that the macroscopic
field and the macroscopic dielectric tensor are here con-
cerned, rather than the microscopic ones. We would like
to use the method of solution, first formulated by Bagchi
and Rajagopal, which is founded on the short-range
character of the surface perturbation. More precisely, it is
assumed in Refs. 32—39 that the dielectric tensor is dif-
ferent from its bulk value only in a depth d near the sur-
face, much smaller than the light wavelength in the crys-
tal.

We are going to show that this is indeed the case of the
macroscopic dielectric tensor V~(q~~, z,z') here defined.
We will show in Appendix 8 that, as soon as z is larger
than a few times k, , the macroscopic electric displace-
ment has the same relation with the macroscopic electric
field as in the infinite crystal:

DM( q ((,z) V~(co).EM( q ((,z),
s g&k,

—'
(66)

where V~(co) is the macroscopic dielectric tensor defined
in Sec. III for an infinite crystal in the q —+0 limit. Since
k, is much bigger than co/c, the surface perturbation
depth -k, ' is much smaller than the light wavelength,
and the method of Ref. 35, which takes into account a
nondiagonal dielectric tensor at the surface, can be applied
to find the reflectivity.

The solution of light-propagation equation (43) in the
long-wavelength hmit has been given in Ref. 35 by gen-
eralizing the method of Bagchi and Rajagopal" to the
case where the dielectric tensor is nondiagonal, as general-
ly occurs at surfaces of real crystals. An important point

can be computed from the surface analog of Eq. (20).
In cases where only longitudinal fields are present, Eq.

(43) becomes
k

f k dk,'e~ (q~~, k„k,' )E~(q~~, k,
' )=[E'"~(q(~, k, )]

(64)
where e~, obtained from the ion]itudinal component of
the vector equation (47), is just O~ given by (59) and (62).
Therefore the inversion of (64) gives

k

E4(q~~, k, )=I;dk; I?i(k, —k,')
—4ir[a (qadi, k„k,' )] I

y [Ecx,l(~ I ~

)]

which completely describes the macroscopic field.
Static screening and the energy loss of slow particles

can be studied using this result.

eM p(q~~, z,z')=e~p, ( —q~~,
z', z), (69)

which is equivalent to (67) in the long-wavdength limit,

qI)~Os
Therefore, all the mathematics of Ref. 35 can be ap-

plied also in the case of the macroscopic dielectric tensor
and the reflection coefficient is given by Eqs. (14) and (17)
of Ref. 35. Also ellipsometry can be computed in this
way, and it is described by Eqs. (8) and (9) of Ref. 25. A
more extended treatment of optical properties will be
given in a subsequent paper.

In Secs. III and IV we have given a definition and a
method of calculation of the macroscopic dielectric tensor
of noncubic crystals, which embodies local-field as well as
excitonic effects. It is a generalization of the formula of
Adler and Wiser' for cubic crystals and it is much
simpler than any other formulation. '2' ' Realistic cal-
culations are not only possible within this formulation,
but they request roughly the same computational effort as
in the case of cubic crystals. The only approximation in-
volved is the longitudinal nature of microscopic fields,
namely that co/c ««G. This condition is very well ful-
filled in the optical and ultraviolet range, so that we re-
gard our theory as essentially exact.

In Sec. V we have developed the theory of the macro-
scopic dielectric tensor at crystal surfaces. A common
feature of infinite and semi-infinite crystals is that the
long-range part of the Coulomb interaction is not involved
in the macroscopic dielectric tensor. This is a generaliza-
tion of AK's result for cubic crystals, and of Ehara and
Cho's work, for an excitonic sytsem in an infinite crys-
tal of arbitrary symmetry.

In the case of surfaces more approximations are in-
volved. Microscopic and macroscopic fields are discrim-
inated along z by the cutoff wave vector k„which must

of the calculation is the symmetry of the dielectric tensor
for the interchange of indices:

e gz, z')=op (z',z),
which is a consequence of time-reversal invariance for the
RPA microscopic dielectric tensor involved in Ref. 35.

Is this property vs also for the macroscopic dielectric
tensor defined in this paper'? In the following we show
that the answer is yes.

The property (67) is verified by the quasipolarizability
tensor, since this a response function, just as the RPA mi-
croscopic dielectric tensor. Therefore, we have, using
Foulier transforms,

[o' gq[] k, k')l- -=[&/ ( —q[[
—k' —k )]0 0

The same is true for the operator O~(q~~, k»k,
'

), from its
definition and (68), and also for Ou (q

We can now use the definition of the macroscopic po-
larizability to show quite simply that it verifies the prop-
erty (68). The final result is



be chosen in the range co/e «k, «G. Although this
range is sufficiently large so that a safe choice of k, seems
to bc posslblc, 1t 1s %'orth%'h11c to look 1Q morc detail at
this step. The lower limit, k, &&co/c, is determined by the
request that microscopic transverse fields vanish, accord-
ing to Eq. (17). However, a stricter request comes from
thc long-wavclcngth approx1IIlat1on used to solve light-

propagation equations. The surface-perturbed region has

a depth of about Ir/k„as shown in Sec. VI. The validity
of the long-wavelength approximation requires '

S'(k)= fd'k a'"(k, k ).E'(k') . (Al)

The longitudinal polarization is related to the longitudinal
induced current by Eq. (2) and therefore to the induced
charge density via the continuity equation,

kJind, I.
( k ) ind( k )

I. Left-hand longitudinaI contraction

We understand the m dependence from now on. We
perform the Fourier transform of Eq. (3) and then take
the longitudinal component

yielding the result

where eM' is the bulk dielectric constant (we consider here
the case of cubic crystals). Taking %co=1 CV and eIII'-10,
this leads to k, ~g II37 A.

The upper limit, k, «G, comes essentially from the di-
pole expansion used to calculate the form factor
A, (q~~, k, ) in the nonanalytic long-range part of the
Coulomb llltcractloll, Eq. (57). Tins cxpR11sloI1 lcRds to
the cancellation of such an interaction in the macroscopic
dlclcctrlc tcllsol. Assllnllllg tllat 1 A ls 8 typical I'Rdllls of
the overlap region between the empty and filled localized
orbitals involved in the form factors, the dipole approxi-
mation results to be valid for k, '

&& I A. Values of k, '

in the range 10—15 A fulfill fairly well both require-
ments. More freedom is allowed if Irlco & 1 eV, so that our
formulation can be safely used up to optical frequenices.
At shorter wavelengths, the formulation of the macro-
scopic dielectric tensor is still valid, but a different
method of solution of light-propagation equations, not
founded on the long-wavelength approximation, should be
dcvclopcd.

The near surface profile of the macroscopic dielectric
tensor, and therefore of the resulting macroscopic field is
obviously k, dependent. For instance, the surface pertur-
bation depth on the macroscopic dielectric tensor is m. /k„
bigger than the intrinsic depth of perturbed charge densi-

ty, which is estimated to be a few angstroms. However,
the reflection coefficient does not depend on k„ if this is
chosen 1n thc app1opriatc I'ange. This will bc s40%n ln de-
tail in a planned second paper of this series.
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P (k)=ip'" (k)/k . (A3)

CQInbllllllg Eqs. (A4) Rlld (A3) Rlld colllparlllg them
wltll (A 1), wc obtalll

a ' (k, k')=(a)k) 'X, (k, k') .
P3

The density-current response function is related to the
two-particle Green's function in a way analogous to Eq.
(6). The final result, analogous to Eq. (7), is

a (k k')=(2Ir) e i(milk)

x
I, ),I.),L,2,I.2

J, ( —k ')S q, ~ ~, (81)
I 1

X&~,~ (k),

&~,~ (k)= fd rP~, (r)e '"''Pl (r) . (A7)

2. Right-hand longitQdinal contraction

I.et us assume now that the perturbing field is purely
longitudinal. In this case the polarization is given by

P(k)= fd k'a ' (k, k')EI' (k'),
and we can describe the perturbing field via a scalar po-
tential g(k):

EI' f k ') = ik'P( k ') .— (A9)

The induced charge density is related to the perturbing
field, %'h1ch wc dcscribc 1Q thc vcctoI' potent1al gauge,
through the linear-response theory. In this case (zero sca-
lar potential) the link is the density-current response func-

tion Xpj ( k, k '):

p'" d( k)=g fd k'Xei(k, k')E$(k')/i~ .

APPENDIX A

J'" (k)= —fd k'X (k, k')g(k'), (A10)
Hclc wc fllld tile right-1181ld RIll left-11Rlld Iongltudlnal

contI'actions, as well as thc longitudinal-longltudlnal coIIl-
ponent of the quasipolarizability tensor a(k, k ',co).

where X- (k, k ') is the current-density response function.I
Using (2) we obtain
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p (t)= —iso 'fd'k x', ~(r, r')p(k') . (Al 1) Z'(k) =fd'k'a "(k,k ')E&'(k ') . (A14)

The comparison with (A8), using (A9), gives

a (k, k')=(cok') 'X- (k, k') .
Jp

(A12)

However, this is related to the induced charge density by

Eq. (A3), and the latter to P(k') via linear-response
theory:

By relating the current-density response function to the
two-particle Green's function, we obtain

u ~(k, k ')=(2m) e i(meek')

, ( —k')S, , (co)
1 I

P'" (k)= —fd O'Xpp(k, k')P(k'), (A15)

where X~&(k, k ') is the time and space Fourier transform
of the density-density response function. The comparison
of (A14) and (A15), by using (A3) and (A9), gives

~~(k, k')=(kk') 'Xp~(k, k') . (A16)

X J~, ~ (k). (A13) The final expression involving the two-particle Green's
function is

3. jLongitudinsl-longitudinal component
(k, k')= —(2m) e (kk')

%e assume again that the perturbing field is purely
longitudinal, related to the scalar potential P(k) through
Eq. (A9). The longitudinal component of the polarization
is given by

I ),I ),L~,L, 2

XA~, ~ (k) . (A17)

')SL, I. L, 'I. ' (~)
1

APPENDIX 8

Here we show that, as soon as z is larger than a few times k, , the macroscopic dielectric tensor assumes its bulk

value. The proof proceeds as follows. We take the z and z' Fourier transform of the macroscopic dielectric tensor,

which results to be

sin[k, (z —z')] 4~&i ~ sin[k, (z —z")] sin[k, (z"—z')
eM(q~~~0, z,z')=5~p —,——— dz"po(z")

m(z —z') ~~i —~ m(z —z") m(z" —z')

sin[k, (z —R2, )] sin[k, (z' —R i, )]
(Bl)

where po(z) is the plane average of the unperturbed electron density. We look now at the behavior of the second and

third terms of (Bl) as z and z' penetrate into the bulk. We consider the second term, first. The relevant range of integra-

tion is restricted between z —m./k, and zl+m/k„where z is the minimum between z and z, and zl is the max-

imum. If z~ —(n./k, ) is larger than the typical depth of d of surface perturbation on the electron density, which is of
the order of a few angstroms, the electron density assumes its bulk form, given by a Fourier series of the reciprocal-

(bulk-) lattice vectors G, with coefficients p' '. Because of the condition k, &&G, k, and k,' are contained inside the first

Brillouin zone, so that only the G s with G, =O satisfy the 5-function condition k, =k,'+6, . Then the second term of
(Bl) results to be

where n =p,
' ' is the average electron density.

I.et us consider now the third term in (81). As z and z' are bigger than ~/k„only index values si, and s2 with Ri,
and R2, in the bulk are relevant to the sum. The localized orbitals involved and their momentum matrix elements are

bulklike, that is independent of their distance from the surface. Moreover, the matrix S..., ( —q~~, co) converges to its

bulk value, and depends on 8» —Ri» R2, —R2» and on Ri, —R2, . We split the index si (s2) into Ai ——p&pi, R i —Ri

(A2 ——pzpz, R2 —R2), and R&, (R2, ). We also perform the q, Fourier transform of the bulk matrix S' ' as follows:

SiARR ( q~~ ~)
, ,

+ /exp[i(~1 +z )9 ]Si. il, ( q~~ '4 ~) (83)
Vg

where E, is the number of layers in the z directions. The third term of (81) becomes
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(84)

To derive this equation we have extended to the vacuum region, the 8 ~, and Rq, -sum in (81), since these terms are un-
relevant because of the rapidly vanishing factors sink, (z —8;, )lm'(z —8;, ) (i =1,2). a, is the z periodicity in the bulk,
such that Aoa2 ——0, a multiple of the unit-cell volume.

At this point we neglect the q dependence of S~'~' ( —q, co) (for
~ q, ~

& k, ), neglecting in this way the nonlocality of
the bulk dielectric function. This is known to be important only in special cases, as near strong excitonic or plasmonic
resonances, which we exclude from the beginning. We put together (81), (82), and (84) and, comparing with (40), we ob-
tain

sin[k, (z —z') ]
eM ~(q

~~
o,z,z') ', eM'~(co),,))k-i m(z —z') (85)

where e~~p(co) is the bulk macroscopic dielectric tensor found in Sec. IV. The nonlocality is fictitious, determined by
the cutoff k„' we easily obtain for the macroscopic electric displacement DM( q

~
~,z):

( )
sin[k, (z —z')] (~)D(q~, , ) "()~ EM(q)~, z') =~M (~) EM(q)~ z» (86)

k m(z —z')

where the last equality comes from the very definition of EM(q~~, z), namely from the fact that its k, Fourier transform
is zero for

~
k,

~
& k, . We have shown in this way the validity of Eq. (66), which means that the surface perturbation on

VM( q
~
~,z,z') extends for a depth —m. /k, . Further discussion of this point and of the choice of k, are given in Sec. VII.
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