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We formulate the theory of the macroscopic dielectric tensor for crystals of lower-than-cubic
symmetry, using the local-orbital approach to the dielectric response. In the case of noncubic infi-
nite crystals we give a definition of the macroscopic dielectric tensor that is simpler than any previ-
ous formulation and allows us to perform realistic calculations with roughly the same computation-
al effort needed in cubic crystals. In the case of semi-infinite crystals, we give for the first time a
definition of the macroscopic dielectric tensor and outline a way of computing it from the two-
particle Green’s function, which can be computed according to the method of Hanke and Sham, in-
cluding local-field and excitonic effects. A remarkable result is that in both cases the long-range
part of the Coulomb interaction does not affect the macroscopic dielectric tensor. Previous formu-
lations of the optical properties of surfaces, which neglected local-field effects, are shown to be yet
valid, provided that the macroscopic dielectric tensor replaces the microscopic one.

I. INTRODUCTION

The dielectric response of a crystal to external perturba-
tions always produces microscopic fluctuations of the
electric field (local fields), even if the external field is of
long wavelength. Local-field effects have been the object
of extensive theoretical investigation! =22 in the last years,
in connection with both optical and screening properties
of crystals. However, most of this work is confined to the
case of cubic infinite crystals, while only a few papers
consider systems with lower-than-cubic symmetry, as non-
cubic infinite crystals'?!%2? or crystals with surfaces.?*%

The main concern of this paper is the effect of local
fields upon the optical properties of surfaces. The under-
standing of these is fundamental in order to give a de-
tailed interpretation of surface optical spectroscopy. In
spite of the large amount of experimental work done in
the last decade,?~% only recently theory has improved
over the macroscopic model of McIntyre and Aspnes®!
and the perturbative approximation.? Following the early
work of Feibelman® and the later one of Bagchi and Ra-
jagopal** on jellium surfaces, more sophisticated theories
have been developed, accounting also for surface anisotro-
py,>* bulk spatial dispersion,’®3’ and for strong resonances
of the dielectric function at the surface.’’~% A recent re-
view has been given by Feibelman.*’

However, none of these papers considers local-field ef-
fects at the surface. The only exceptions have been classi-
cal (Lorentz-Lorenz) calculations of adsorbate optical ab-
sorption** and a short account of this work,?’ both show-
ing the importance of local-field effects.

In the case of semiconductors, local-field effects could
be more important at the surface than in bulk, since the
charge density is more inhomogeneous at the surface, due
to the bigger spacing of atomic orbitals [consider for in-
stance a low-density periodic array of chemisorbed atoms,
or even the dangling bonds at Si(111) and Ge(111) sur-
faces]. Furthermore, surface exciton binding energy may
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be drastically affected by local fields through the dipole-
dipole interaction.*! This, originating from the Coulomb
(not exchange) interaction between electrons, is un-
screened,’ so that it survives the huge dielectric screening
expected at Si(111) and Ge(111) 2 X 1, because of the small
optical gaps.2¥?*? An excitonic instability may occur in
some cases, which would be the driving force of surface
reconstruction. Therefore it is not unreasonable to conjec-
ture a link (through unstable excitons) between local fields
and surface reconstruction.

We believe that the study of local-field effects at crystal
surfaces is an interesting field. Unfortunately, it is also a
very difficult task, involving both conceptual and compu-
tational problems. In order to outline them, let us consid-
er the simpler case of infinite crystals. Macroscopic (cell-
averaged) quantities are usually of interest, and they can
be calculated from macroscopic Maxwell’s equations, if
the macroscopic dielectric tensor €, (or polarizability
@), relating the macroscopic electric displacement ﬁM
(or polarization ﬁM) to the macroscopic electric field EM,
is known. The macroscopic quantities @, and
€y =1+47d, cannot be computed directly from the
linear-response theory,*® since the polarization is induced
by the total electric field (including local fields) and not by
the macroscopic field. More precisely, the macroscopic
€y is not given by simply cell-averaging the microscopic
dielectric susceptibility €(T,T"’), and the difference is as-
cribed to local-field effects.

In cubic crystals a simplification results from the iso-
tropy of the response to long-wavelength perturba-
tions:'®* The macroscopic dielectric tensor reduces to
one independent component only, the macroscopic dielec-
tric constant €,,, that can be computed, even in the case of
optical properties, considering the response to longitudinal
fields. Nevertheless, the calculation of €,; involves the in-
version of a large matrix®? in the plane-wave representa-
tion.> The size of such a matrix can be reduced using the
local representation;>~> detailed calculations have been
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performed for Si and diamond including also excitonic ef-
fects,>’ i.e., including the electron-electron (e-e) exchange
interaction. In this paper we outline a formulation of
local-field effects in infinite crystals, which is particularly
suited for noncubic crystals. We show how the macro-
scopic dielectric tensor of a noncubic crystal can be com-
puted using equations similar to those of cubic crystals;’
this method is simpler than any previous formula-
tions.12:16:23

When dealing with surfaces, the very definition of mac-
roscopic averages is unclear. The lack of periodicity in
the direction perpendicular to the surface (the z direction)
makes cell-averaging near the surface meaningless. We
define macroscopic fields in K space as those with k, com-
ponents smaller than a cutoff wave vector k,; the macro-
scopic dielectric tensor €,,(z,z’') is then defined, in a way
analogous to our bulk formation. Its shape (z and z’
dependence) near the surface, as that of the macroscopic
field, depends upon k_; nevertheless it provides a meaning-
ful description of measurable quantities, such as reflectivi-
ty and transmission, provided that k! is chosen to be
much smaller than the light wavelength and much larger
than unit-cell dimensions. This definition is general and
does not request any approximation. In particular, it does
not rely on the random-phase approximation (RPA).

A further complication at surfaces (as well as in noncu-
bic crystals) is that the full macroscopic dielectric tensor
is needed to describe optical properties and not only its
longitudinal component, as in cubic crystals. The compu-
tational effort is increased also by the lack of translational
symmetry perpendicular to the surface. The main result
of this paper is an expression of the macroscopic dielectric
tensor in terms of the two-particle Green’s function. The
local representation, which is the natural way of dealing
with surfaces, makes the calculation feasible.

The plan of this paper is as follows. In Sec. II we con-
sider the induced current and charge generated by an elec-
tronic system in the presence of an external disturbance.
We treat systems of arbitrary symmetry in the local-
orbital representation. Though the results of this section
are not completely new, we treat the subject in detail for
the sake of completeness.

In Sec. III we define the macroscopic dielectric tensor
of an infinite crystal of arbitrary symmetry. Two
equivalent definitions are possible, the first one from the
microscopic dielectric tensor, as done in Refs. 12 and 15,
and the second one directly from the theory of the linear
response to the external field, similar to the treatment of
excitons by Cho and co-workers.**6 Adopting the latter,
we bypass two difficult steps, namely the definition of the
microscopic dielectric tensor when transverse fields are
present, and the elimination of microscopic fields from
Maxwell’s equations.'?

In Sec. IV we show how the macroscopic dielectric ten-
sor of a noncubic infinite crystal can be computed. Ex-
change is accounted for within the many-body perturba-
tion technique.” Roughly the same computational effort
as in cubic crystals is requested.

In Sec. V we extend this formulation to the case of sur-
faces, namely to semi-infinite crystals. The macroscopic
dielectric tensor is defined and its expression in terms of
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the local-orbital representation of the two-particle Green’s
functions is given, which allows realistic calculations of
surface optical properties. A common feature of infinite
and semi-infinite crystals is that the macroscopic dielec-
tric tensor is not affected by the long-range part of the
Coulomb e-¢ interaction, in agreement with the results of
Ambegaokar and Kohn (AK) (Ref. 44) for cubic crystals.
Some properties of this tensor, which are important to
compute optical properties, are discussed in Sec. VI. A
discussion of the present approach, with special emphasis
on the approximations involved, is given in Sec. VIL.

In a planned subsequent paper we will show that the op-
tical properties of surfaces (reflectance, absorption,
transmission, and ellipsometry) are given by a few quanti-
ties?> that are functionals of the macroscopic dielectric
tensor. These quantities (but not the latter) can be com-
puted from the longitudinal dielectric response, leading to
a simplification relevant for computational purposes. A
simple model will be carried out, showing the feasibility
and relevance of these calculations.

II. RESPONSE TO AN EXTERNAL FIELD
IN THE LOCAL REPRESENTATION

In this section we recall the linear response of electrons
in a crystal to an external field in the local representation.
Even though we do not derive completely new results, we
prefer to discuss the subject in some detail, since we do
not know any extensive treatment of the general case,
where both transverse and longitudinal fields are present.

Let us consider a system of electrons in a crystal, in-
teracting via the Coulomb potential, perturbed by an
external electromagnetic field. The induced current can
be computed, using the linear-response theory,*’ in terms
of the current-current response function and of the per-
turbing field E2. This is the external field E ** plus the in-

duced transverse field E ¥
EP=E“*+EL=E—E}, (1)

where E is the total (microscopic) field and E'L the in-
duced longitudinal field. The induced transverse field that
originates from retardation is not accounted for by the
zero-order Hamiltonian, where only the unretarded
Coulomb interaction between electrons is retained. There-
fore, it must be considered as perturbation, in addition to
the external field.

On the other hand, in Ref. 47 the perturbing field is
taken as coincident with the external one. This means
that the full retarded interaction between electrons is in-
cluded into the zeroth-order Hamiltonian. In this case the
excited states of the system already comprehend the in-
teraction with radiation, being just the normal modes dis-
cussed in Sec. III (they are called “real excitons” in the
language of Ref. 57). If the definition (1) is used instead,
the excited states of the electronic system have the usual
meaning, i.e., they are generated by the unretarded
Coulomb interaction between electrons (they are called
“Coulomb excitons” in the language of Ref. 57), and the
normal modes must be investigated by means of
Mazxwell’s equations, as in Sec. III. The difference be-
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tween the two definitions is usually unimportant in cubic
crystals, where, because of symmetry, the longitudinal
dielectric function (which is calculated assuming that only
longitudinal fields are present) is sufficient to describe the
propagation of long-wavelength transverse waves.!® How-
ever, it goes without saying that, when transverse fields
must be explicitly considered, the approach which in-
cludes retardation into the zeroth-order Hamiltonian is
mainly formal, since practical calculations become exceed-
ingly difficult.
The polarization is defined as

Bro= [ Tinear, (2)

where ?i(?,t) is the induced current. Its time Fourier
transform is given by*’
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where &(T,7",0) is the quasipolarizability tensor defined
in Ref. 47, related by the linear-response theory to the
current-current (tensor) response function X Jul B( T, T o)

2
gl T, T,0)=[ X, (T T0) — S Bogp(DI8(F—T)] /0,
)

where p(T) is the ground-state electron density.
For o >0, the current-current response function is the
Fourier transform of the time-ordered response function:*®

X T 0= 0(1)(0] jo(T,1)jg(E,0) | 0)
+O(—1){0| jg(T",0)jo(F,0)[0) . (5)

The relation to the two-particle Green’s function

B(fo)= [ dr&T e ENTe), () S(Fy,t13Fpt2;Fayt3; Tt is given by
|
)?jajﬂ(f',?',t)=—(e2/4m2) lim (3rq—0rs )(0rg—2arg)S(1,0%;1",0;T,¢;Tt 1), (6)
Ty T
?1—4?'

where 0% =7, and ¢ * =t 47, 1) being a vanishing positive time.
We use for the Green’s function the same notation as Henke and Sham® so that we can use their results from now on.
We perform the time Fourier transform of Eq. (6) and express the Green’s function on the basis of localized orbitals

@r(T), as in Ref. 5, where L stands for the orbital v at the site R#

With the use of Eq. (6) we find
2

Fv3 - = e -
X' i (I‘,I‘ ,a))=_—£— 2 JBL‘LII(r )SLIL’IL2L' (a))J

Ja]ﬂ m 2

LyLYLyL)
where

I, ()=t ¢2(?')m-—¢,(r

BLIL; 2 |%8 ary  H ory

and §
LyLiL,L}

aLjL,

3L ()

(m, (7)

(w) is the two-particle Green’s function matrix.’

The insertion of (7) into (4) leads to an expression for the quasipolarizability in terms of the basis functions and of

SL,L'ILZL'Z(CO)'

o 1 e?
-~ ’ —_— —_—
Aop(k, k', 0)= omit | m? 2 ,JﬂLlLll
Ly Ly,LyLy

where J | L) LZ(E) and p(K) are the Fourier transforms of JaLi

(=k§ 1L1LoLy

Finally, we perform the space Fourier transform, and get

2

(@0 1y, (K)=Bag—p(K—K") |, ©)

L (T) and p(T'), respectively.

Equation (9) is completely general, valid for infinite crystals as well as for systems without any symmetry. In Sec. III
we will specialize it to the case of infinite crystals and in Sec. V to the case of semi-infinite crystals.

Before proceeding, however, we must find similar expressions for the longitudinal-longitudinal part of &(k,k '),

and its left-hand longitudinal contraction,

- —

(10)

(11)
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(12)

which also enter the definition of the macroscopic dielectric tensor of crystals with lower-than-cubic symmetry.
In the following we indicate by VZ(k) the longitudinal (with respect to k) component of a vector V(k), and by V T(k)

its transverse projection.

If the longitudinal contractions of & are computed using Egs. (10)—(12) in (9), the resulting expressions may be simpli-
fied using the longitudinal sum rule.*’ Alternatively, as we do in the Appendix, we can assume ab initio, in view of the
gauge invariance, that only a scalar potential describes the electric field, when we are interested in the response to a long-

~L,

itudinal field (@ — and @), or we can relate the longitudinal polarization to the induced charge density, when & is
of interest. This procedure, described in detail in Appendix A, gives the simplified expressions of the longitudinal con-

tractions quoted below:

- 1 e - — -
~L,— ’ — —k'’
@~k k",0)= ) mak 2 , JLILII( k )SLIL;LZLQ(“’)ALQLZ(H ) (13)
Ly,Ly,LyL,
&K R )= — & S 4,,.(-k)S (@)7¥,,, (K) (14)
T )3 mok : ,TLyLy NI NS A IR
Ly,LY,Ly L)
- 1 e? — -
~LL ’ —_ < _ ’
a - (k,k',o0)= ) 2 ,ALILII( k’)S 1L'1L2L'z(w)AL§Lz(k) , (15)
Ly,LY,L,Lh
where
(16)

Ay (K)= [ dr g}, (Flexp(—iK- P, () .

III. MACROSCOPIC DIELECTRIC TENSOR
OF AN INFINITE CRYSTAL

The optical properties of a cubic crystal are described
by the macroscopic dielectric constant, which embodies
local-field effects.”? This is usually computed starting
from the longitudinal microscopic polarizability,>*
describing the response of the system to a longitudinal
field. The applicability of this procedure in the case of
optical properties, which involve transverse fields, is
founded on the equality of the longitudinal and transverse
components of the dielectric tensor'®* for vanishing light
wave vector, caused by the cubic symmetry.

In noncubic crystals, all the components of the micro-
scopic dielectric tensor must be considered. Johnson!® ex-
tended the theory of local-field effects to such crystals,
but his formulation implies repeated inversions of very
large matrices, so that it is not suitable for practical use.
A somehow simpler definition of the macroscopic dielec-
tric tensor, which is appropriate also to noncubic crystals,
has been given by Pick.!> The same formula has been de-
rived by us in a different way, within the RPA approxi-
mation (although this is not really needed) and has been
shown to be suitable for practical calculations in the local
representation.?

In this section we give an even simpler formulation of
the macroscopic dielectric tensor, which is suitable for the
extension to surfaces. Most of the complexity of the prob-
lem comes from the definition of the microscopic dielec-
tric tensor when dealing with general fields,!? i.e., not
completely longitudinal. On the other hand, the quasipo-
larizability, that is the crystal response to the external
field,* can be easily defined in terms of response func-
tions. From it we directly derive the macroscopic dielec-

f
tric tensor, bypassing two difficult steps, namely the defi-
nition of the microscopic dielectric tensor and the elimina-
tion of microscopic fields.!> Our method is similar to that
used by Cho and co-workers,*** to describe in a simple
way mixed longitudinal-transverse polaritons. The micro-
scopic calculation based on the local representation will be
outlined in Sec. IV. In Sec. V we apply this same method
to the case of surfaces. R

In the following we write _I;(ﬁ’)a for P(G+G),
@) g4, for [2mP/V]ET+G, §+G"), and analo-
gously for the other quantities. The factor (277)%/V, V be-
ing the crystal volume, originates from the transformation
of the integral over K’ [in the space Fourier transform of
Eq. (3)] into the sum over G, allowed by the translational
symmetry. Here q is limited to the first Brillouin zone

and G and G’ are reciprocal-lattice vectors.
Maxwell’s equations, in the absence of external trans-

verse currents, read as

[ET(@)].=—2——[DT§)]=, (17)
¢ 2|g+G|? ¢
[DL(6)1—5=[E“’L(6)13 , (18)

where []3(21’)]3 is the electric displacement. Equation

(17) implies that the microscopic (Gs£0) components of
the transverse field E7 are negligible, since w?/c? << G2
Therefore, assuming that the external field is of long
wavelength, the perturbing field E?is such, too, and Eq.
(3) becomes
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B =[&D)]
From Eq. (18) we get

[EH(@)] 5 =— 4 PHD)] 4
L,—»(—(i)]_d

’

= —4nla s EX@];. 0

J

-1
11— 4173— (@t _’(q)]~»

[P(q)]»-—[':‘ 6)]5» T

’

Therefore, the macroscopic dielectric tensor, relating
[D(?]')]B» to [E(q)], is given by

-1
4”‘:“[5“”(3’]6 6] :

>

(@) =T+4r[E@]5 5 [i—
(22)

Before discussing this equation in more detail, let us
briefly recall that the knowledge of €;,(q) determines the
normal modes of the crystal. These are obtained from
Egs. (17) and (18) for G =0, in the absence of the external
field. Their dispersion is given by the zeros of the deter-
minant

=0, (23)

2
%2M<a>—qfi+aa

i.e., by Fresnel’s equations.’!

Equation (22) can be put in a more explicit form invert-
ing the 3 X 3 matrix in the right-hand side. It results in

-1
= QrzL—(z
A= Il 41rq [@ (q)]ﬁ',ﬁ'

0.0 (24)
)
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By using this equation for G=0, and the first of defini-
tions (1), we get a relation between the macroscopic com-
ponents ( G=0) of the total and perturbing fields, that we
solve with respect to [E’(EI)]K and substitute into (19) to

find the macroscopic polarization:

TE@)]y - 1)

|
which yields

?M(ﬁ)=1+47r3(a)]g’g

[5*"1‘(?1')]6-’3[&'1"_'(?1’)]5» =

L ©5)
1—4m[@ ™ (@]

+(4m)?
,0

The longitudinal-longitudinal component of €y, assumes a
simple form, depending only upon the longitudinal quasi-
polarizability &£~

e (@)={1—4nl@a™@]5 5} (26)

>

This very result is sufficient to describe the dielectric
response in cubic crystals,*” where a longitudinal external
field with §—O0 induces only longitudinal fields.! In
noncubic crystals transverse fields are generally induced,
too, but the relation (26) between the external field E®*L
and the longitudinal component of the macroscopic field
[EX(q) )15 is preserved.

The normal mode equation (23) can be recast in a more
transparent form, using (24) and (25). By factorizing 4in
(23), and choosing the z direction parallel to q for the sake
of simplicity, we get the dispersion relation

—‘1—+4ﬂ[axx<q)]i 4r{Ey (D5 5
e (d) ¢’g? =0, @3)
W[&yx(a)]s,a 1— o2 (q)]'()”a’

where €57(q) is the determinant of the matrix A. If the
first factor is zero, we get purely longitudinal modes, as
can be easily seen from Egs. (17) and (18), consxdermg that
also [ey(g,)];; and [€y(q,)]; vanish if €if(g,) vanishes
[see Eq. (25)]. If the second factor, namely the 2X2
determinant is zero, we get mixed longitudinal-transverse
modes. It is worthwhile to note, however, that the disper-
sion relation involves only transverse components of
&(G)g. These modes could be thought of as “transverse”
modes, which “must” carry also a longitudinal electric

field due to the nonvanishing off-diagonal components of
(G0

The LL component of the dielectric tensor describes
also the energy loss of charged particles. If we assume
that the potential generated by a classical particle of velo-
city V and charge e is sufficiently smooth so that it does
not have important microscopic components, we can solve
Egs. (17) and (18) in terms of E®. However, since g is
much larger than w/c =7V /c, the transverse field can be
neglected, and the perturbing field coincides with the
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external field. We can compute the energy loss using Eq.
(101) of Ref. 47, in the case of scalar external field, and

the final result is

2 [ et i @l )
Comparing this result with Eq. (111) of Ref. 47 and us-
ing (26), we see that the loss function, given by
Im[ —1/€)(@)] in the cubic case [ey(w) is the macro-
scopic dielectric constant], must be replaced by
Im[ —1/€;f(q,»)] in noncubic crystals. Let us em-
phasize that this result is not as obvious as it might seem.
In fact, it is not obvious that 1/€,,(w) must be replaced by
1/€5F(4,w) and not, for instance, by [€ 3;'(§,0)]*L.

(27)

IV. MICROSCOPIC CALCULATION
OF THE MACROSCOPIC DIELECTRIC TENSOR
OF AN INFINITE CRYSTAL

In the preceding section we have derived an expression,
Eq. (25), for the macroscopic dielectric tensor in terms of
the quasipolarizability [‘&‘(Ei)]ﬁ» 5+ The purpose of this
section is to insert an explicit expression of the latter and
to derive henceforth an explicit expression for the macro-
scopic polarizability.

The quasipolarizability [&( G)]; 5 is known from the
linear-response theory, in terms of the Green’s-function

matrix S, L1L,L} ) [see Eq. (9)]. In an infinite crystal,

according to Ref 5, we express such a matnx in terms of
the new variables, Rl, R,——RI, R2, and R2—R2, and
Fourier transform with respect to R, and R2, yielding
wave-vector dependences §; and {,. By lattice transla-
tional invariance q;=q,. Therefore we have

12 xq(Rl—Rz) (28)

S

LLiL,L, (@=N S, (d,0),

q
where A, is short for R} —R,, v, v, and N, is the num-
ber of cells contained in the crystal. The insertion of (28)
into (9) gives, for §— 0,

e2

m2Qw?

X z Slllz(
Aphy

2
= e’n
aap(q)oo=-5aﬁ*——mw2 -

—q,0pfps, , 29)

where n is the average electron density, Q the cell volumez
A (A;) stands for-the ordered couple of orbitals uiR jp,0

]

=

V;\‘),Z(a)= 2 e_' E
K

m

-

Vilh(a): 2 e
h:

m

i [ar [ dirgr (7-Ri—R,),,(F-

TEe [ @ [ v (7-Ri-R,,
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[u5(R 51,01, and P, is the momentum matrix element be-

tween localized orbitals, which is proportional to the g—0

limit of J . (q). The local orbitals here considered
) R 5,20

are the Wanmer functions of filled and empty bands.
Each couple contains one filled and one empty orbital.
This choice avoids considering couples of repeated orbitals
(v4=v,) which would make more complicated the calcula-
tion of the macroscopic dielectric tensor, as will be clear
in the following.

Although the ¢—0 limit has been taken in calculating
the matrix element p3, nevertheless @ng(q)g is still g

dependent, via the q dependence of S, Ay —{q,w), whose

q G—0 limit depends on the q direction with respect to the
relevant dipoles. In fact, as it will be shown later, it con-
tains the nonanalytic long-range part of the Coulomb po-
tential (the nonanalytic electron-hole exchange, in the ex-
citonic language) which leads, for instance, to the
longitudinal-transverse exciton splitting.>

An analogous treatment of the & contractions entering
Eq. (25) yields

~L (= I e =% - L

’ o= S, (—4, )
@™~ Dlg =35 Zom A%zpll i (—Qooluy, , (30)
~ <L i e2 Lx — —
[@ (q)]ﬁ',ﬁ':_?)—ﬁwm San(—d,@)Pa,

31
[@ @y 5=—5 2 P Sip(—Gekt,,  (32)
1 2

where 11 A, is the dipole matrix element between localized

orbitals, coming from the ?1’—»6 limit of the quantity

A”1 R —»(q) defined in Eq. (16).

At thls point let us consider in more detail the nonana-
lytic behavior of S 1,(—d,). It can be found by solving

the Bethe-Salpeter equation:’

S=N[1—(V—3V5N]—!, (33)
where matrix indices are understood in all quantities.
NY Az(q ) is the RPA polarizability matrix, not includ-

mg local-field and excitonic effects, while V(qg) and

3 Vs(q) are the Coulomb and exchange parts of the e-e
1nteract10n, given, in the framework of the many-body
perturbation technique,’ by

R, )V(T— ?’)¢;2(f")¢”é(f"— (34)

)y (F'— Ry W, (F,E)5, ()8, (F—R3) . (35)
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V(¥—1') is the Coulomb potential and Vg(T,T’) is the
statically screened e-e exchange interaction (the electron-
hole Coulomb interaction, in the excitonic language),
which has been discussed in the most general form by
Sham and Rice.*’

The sum in (35) is restricted to small l_i,,, values because
of the vanishing (as R, mcreases) overlap between the lo-
calized orbitals. Therefore §- Rm is nearly zero at small q,
and the exchange matrix has a well-determined q——»O lim-
it. This is not the case of the Coulomb matrix V; here
large ﬁm values are involved, where a dipolar expansion
of the Coulomb interaction can be applied, transforming
the sum in (34) into a sum of dipole-dipole interactions
(plus a term arising from small R ’s), which yields a re-
sult depending on the direction of g, as it tends to zero. 52
In the excitonic language, this term is called the nonana-
lytic part of the electron-hole exchange interaction.>*

In order to isolate such a nonanalytic part, which will
be shown not to affect the macroscopic dielectric tensor, it
is better to transform Eq. (34), using Fourier transforms
and the translational symmetry, to the following form:>
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As El_',terigis to zero, we can neglect it with respect to Gin
the G40 terms, which therefore result to be q indepen-
dent, and expand the G=0 form factors 4, (q) and

AKI(?]’) to the first order in §. The G=0 term is the non-
analytic part of ¥,

4rre?

ko
————qu (B, D, D), (37)

Vi (@)=

which depends on the direction of § with respect to the
dipoles '3 and [, The sum of the other (G£0) terms
is called the analytic part of the Coulomb matrix, V°.

We assume now to have already solved the Bethe-
Salpeter equation (33), where the nonanalytic part of V is
neglected, and call S the resulting matrix. Then S satis-
fies the following equation:

S =8%1—ymaga)—-1 (38)

The factorized form (37) of V™ allows an easy solution of

2
Vi, (@)= ZA;,‘ §+G) 4,,(G+G) . (36)
|4+G|%Q (38), yielding
|
S S5 (@0t i Sha,(§0)
dmre? Ml

Sklxz(a’,w)=silx2(ﬁ’,w) Q 47Te
1—

3

(39)

2 #A3S A, (dois

The use of this result in Eqgs. (29) and (30)—(32) and their insertion into (25) yield, after tedious but simple algebra, the
following result for the macroscopic dielectric tensor, where the terms nonanalytic in g cancel each other:

4mne’ | 4w

mwz

€rmap(q,0)=0qp |1—

This equation is the main result of this section. A few
remarks will elucidate its meaning. First, the macroscopic
dielectric tensor results to be an analytic function of ¢, as
already shown by Pick.!? Equation (40) is a generalization
of AK’s result* to noncubic crystals. These authors
found that in cubic crystals the macroscopic dielectric
constant can be computed cutting off the long-range part
of the Coulomb potential. We find that the same is true
in noncubic crystals for the macroscopic dielectric tensor.
A similar result has been recently obtained by Ehara and
Cho in the case of an excitonic system.

Finally, we emphasize that Eq. (40) is a very simple way
of describing many-body effects in noncubic crystals. It is
much simpler, not only than Johnson’s formulation,'® but
also than Pick’s!? definition of the macroscopic dielectric
tensor, which has been shown to be suitable for practical
calculations on a localized basis.”> This tensor can be

et B
-0 ﬁ2w2 5 lzzpﬁ i (—d,0)py, - (40)

r

computed in noncubic crystals via Eq. (40), basically with
the same computational effort that is requested in cubic
crystals, namely that needed to solve the Bethe-Salpeter
equation for S°.

V. MACROSCOPIC DIELECTRIC TENSOR
OF A SEMI-INFINITE CRYSTAL

The definition of the macroscopic dielectric tensor for a
semi-infinite crystal has been given in Refs. 25 and 56,
starting from the microscopic dielectric tensor. We repeat
it here in more detail for the sake of completeness. We
consider a crystal occupying the half-space z >0 and
showing two- dlmensmnal (2D) periodicity in the xy direc-
tions. Let q (—0) be a vector in the 2D Brillouin zone

and the G” s be the reciprocal vectors.
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We define the macroscopic field as having Fourier com-  The other Fourier components are called microscopic

ponents>® E(GI jokz) = limited to §”=6 and |k, | small- fields and are, to a good approximation, longitudinal, as
can be seen from Eq. (17), recalling that o /ck, or w/cG),

er than a cutoff wave vector k., such that are small numbers.
@ The microscopic fields are eliminated using Eq. (18),
PERN ke <G . 1) tpat in the surface case, reads
|
kd —_
f_kcdk, el —( d)pkzkz ) ”,o’E( qpokz Jo+ ; f(m)dkz [e”‘(q”,k,,k, Ng 3 il[EL( q)pk: )5 ;'=0 (42)

Sy

for G0, or é, =0 and |k, | > k.. The microscopic components of the external fields are assumed to be negligible.
The subscript (m) below the integral means that k; is limited to the microscopic fields, namely that |k; | >k, if
G| = 0. Here [€(q)),kz,k; ]-G. 3 is the microscopic dielectric tensor, defined in Ref. 12. This approach is particularly

useful in the RPA, where the microscopic dielectric tensor can be easily computed from one-electron wave functions.
The microscopic fields are found from Eq. (42) inverting

[?LL(aH,kz!kz, ]_’ a l’l

ie.,
Li— ’
[eL (q”’kz’kz )]‘G’ "G’ il
restricted to microscopic fields. Substituting into Egs. (17) and (18) for the macroscopic components (G”—O and
| k, | <k.) yields the propagation equation for the macroscopic field EM(q”,k ):

—(21’”+Ez)x(6,|+E,)XEM(6|1,kZ)=i:?f_;cdkz"é’M(?i”,k,,k,’ ) Epe()pks ) — ’”‘" [T qpk)]; 5 (43)

where E, means k, times the versor of the z axis.
The first term on the right-hand side of Eq. (43) is just o)z/cz[D(?j”,k,)]B» which is related to the macroscopic field

EM(6||,k; ) via the macroscopic dielectric tensor. This is given by (for |k, | and |k, | <k)

?M(an’kz:kz') [‘»(Q||,kz:k )]_’_’ 2 (m )dk 2 _f( )dk [6‘—’L(q||7kz:k )]'6’ ‘(‘;’”[ELL(qH’ z)k;)] ” —»i'
g G

X[ Gk 5.k )] 5 . (44)

The external current appearing in (43) does not have any role in the definition of €. It has been kept, for the sake of
generality, to be able to describe the energy loss of charged particles.

The solution of (43) yields the macroscopic field, that is enough to determine optical properties, which are given by
the behavior of the electric field far away from the surface. Even surface absorption can be computed from the energy
balance, knowing reflectivity and transmission. However, other properties, such as the photoemission cross section, im-
ply the explicit determination of the microscopic fields, which in principle can be achieved from (42).

The main shortcoming of this approach is that the macroscopic dielectric tensor has a complicated definition, in terms
of the microscopic one, which in turn is not simple, except as in the RPA. Although it is possible to carry out explicit
calculations of the optical properties using this definition,?> however, it is difficult to control the spatial behavior of €,
near the surface. A crucial assumption of all the methods of solution of light-propagation equations®>34~3 is that the
surface perturbation on €, vanishes after a distance much smaller than the light wave vector. This is difficult to check
using the expression (44).

In order to get a clearer expression of €y, it is possible to use an approach similar to that of Sec. ITI, based on the
linear response to the external field. Repeating the arguments of Sec. III, with minor changes appropriate to the semi-

infinite crystal, we get

’

\=4 kc — " </ -
(ks k) =8k, —k; T+ [ A TEG)p ke k)] ARG KK, K, | K | <k, 45)

The tensor operaor A is the solution of the equation
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"

_quLz__[awqu,k;,k g 5 |=18(k,—k;) (46)

k > (<>
[ Ak A@ Kok, (180K, — kg ) — 4
¢ d;+k; ’

i.e., is the inverse of the tensor integral operator in the large parentheses.
If we multiply by [ &( (d),k;" K, ]_§ 5 and integrate over k, from —k, to k., we get an integral equation for the mac-

roscopic polarlzablhty a M( q H,kz,k ) If we take the right-hand longitudinal contraction of this equation, it reduces to a
vector equatlon for ayy (q ks ks ):

I bt @ ke J0p (o = (8 kD @)

>

where the integral operator O, is given by
0,(q,k;,k; )=8(k, —k; ) —dar[ @ LE( (d)),kz5k; ]_>_>. (48)
Let us assume that we are able to invert such operator Then we can solve (47) and get the macroscopic polarizability
a4k, kg ) =8 k" k)] ~»+4‘rrf dk, f k1@ Gk kg 5
X 05 @k k&S~ @k KD 5 (49)

The inversion of the operator O,(q,k;,k; ) is the main step of this section. It can be achieved using the local expan-
sions of the response functions. Henceforth, before solving Eq. (49), we proceed to express the quasipolarizability and its
longitudinal contractions in the localized orbital basis, in a way appropriate to a semi-infinite crystal.

In this case we write F&'(q“,kz,k )]_> 3 for [(27)? /4 ]“(qn—i—G”,kz, q”+G”, k,), where A is the surface area.

Then we exploit the 2D periodicity and express S, LiL,L}

I—izn, ﬁ'zn—ﬁz“, R,,, and R;, and Fourier transform with respect to R,” and R2||, yielding wave-vector dependences qj|
and G By surface translational invariance, §j|=qy. Therefore we have

- iRy =Ky o
Sy pip,ny @=N Ze 1T TUT RS (G)p0) (50)
q

, (@) in terms of the new variables R1|1a R1|,—R1”, Ry, R},

where N; is the number of unit cells in the surface plane, and s, is short for ﬁ'lu —ﬁlu, v, at Ry,, and v at RY,.
Insertion of Eq. (50) into (9) gives for small q)}, k,, and k;,
exp[i(k; Ry, —k,R»,)1Ss

o2
[@ap(d)) ko5 )] =(270?)~! aﬁpo(k —ky)— 5 ﬁ]pw)P;P;lB

0, 2ﬁ2 AO ol
(51)

where 4 is the unit-cell area and py(k, —k, ) is the z Fourier transform of the ground-state electronic density p(7), aver-
aged on the surface plane.
Analogously we have, using Egs. (13)—(15):

i

[aL,»(-q“,kz,kz’ )]3’—()» omdy mhw q||+k )Ss,5,(— )@ ]exp[z (k;Ri;—k,R»,)] , (52)
S S2
. 2 - . ,
[@ 5T knnk)]g 5 =— 21: A e 3 B, Ssps,( — T p@lusy (A +k,dexpli (k; Ri;—k,R2,)] , (53)
51,52
[aLL(aH’kzakz' )]5’ e 21rA 2 ﬂsz(q||+k )Sslsz( a]]’w)ﬂzll‘(aﬂ‘*Ez)exp[i(kz:Rlz_szzz)] » (54)
' 51552

where yfz(’q’” +K.) is the longitudinal component of I7s 5, With respect to q+ K.

The matrix S satisfies the Bethe-Salpeter equation, in analogy with the infinite-crystal case equation (33). The only
difference is that the index s, (or s,) stands for R, (or Ry,), in addition to other labels, rather than for R}, —R,, as A,
in the bulk case. The matrix to be inverted at the surface has a larger size than in bulk, in strict similarity with band cal-
culations. The Coulomb e-e interaction matrix is given by (34). An alternative form, analogous to (36), in terms of the
Fourier transform of the Coulomb potential, can be simply worked out:



» dk, 4mre?
—= 2w (Q||+G”) L

V,(@N=45'3 [

G
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A (@) 4Gk, )45 (G +Gyk,) - (55)

We want to separate at this pomt the long-range (small k) Coulomb mteractlon, whlch gives rise to the nonanalytic

behavior of S(q,
integral is limited to |k,

?jn independent, as 'q“—»o.

as the G”-—O term of (55), where the k,

< k The remaining part of V¥ is called the analytic Coulomb matrix ¥* which results to be

dk, 4me?
— —~1 —
Vs @0=45" S 1, 150, 2 gy ez A Ak (dipks)
® dk 4me?
'3 .5

G”(aé())

. dk .
Ve, G =dmeds [ S explik (R~ Ro 3@ + Kok 4+ Ko

T |§+G) | 2+k2 A

(q”+G”, )A;'I(q’”+(—§“,k,) , (56)

(57)

In order to derive (57) we have used the dipole approximation in computing A' (d)),k;) and 4;,(d)),k; ), which is justified

since q ”—>0 and |k, | <k, <<1/d, where d is a typical spacing of layers in the z direction. The orthogonality of the or-
bitals v; and v is here important and is achieved by using conduction- and valence-band Wannier functions.
We define, also in the surface case, the matrix Sy s, (d)),@), which satisfies the Bethe-Salpeter equation where the non-

analytic Coulomb interaction is omitted. The relation between S and S* is again shown in Eq. (38), which can be formal-

ly solved with respect to S°.
Now we go back to Eq. (48) and invert the operator O,,

Op(aﬂ’kz,k; )za(kz—'kz’ )+222A0

S182

We try a solution of the form

0, (d )k, k) =8k, —k;)—2e*45" 3 ,ust(q’”—{—E WNy s, pt, *(q+k )dexpli (k,;Ri;—k; R,)] ,

5158y
getting a matrix equation for N:
S(-—a”,w)=N+NVM(—aH)S(

To derive this equation, we have use the property

~Ii”,w) .

sz.v (CIH) slsz( a[{)

which can be written, using (54), as

S (@) + K0S s, (— Gl (G + K Dexpli (k; Ry, —k,Ro.)] - (58)

(59)

(60)

(61)

which can be easily demonstrated from the definition (57), if real orbitals are used.
We solve Eq. (60) with respect to N, and compare with S obtained by inverting (38), yielding, finally,

=Sa( ——?]'”,a)) .

(62)

We are now able to find the macroscopic polarizability from (49), using (51)—(53) and the inverse operator 01, given
by (59) and (62). After long but simple algebra, the final result for the macroscopic dielectric tensor is

Emag Tpkoks ) =845 |8k, —k; ) — 2p0(k —k)(2m) !

This is the main result of this paper. Again we find that
the nonanalytic part of the Coulomb interaction does not
affect the macroscoplc dielectric tensor, according to
AK’s results* for cubic crystals and to the formulation of
Ehara and Cho* for crystals of general symmetry in the
excitonic approximation.

Insertion of (63) into the propagation equation of the
macroscopic field, Eq. (43), enables one to describe the
dielectric properties of the semi-infinite crystal. The ap-
proximations needed to derive such results are (i) the
long-wavelength character of the radiation involved,

23 2
_Z(ﬁa)m) 2 psZ 5152

—> ik !
'k RZzSa ( w)e‘szlng' . (63)

51,5,

[

namely w/c <<G, and (ii) the macroscopic character of
the external current and field, i.e., with Fourier com-
ponents only for G”=O and |k, | <k,. The solution of
Eq. (43) yields the macroscopic field, which is enough to
determine optical reflectivity and absorption. However,
this is not yet the complete solution, which should also in-
volve microscopic field components. For instance, we
cannot compute from (43) the photoemission yield from
surface states, which depends on the actual (microscopic)
profile of the electromagnetic field at the surface. The
microscopic fields, which are approximately longitudinal,
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can be computed from the surface analog of Eq. (20).
In cases where only longitudinal fields are present, Eq.
(43) becomes

kc
S5 Ak € (G e ER (@) k2 ) =[E* K, k)15

(64)

where €5, obtained from the lon%itudinal component of
given by (59) and (62).

the vector equation (47), is just O,
Therefore the inversion of (64) gives

bud kc
Ex(q),k,)=[ _y 9k (8(k,—k;)
_47T[a LL(aH’kz’kz' )]3,8}
X[E*Hd)k; ) » (65)

which completely describes the macroscopic field.
Static screening and the energy loss of slow particles
can be studied using this result.

VI. SOME PROPERTIES OF THE MACROSCOPIC
DIELECTRIC TENSOR OF SEMI-INFINITE CRYSTALS

The optical properties of crystal surfaces are found
solving the light-propagation equations, i.e., Eq. (43), for
the macroscopic electric field. Such equations are similar
to those studied by a number of authors®’~3° in the case
of jellium or crystal®® surfaces, who did not consider
local-field effects. The difference is that the macroscopic
field and the macroscopic dielectric tensor are here con-
cerned, rather than the microscopic ones. We would like
to use the method of solution, first formulated by Bagchi
and Rajagopal,® which is founded on the short-range
character of the surface perturbation. More precisely, it is
assumed in Refs. 32—39 that the dielectric tensor is dif-
ferent from its bulk value only in a depth d near the sur-
face, much smaller than the light wavelength in the crys-
tal.

We are going to show that this is indeed the case of the
macroscopic dielectric tensor €,(q),z,z’) here defined.
We will show in Appendix B that, as soon as z is larger
than a few times k"', the macroscopic electric displace-
ment has the same relation with the macroscopic electric
field as in the infinite crystal:

Dy(d)pz) — Eml@)Ep(d)p2) (66)

z >>kc_1

where €,(w) is the macroscopic dielectric tensor defined
in Sec. III for an infinite crystal in the g—0 limit. Since
k. is much bigger than w/c, the surface perturbation
depth ~k;! is much smaller than the light wavelength,
and the method of Ref. 35, which takes into account a
nondiagonal dielectric tensor at the surface, can be applied
to find the reflectivity.

The solution of light-propagation equation (43) in the
long-wavelength limit has been given in Ref. 35 by gen-
eralizing the method of Bagchi and Rajagopal®* to the
case where the dielectric tensor is nondiagonal, as general-
ly occurs at surfaces of real crystals. An important point
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of the calculation is the symmetry of the dielectric tensor
for the interchange of indices:

€.8(2,2' ) =€g,(2',2) , (67)

which is a consequence of time-reversal invariance for the
RPA microscopic dielectric tensor involved in Ref. 35.

Is this property valid also for the macroscopic dielectric
tensor defined in this paper? In the following we show
that the answer is yes.

The property (67) is verified by the quasipolarizability
tensor, since this a response function, just as the RPA mi-
croscopic dielectric tensor. Therefore, we have, using
Fourier transforms,

[Gap(@)pkark: )5 5 =[Tpal =) =Kz, k)]G 5 - (68)

The same is true for the operator O,(q),k;,k; ), from its
definition and (68), and also for 0, '(q,k;,k; ).

We can now use the definition of the macroscopic po-
larizability to show quite simply that it verifies the prop-
erty (68). The final result is

emap( Q22" ) =€ppa —Tq)p252) (69)

which is equivalent to (67) in the long-wavelength limit,
q,—0.

Therefore, all the mathematics of Ref. 35 can be ap-
plied also in the case of the macroscopic dielectric tensor
and the reflection coefficient is given by Egs. (14) and (17)
of Ref. 35. Also ellipsometry can be computed in this
way, and it is described by Egs. (8) and (9) of Ref. 25. A
more extended treatment of optical properties will be
given in a subsequent paper.

VII. CONCLUDING REMARKS

In Secs. III and IV we have given a definition and a
method of calculation of the macroscopic dielectric tensor
of noncubic crystals, which embodies local-field as well as
excitonic effects. It is a generalization of the formula of
Adler and Wiser"? for cubic crystals and it is much
simpler than any other formulation.!>!%?3 Realistic cal-
culations are not only possible within this formulation,
but they request roughly the same computational effort as
in the case of cubic crystals. The only approximation in-
volved is the longitudinal nature of microscopic fields,
namely that o/c <<G. This condition is very well ful-
filled in the optical and ultraviolet range, so that we re-
gard our theory as essentially exact.

In Sec. V we have developed the theory of the macro-
scopic dielectric tensor at crystal surfaces. A common
feature of infinite and semi-infinite crystals is that the
long-range part of the Coulomb interaction is not involved
in the macroscopic dielectric tensor. This is a generaliza-
tion of AK’s result* for cubic crystals, and of Ehara and
Cho’s work,*® for an excitonic sytsem in an infinite crys-
tal of arbitrary symmetry.

In the case of surfaces more approximations are in-
volved. Microscopic and macroscopic fields are discrim-
inated along z by the cutoff wave vector k., which must
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be chosen in the range w/c <<k, <<G. Although this
range is sufficiently large so that a safe choice of k, seems
to be possible, it is worthwhile to look in more detail at
this step. The lower limit, k, >>® /c, is determined by the
request that microscopic transverse fields vanish, accord-
ing to Eq. (17). However, a stricter request comes from
the long-wavelength approximation used to solve light-
propagation equations. The surface-perturbed region has
a depth of about 7/k,, as shown in Sec. VI. The validity
of the long-wavelength approximation requires>!

T L (N2 1, (70)
k. ¢
where e )is the bulk dielectric constant (we consider here

the case of cublc crystals). Taking #iwo~1 eV and ed'~10,
this leads to k! << 137 A.

The upper limit, k. << G, comes essentially from the di-
pole expansion used to calculate the form factor
A,(q),k;) in the nonanalytic long-range part of the
Coulomb interaction, Eq. (57). This expansion leads to
the cancellation of such an interaction in the macroscopic
dielectric tensor. Assuming that 1 A is a typical radius of
the overlap region between the empty and filled localized
orbitals involved in the form factors, the dipole appr0x1-
mation results to be valid for k.~ 's>1 A. Values of ko
in the range 10—15 A fulfill fairly well both require-
ments. More freedom is allowed if #w < 1 eV, so that our
formulation can be safely used up to optical frequenices.
At shorter wavelengths, the formulation of the macro-
scopic dielectric tensor is still valid, but a different
method of solution of light-propagation equations, not
founded on the long-wavelength approximation, should be
developed.

The near surface profile of the macroscopic dielectric
tensor, and therefore of the resulting macroscopic field is
obviously k. dependent. For instance, the surface pertur-
bation depth on the macroscopic dielectric tensor is 7/k,,
bigger than the intrinsic depth of perturbed charge densi-
ty, which is estimated to be a few angstroms. However,
the reflection coefficient does not depend on k., if this is
chosen in the appropriate range. This will be shown in de-
tail in a planned second paper of this series.
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APPENDIX A

Here we find the right-hand and left-hand longitudinal
contractions, as well as the longitudinal-longitudinal com-
ponent of the quasipolarizability tensor Z(k,k ', o).
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1. Left-hand longitudinal contraction

We understand the o dependence from now on. We
perform the Fourier transform of Eq. (3) and then take
the longitudinal component

PLK)= [d*k'al—(K,K")ERK").

The longitudinal polarization is related to the longitudinal
induced current by Eq. (2) and therefore to the induced
charge density via the continuity equation,

(A1)

kI LK) =wp™i(K) , (A2)
yielding the result
PL(K)=ip™(K)/k (A3)

The induced charge density is related to the perturbing
field, which we describe in the vector potential gauge,
through the linear-response theory. In this case (zero sca-
lar potential) the link is the density-current response func-

tion X,,; ( K, k)4

‘“d(k)-2fd3k’)(pjﬂ (K,K"EB(K") Jio . (A4)
Combining Egs. (A4) and (A3) and comparing them

with (A1), we obtain

—

aL'*(E’,E')=<mk)—1XPT(1'<’,k . (A5)

The density-current response function is related to the
two-particle Green’s function in a way analogous to Eq.
(6). The final result, analogous to Eq. (7), is

gl (K, k) =02m) 2% (mok)"!

X 2 LL’,(

Ly, LY,LyLY

(@)

)LLLL

xA4,,. (K), (A6)

LyL,

where

A, ()= [dr g, (Fle ¥ T, (7). (A7)

2. Right-hand longitudinal contraction

Let us assume now that the perturbing field is purely
longitudinal. In this case the polarization is given by

= [d*ka—Hk kK EPHK"),

and we can describe the perturbing field via a scalar po-
tential @?(k):

PK)= (A8)

EPLK ") =—ik'gP(K") . (A9)
The induced current is*’

Tind( 17y __ 37,0 ) )

TindK)=— [d%kx5 (K,K )Pk, (A10)

P
where X5 (K,K’) is the current-density response function.
Using (2) we obtain
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Pa(K)=—io~! [d*k'X; (KK g/ (K") . (Al1) PLK)= [ k'@ H(k,k NEPH(K") . (A14)
The comparison with (A8), using (A9), gives However, this is related to the in(!}lced charge density by
G HE K =(0k)" lx'j’p( EEY). (A12) ifi.or(yl’:kg), and the latter to @f(k’) via linear-response

By relating the current-density response function to the Pind(K)= — f d3k’pr( Kk’ )<pp(ﬁ') , (A15)

two-particle Green’s function, we obtain N
where X,,(k,k ') is the time and space Fourier transform

e L Ty ~3,2; n—1 . .
a—Hk, k") =02w)"e‘i(mwk’) of the density-density response function. The comparison

-, of (A14) and (A15), by using (A3) and (A9), gives
LypLysLyLy ELL(k,k')=(kk’)—lpr(k,k') . (A16)
x7T Ly LZ(E) . (A13) The final expression involving the two-particle Green’s

function is

~LLi1 10y -3,2 n—1
3. Longitudinal-longitudinal component &=k, k)= —(2m)""e(kk')

We assume again that the perturbing field is purely X ,z AL,L; (“’k’)SLlLZL;L;(“’)
longitudinal, related to the scalar potential @?(k) through LpLiLyL;
Eq. (A9). The longitudinal component of the polarization =
is given by XALéLz(k) . (A17)
APPENDIX B

Here we show that, as soon as z is larger than a few times k. !, the macroscopic dielectric tensor assumes its bulk
value. The proof proceeds as follows. We take the z and z’ Fourier transform of the macroscopic dielectric tensor,
which results to be

sin[k (z —z")]

mz —z'")

sin[k.(z —z"")] sin[k.(z"" —2")

mz—=z") m(z''—2z')

a 0 ’ 4 2 *® " "
€n(q)—0,2,2")=384p - mﬂzz f_wdz po(z")

sin[k.(z —R,,)] sin[k.(z'—R,)]
m(z —Ry,;) m(z'—Ry)

_ 4re?
P

A piplst, (4 )p0) (B1)
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where po(z) is the plane average of the unperturbed electron density. We look now at the behavior of the second and
third terms of (B1) as z and z' penetrate into the bulk. We consider the second term, first. The relevant range of integra-
tion is restricted between z,, —m/k, and zy +7/k,, where z,, is the minimum between z and z’, and zy, is the max-
imum. If z,, —(/k,) is larger than the typical depth of d of surface perturbation on the electron density, which is of
the order of a few angstroms, the electron density assumes its bulk form, given by a Fourier series of the reciprocal-

(bulk-) lattice vectors 6}, with coefficients p(éi). Because of the condition k, <<G, k, and k, are contained inside the first

Brillouin zone, so that only the G’s with G, =0 satisfy the 8-function condition k, =k, +G,. Then the second term of
(B1) results to be

4rrne? sin[k (z —z')] (B2)
m#e? wiz—z')

_6aﬂ

where n =pf:B ) is the average electron density.

Let us consider now the third term in (B1). As z and z’ are bigger than 7/k,, only index values s;, and 5, with R,
and R,, in the bulk are relevant to the sum. The localized orbitals involved and their momentum matrix elements are
bulklike, that is independent of their distance from the surface. Moreover, the matrix Ss,;, (—@),®) converges to its
bulk value, and depends on Ri, —R;, R5 —R,,;, and on Rj,—R,,. We split the index s, (s;) into A;=pu}, ﬁ’,—ﬁl
(Ay=pop3, R, —R,), and Ry, (R,,). We also perform the g, Fourier transform of the bulk matrix $98 as follows:

S50 Ry, (— d)p@) =N, Sexpli(R1;—R2.)g: 1S53 (— T g00) » (B3)
9

where N, is the number of layers in the z directions. The third term of (B1) becomes
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ig,(z—2")

(B4)

To derive this equation we have extended to the vacuum region, the R, and R,,-sum in (B1), since these terms are un-
relevant because of the rapidly vanishing factors sink.(z —R;,)/m(z —R;;) (i =1,2). a, is the z periodicity in the bulk,

such that Aqa, =, a multiple of the unit-cell volume.

At this point we neglect the q dependence of S‘;{if; (—4d,w) (for |q,| <k.), neglecting in this way the nonlocality of

the bulk dielectric function. This is known to be important only in special cases, as near strong excitonic or plasmonic
resonances, which we exclude from the beginning. We put together (B1), (B2), and (B4) and, comparing with (40), we ob-

tain

— sin[k,(z —z")
€map(d)—0,2,2") — ——[—c——-——]—eﬁ,),ﬁ(w) R

2>k m(z —2')

(B5)

where eﬁﬂﬁ(m) is the bulk macroscopic dielectric tensor found in Sec. IV. The nonlocality is fictitious, determined by
the cutoff k. ; we easily obtain for the macroscopic electric displacement Dy, (q;,2):

R ™ sin[k,(z —2')] -
DM(?]’”,Z) — I%’S‘f)(w)'f_ dz’L————]

23>k m(z —2')

Ep(d)2) =€} (0) Ep(d)2) (B6)

where the last equality comes from the very definition of EM(Z]’H,Z), namely from the fact that its k, Fourier transform
is zero for |k, | > k.. We have shown in this way the validity of Eq. (66), which means that the surface perturbation on
€y(q|,2,2') extends for a depth ~7/k.. Further discussion of this point and of the choice of k, are given in Sec. VIL
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