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for large lattice relaxation and for high-temperature anomalous diamagnetism
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Based on the structural properties of the zinc-blende lattice, a model Hamiltonian is proposed to
describe singly and doubly occupied impurity states with large lattice relaxation. One-electron im-

purity levels are proposed to be connected with the anomalous persistent free-particle excitations.
The impurity band of the bound pair states might show Bose condensation and "superconducting"
properties at high temperature. Combined with available band-structure data, the metastability and
other properties of this model are discussed.

I. INTRODUCTION II. DERIVATION OF THE MODEL HAMILTONIAN

After many unsuccessful experimental attempts' and
different proposed models on mostly low-dimensional,
organ1c Olatcr1als» I'cccnt magnetic IIleasurcmcnts 1n CuC1
(Ref. 3) and CdS (Ref. 4) showed a large diamagnetic
anomaly which could be reasonably explained if high-
temperature superconductivity were assumed. The exci-
tonic mechanism proposed for the explanation of these
phenomena by Abrikosov' requires a specific band struc-
ture whose existence cannot bc pI'oven by the contI'ad1ct-
ing experimental and theoretical data. 6 Another mecha-
nism has been proposed by Collins eI; aI. in which it is as-
sumed that between a triplet pair of electrons (resulting
from impurity levels) a condensation as in superfluid He
takes place. The attractive force in this model is provided
by the polarization of the electrons in the narrow valence
bands in these systems.

In a different type of experiments highly anomalous
properties of some deep levels have been recently observed
in many semiconducting materials, especially in III-V
compounds and niixed crystals of them. Perhaps the
most spectacular is the observation of metastable effects
such as persistent photoconductivity and photocapaci-
tance quenching' accompanied by anomalous photoexci-
tation and an absorption cross section, and by nonex-
poncnt1al kinet1cs.

In this paper a new model is proposed which is based on
the electrical and structural properties of the zinc-blende
lattice and on some specific impurity states. Some ele-
mentary microscopic estimations based on this model are
capable of describing most of the available, and often
seemingly contradictory, experimental facts. Especially, it
clarifies somewhat the role of sample preparation in case
of the high-teinperature anomalous diamagnetism and the
very large coupling between the electrons and the lattice.
If the model is correct it might also help to design proper
preparation methods and some decls1ve experiments.

The open-structure zinc-blende lattice is inherently un-
stable at high pressure. Every known zinc-blende serni-
conductor crystal transforms into a more densely packed
structure at high pressure, in the range of 30—150 kbar.
Although the detailed atomic mechanism of this transfor-
mation has not been yet clarified, " it is known that the
shear elastic constant c, =(c i i —cia )/2 and the TA-
phonon frequencies along the X and b, lines and at point X
are anomalously small and all soften at high pressure. In
cubic materials the critical pressure for structural transi-
tion and the decrease of the elastic constant c, are related
to each other. This structural stability criterion has been
demonstrated for zinc-blende semiconductors. '

It is specific in semiconductors with a multivalley in-
direct conduction band that the elastic constants depend
on the electron concentration. Generally the electronic ef-
fect changes the shear elastic constant that splits the sym-
metry degeneracy of the valleys. The change of the shear
elastic constant is negative because part of the free energy
needed to strain the crystal is recovered by the transfer of
electrons from valleys that are raised in energy by the
strain to valleys that are lowered. An elementary symme-
try argument shows that the electronic effect contributes
to c, in silicon-type materials which have energy minima
along the 5 line, usually at point X. The corresponding
symmetry-related strain components are «„=(2e —e~„—e )/3, and by the corresponding change of the indices
one can obtain ez and e„respectively. In the high-strain
limit, if the strain has. only an e„component, the energy at
point X in the x direction is so much lowered that the re-
population is complete, and hence the energy gain is
linearly proportional to the electron density in the lowered
minima (p„=1b„'ib„) and to the shift of these minima, usu-
ally given in units of eV s for unit strain (deformation po-
tential C„). Interestingly enough, this picture is also lo-
cally true. A localized impurity wave function can be ex-
pressed as a linear combination of the wave functions that
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form the degenerate minima. If the strain splits the ener-

gy degeneracy, the measurable impurity transition energies
will also be split (and shifted correspondingly). At high
strain the wave function has only components from the
minima along the strain. '

The proposed model describes impurity electrons which
interact with the strain field. If the interaction between
electrons and the strain field is strong enough then by
spontaneous symmetry breaking in the ground state, the
wave function has only components from minima which
are lowered by the strain field. If local equilibrium for the
strain is assumed then in the adiabatic limit, and when the
kinetic energy of the motion of the strained lattice is
neglected, the following effective nonlinear Schrodinger
equation can be written down for the one-electron impuri-
ty states:

r

E'pP'
C,s(p—)+f(p, ) P =E,P„. (1)

III. NUMERICAL RESULTS

Equation (1) has to be solved with the condition that
the total energy E, should be minimal. The total energy
contains the binding energy of the electron(s), E„and the
energy of the strain field, E, (equal to c,e /2). With this
condition for a singly charged impurity, one-electron and
singlet two-electron bound states exist. Here only the
ground states which have a spherical symmetry (s state)
are investigated. The role of the lattice relaxation in the
excited impurity states which are much more delocalized
is negligible.

The nonlinear Schrodinger equation [Eq. (1)] can be
solved only numerically. Since the deformation s (p„) de-
pends on the electron density, the numerical integration
has been done iteratively. The iteration was finished when

Here the first two terms are the kinetic- and potential-
energy terms for a single charged impurity in the
effective-mass approximation, and the third term de-
scribes the interaction with the (self-induced) strain field.
In equilibrium e„=C„p„/2c,. This cannot exceed the
critical strain (e„) which causes a transition of the zinc-
blende structure. Hence this interaction term should be
saturated at a density p'„(equal to e„'2c, /C„). To describe
this saturation the following functional form can be pro-
posed for s (p„):

s(p„)=C„(p„'/c, )tanh(p„/p„') .

Here, c, is determined self-consistently according to the
local density (or equivalently according to the local strain).
This approximation in the low-strain limit results in the
C„p„/c, linear interaction term. On the other hand, at
high strain it saturates at the proper value. Naturally, in
the highly strained (internal) region some contribution
from the local "structural change" can be also expected.
In lack of detailed microscopic treatment of the problem,
however, this additive term is here neglected. The fourth
term in Eq. (1) describes the effective electron-electron
repulsion in the doubly occupied impurity state, and van-

ishes for a singly occupied impurity level.

the relative charge in the density was less than 10 in
two consecutive iteration steps. Calculations with more
stringent conditions (10 ) did not change the relevant
energy values more than 10 in relative units. Based on
different numerical tests, the estimated accuracy of the
numerical results which will be presented in this section is
better than 1%.

One-electron solutions are interesting to describe
anomalous persistent properties of zinc-blende semicon-
ductors. The detailed discussion of these solutions and a
critical comparison with the existing alternative explana-
tions and experimental data will be published elsewhere. '

Here only some characteristics are listed to illustrate those
properties which are relevant also to the two-electron solu-
tions. If some typical material parameters are used for
the III-V compounds (eo——10, C„=6 eV, c, =5&&10'
dyn/cm, and m*=0.35m, ), the calculated effective Bohr
radius is-25 A, and the corresponding electrostatic ener-

gy is 80 meV, rather similar to the effective hydrogenic
value. The elastic distortion is, however, substantial.
The range of the "transformed" critical domain is larger
than 10 A, and the total elastic energy is 350 meV. It can
be seen that even in a reasonably delocalized impurity
state [when the use of the effective Hamiltonian in Eq. (1)
can a posteriori be justified] an enormous lattice distortion
can build up due to the nonlinearity of the electron-lattice
interaction and the special "softness" of the zinc-blende
structure. In this paper some selected two-electron solu-
tions will be described in some detail. The calculations
used the measured or estimated material parameters of
CuC1. The effective mass at point X is anisotropic, and
the spherical average of m* is m'=0. 35mp extrapolated
from other zinc-blende materials. This value, with the
measured dielectric constant eo ——7.9, gives an effective
hydrogen energy of 76.3 meV, which is reasonable for
donors at point X. Similarly, a typical deformation-
potential value of C„=6 eV was taken. The elastic con-
stant and its derivative according to the pressure (up to 5
kbar) have been measured, " their values are, respectively,
c, =4.55 && 10' dyn/cm and —0.388. Extrapolation to
the first value firmly identified the structural transition of

ure material, giving a hmiting value of c,'=2&&10'
dyn/cm .

There is no measurement for the critical strain e „', but
it can be estimated from the limiting value of c,' if it is as-
sumed that under an uniaxial stress, the "softening" of the
elastic constant c, is about the same as under hydrostatic
conditions. From the measured zinc-blende structural
transitions at different stress conditions" this is probably
an underestimation.

Table I lists the singlet pair-state energies (E) at dif-
ferent pressures (at different starting values of c, ). The
critical strain (e, ), the energy of the strain field (E, ), and
the (thermal) ionization energy of the second electron
(E,2) are also listed. Owing to the anomalously small
value of c, (Ref. 15), the energy of the lattice deformation
in all the investigated cases is larger than the binding ener-

gy of an impurity electron in the underformed case. The
electron-lattice coupling produces, however, a larger bind-
ing energy than this loss, and the binding energy for the
second electron is still larger than for the first one if the
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&,' (%)Pressure (kbar) E,2 (meV)

—1112
—844
-581
—191

36.5
28.2
20.0
(0.1

1196
957
701
271

—1865
—1443
—1030
—426

0
10
20
40

TABLE I. Electronic (E) and strain energy (E, ) of the bound pairs, ionization energy of the second
electron (E,2), and the critical strain at different pressures.

E (meV) E, (meV)

strain is larger than about 10%. Similar energy gain was
first proposed by Anderson to explain anomalous proper-
ties of amorphous silicon. ' The wave function of the lo-
calized pair states has a similar extension as the shallow
donor state and the interaction potential both change
slowly in the scale of the lattice constant; hence the
effective-mass approximation for a first orientation is
once again justified.

The theoretically estimated I —X energy difference in
CuC1 (which has a direct gap at I ) varies between 1.5 and
3 eV, and it is probably larger than the calculated binding
energy at all pressures (up to the transition pressure).
However, the energy of the free (I') electrons increases
near the impurity because of the large strain field. Hence,
in a generalized configuration-coordinate diagram' an ef-
fective energy barrier is expected between the impurity
state and the free-electron states. In fact, similarly, large
lattice relaxation (LLR) and metastable states have been
observed in many zinc-blende III-V and II-VI compounds
and in mixed crystals. Since we do not know the exact
lattice relaxation around the impurity or the deformation
potential for the I" electrons, the barrier height Eb be-
tween localized and delocalized states is unknown.

At high impurity densities the wave functions of local-
ized states overlap, and an impurity band arises. If the
impurities are ordered in a simple cubic lattice, the band-
width and the effective mass of the delocalized pair states
can be estimated as a function of the density. However,
for interacting bosons, Bose condensation may occur.
Table II contains the calculated impurity bandwidth, tran-
sition temperature T„and the penetration length A, in the
simple Bose-condensation model. ' It is remarkable that
at reasonable concentrations the transition temperature
turns out to be in the observed range. Calculations with
somewhat different material parameters show that the ob-

tained values are rather insensitive for a change of about
50% of these parameters.

IV. QISCUSSION

A simple effective impurity model Hamiltonian is pro-
posed which includes in a crude way the typical "softness"
of the zinc-blende lattice and the resulting anomalously
large lattice relaxation. In spirit, this proposition is simi-
lar to the polaron concept, but there are, however, signifi-
cant differences between the two cases. First, the lattice
distortion around the impurity cannot be analyzed in a
single (optical-phonon) mode, since it arises from shear
elastic modes and includes many Fourier components. In
addition, the softening of the lattice is crucial, a fact
which is not used, as far as the a,uthor knows, in the pola-
ron literature. The generalized bipolaron models' recent-
ly investigated describe only the local change of an elec-
tronic state due to an extra electron in some insulating
materials. In other words, the types of the bonds are
changed at the atom where the extra charge is localized
but no occurrence of delocalized lattice distortion (strain)
has been postulated. Therefore, these bipolaron states
have no common features with the model discussed in this
paper.

The solution of the model discussed previously (in Sec.
III) is somewhat oversimplified. Hence the numerical
data obtained are only indicative. Nevertheless, it is re-
markable that many features seem to be in agreement with
the following experimental findings (in addition to the
high transition temperature which can be obtained, of
course, with the aid of many other models).

(1) The calculated pair states are resonant with the es-
timated positions of the states of the conduction band
around the I point. These pair states are, however,

hE (meV)
{a)

TABLE II. Calculated impurity bandwidth (AE), transition temperature (T, ), and penetration
length (A, ) for different impurity concentrations and two different pressures (p). For columns headed
(a), @=40kbar, and for columns headed (b), p=20 kbar.

Concentration T, (k) A, (10 cm)
{&(10 ' cm ') (a) (b) (b) (a) (b)

1.97
2.98
3.76
4.82
6.34
8.56

11.94

3.66
7.12

10.06
14.18
19.82
27.47
38.02

0.03
0.92
1.91
4.02
8.21

16.02
29.66

129
250
355
501
702
972

1346

10
33
67

142
290
567

1050

11
7.7
6.2
5.0
4.1

3.3
2.6

42
21
14
9.4
6.3
4.3
3.0
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metastable due to the barrier Eb of several tenths of an eV
(see above). This explains the inevitable decay of the
anomaly, especially by annealing at higher temperatures.

(2) Higher-energy metastable states can only be filled at
high temperature (or high pressure), and this, together
with the annealing properties, indicates that a reasonable
concentration can only be obtained by rapid quenching
from the extreme ambient conditions, which are always
observed.

(3) Although the structural defects might be important
in obtaining an appropriate lattice relaxation around the
impurity, in the model proposed the pair states are con-
nected with impurities. This can explain why the effect is
so sensitive for the starting tnaterial as well as for dif-
ferent materials, that it cannot be reproduced by identical
thermal-mechanical routes. It is most interesting —and
might further justify this model —that more recently there
is some indication that Cl might be related to the
anomalous diamagnetism observed in CdS. It has been
known for some years that Cl gives rise to an anomalous
impurity level with LLR in CdTe and in some related,
mixed II-VI compounds. This level is also metastable
and can be filled by different temperature and/or pressure
routes. The rapid heating and cooling probably provides
additional strain.

(4) The optical excitation energy in a state with LLR is
much larger than the thermal one (Stokes shift}. Howev-

er, under optical excitation the charge carriers at low tem-
peratures cannot be recaptured by impurities with LLR.
If Bose-condensed pair band states exist, they should show

special optical properties. Since the one- and two-electron
states are well separated and a different LLR is connected
with them, the optical excitation energy is higher than the
thermal one, quite different from a BCS superconductor
material.

(5} In case of CuC1, the LLR with structural defects
might enhance the disproportionation reaction —once
again, pure samples are more stable than the impure ones.

(6) The coherence length is of the size of the two-
electron wave function (-30 A) and it is tnuch smaller
than the estimated penetration length ( —10 cm).
Hence the proposed condensed state magnetically should
behave as a type-II superconductor, in agreement with re-
cent measurements in CdS.

In conclusion, the proposed model may explain some of
the anomalous features of the observed high-temperature
diamagnetic anomaly. It is tempting to say that the
high-conductivity anomaly observed at higher pressure (40
kbar) and room temperature in CuC1 has the same origin.
Experiments with intentionally doped pure materials
should support its validity and supplement other experi-
mental observations.
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