
PHYSICAL REVIEW 8 VOLUME 29, NUMBER 8 15 APRIL 1984

Excitation spectrum for vibrations on a percolating network: Effective-medium approximation
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The excitation spectrum for vibrations on a (bond-) percolating network are calculated with the
use of an effective-medium approximation. For 2 & d &4, where d is the Euclidean dimensionality
of the embedding space, we find a nearly linear relationship between frequency and wave vector for
co &~„where co, represents the critical frequency separating phonon and fracton regimes as calcu-
lated previously by Derrida, Orbach, and Yu. The imaginary part of co is small for e & ~„signify-
ing the correctness of a phonon eigenstate description in that regime. As the wave vector increases
beyond the value corresponding to co„a plane-wave extended-state representation fails, signaled by
a rapidly growing imaginary part of the frequency. It is interesting that an effective-medium ap-
proximation can sense the transition between extended and localized states. We calculate the co

dependence of what we characterize as the localization length l(co). We find co-I for co &co, in

agreement with the scaling form generated by Alexander and Orbach. The length l(co) diverges for
co&a„as it should for wavelike excitations. Finally, we calculate the excitation spectrum for
1 & d & 2, where Derrida et al. have shown that no sharp crossover occurs between phonon and frac-
ton regimes. We expect both regimes to be localized. We find a smooth degradation of phonon
character as co increases, and a gradual transition to states with fracton character.

I. INTRODUCTION

In a recent article, Alexander et a/. ' have suggested that
the thermal properties of Epoxy resin and other amor-
phous materials can be understood on the basis of a cross-
over from phonon excitations to amomalous vibrational
excitations, referred to as fractons. Their treatment as-
sumes the existence of a crossover length and frequency
to. .. such that the appropriate eigenstates for co&co, ,
(long length scales) are phonons. At frequencies above
to, , (short length scales) fractal geometry leads to
"anomalous" localized fracton states. This idea has been
further developed by Tua et al. who suggested a double-
valued form for the excitation spectrum near to, , This
leads to a jump in the vibrational density of states N(to) at
the crossover frequency to, , This description was based
on a scaling analysis of the vibrational spectrum for a per-
colation model of disorder. ' ' No direct studies of the
spectrum and density of states are available, however.
Derrida et al. have very recently studied the density of
states of lattice vibrations for a bond-percolation model
within the effective-medium approximation (EMA).
Their results confirm both the general crossover ideas of
Ref. 1 and the matching form of Tua et al The densi. ty-
of-states curve resulting from their calculations exhibits a
rapid increase in N(co) at a critical frequency to„which
we shall identify with the crossover frequency ~, p con-
sistent with the proposal of Ref. 4.

As predicted, ' Derrida et a/. found the density of
states to be phononlike at frequencies below m„with
N(co) ceto" ' (d is the Euclidean dimensionality of the
embedding space). A rapid increase in N(to) at co~ (for
2&d &4) is observed, with X(co) approaching tod ' at
higher frequencies. The crossover frequency scales as

p —p„where p and p, are the percolation concentration
and the critical percolation concentration, respectively.

The agreement of the phenomenological form for the
vibrational density of states of Tua et al. with the EMA
results of Derrida et al. leads one to ask whether the
dispersion of the vibrational modes (co vs q, l ') is also
reproduced within the EMA (1 is a measure of the fracton
locahzation length; see below). To our surprise, we find
this to be the case. The low-frequency modes have pho-
nonlike dispersion (co ccq), and can be well described by a
wave vector. They exist up to a crossover wave vector for
which q, , gz

——1 [g~ cc (p —p, ) '~, the percolation corre-
lation length]. At higher frequencies (shorter length
scales), the modes have a different (fracton) dispersion,
and are localized. While the crossover (within the EMA)
is continuous, it is consistent with the crossover form hy-
pothesized by Tua et al. The fact that the EMA exhibits
these crossover effects, from extended phonons to local-
ized fractons with a different dispersion, is the main result
of thIs paper.

We calculate here the dispersion law for vibrational ex-
citations within the EMA (for bond percolation). This
amounts to solving equations of the form

to =28'( —to )[1—cos(qa)]

for the relationship between q and co, where 8'( —to ) is
determined from the EMA equations. In practice, we ei-
ther keep q real (extended states) and solve for the (in gen-
eral) complex to, or keep co real and allow q to be com-
plex (localized states). Throughout we restrict ourselves to
small q (qa «1) for which a phonon description would
ordinarily be adequate.

We find that within the EMA for 2 &d &4, the plane-
wave representation works well for excitations with
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For q higher than the wave vector corresponding
to co, (qgz & 1), the "damping" becomes excessive, indicat-
ing a poor choice of representation. Conversely, 1(co) ap-
pears to diverge in the (extended-state) phonon regime,
leading to a sensible relation between ~ and I only in
the fracton regime. We stress that the "overdamping" of
the plane-wave form is not a lifetime effect. Rather, it is
simply an indication that we have chosen a poor (i.e., ex-
tended) representation for the excitations. Similar state-
ments can be made conversely in the (localized-state) frac-
ton regime. The overall structure of the "dispersion" law
co vs q, l ' is found to be similar to the one proposed by
Tua et al.'

In Sec. II we use the basic results of the EMA, as de-
rived by (Magaki and I.ax, and by Webman, to derive
the dispersion law. We do this in detail for 2 «d «4, and
comment upon the behavior for 1 «d «2. We also derive
the frequency-dependent localization length at d =3. We
summarize our results in Sec. III.

II. THE EXCITATION SPECTRUM

The EMA (Refs. 6 and 7) provides us with a self-

consistent solution for the probability density P( s, t
~

so)
that a diffusing particle, initially at site so, will be at site
s at time t The de.tailed calculation of this quantity has
been carried out by Odagaki and Lax and by %ebman.
Here, we outline their results. It is assumed that
P(s, t

~
so) obeys the following master equation:

exp[ —iq (s —so)]
(2~)'

u +2W g (1—cosq;)

(3)

Here u is the spectral parameter, d is the dimension of the
Euclidean space, and W is the effective coherent transition
rate, W=W(u). The last quantity is determined self-
consistently from

(1/d)(W —1)[1—uP(s, u
~

so)] —W+p =0, (4)

where W(u) and u are measured in units of Wo.
Equations (3) and (4) are the basic results of the EMA,

from which various quantities can be calculated. Here we
shall use them to determine first the vibrational excitation
dispersion law co vs q. This is accomplished as follows.
The vibrational propagator is obtained from P( s, u

~
so)

by analytic continuation u~ —m . We then find that the
(spatial) Fourier transform of the propagator, from Eq.
(3), is

4f

P(q, co)= ~ +2W(co) g (1—cosq;)

The poles of this propagator (in the lower half of the com-
plex frequency plane) yield the frequency and apparent de-

cay rate of the excitations.
To simplify the calculations, we use the Debye approxi-

mation

BP( s, t
i so) = —g W, P(s, t

~
so)

+ f
S

+ +W,P(s ', r
[ s,),

2 g (1—cosq )-=q

Then the poles of the propagator (5) are given by

co(q) =coq —i5q, co (q) =q W(co(q)),

where the transition rate 8', is a random quantity.

Although the EMA is formulated in terms of the dif-
fusion problem, it maps upon a variety of physical prob-
lems, ' '" including that of lattice vibrations. In the vibra-
tional problem, the transition rate transforms into the
fol.cc collsta11t dlvldcd by thc 111ass, aIld t11c Laplacc-
transform parameter u corresponding to t is replaced by
—co upon analytic continuation. ' %e note that the
model we consider here is the random force-constant
problem. All (atomic) masses are implicitly assumed
equal.

In the symmetric case, where W, = W, , and for

bond percolation, the transition rate is distributed accord-
ing to

where m„and 5v denote the wave-vector-dependent fre-
quency and the decay rate of the wavelike excitations,
respectively.

To obt»n co(q) from Eq. (7), we need an explicit expres-
sion for W(u), to be obtained from Eq. (4) in conjunction
with Eq. (3). From Eq. (4) it is seen that W/(p —p )

remains finite as p ~p„where, within the EMA,

p, =l/d .

However, the frequencies which will be of interest as 1s
shown below, are of the order p —p, . That is,
u/W~p —p, . Consequently, u/W«« l. Expanding
P( s, u

~

s ) [Eq. (3)] in powers of u/W, we find6

1/2
QP(s, u g)-=g~ —— X~, 2«d «4 (9)28' & 8'

f(W, )=p5(W, —Wo)+(1 —p)5(W, ), (2)

where p is the percolation concentration. The EMA yields
the propagator P( s, u

~
so), the Laplace transform of the

probability density in the effective (periodic) medium (for
a d-dimensional simple-cubic lattice)

P(s, u
i
s)=—I u

u

d/2

Xg), 1 Q8 +2,

where gq, Xq, and Xq are numbers of order unity. Their
explicit values are given in Ref. 6. Insertion of Eqs. (9)
and (10) into Eq. (4) yields the desired equation for W.
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%'e shall now restrict our detailed discussion to the re-
gion 2 &d &4 [Eq. (9)]. From Eqs. (4) and (9) we have

d/2

p, Pq+ —— Xq ——p —p, —(1—p, )8'.co'{q) co (q)
28' W

In the regime 2&d&4, ( —1)~/ is a complex number.
%e accordingly denote

X ( —1)"/ =X"'+iX' '. (12)

Substituting 8'=ra2(q)/q, from Eq. (7) we find

X~"q""=2f{1—p, )/p, j~,&,

Equation (14) gives us co&, the real part of co(q), as a func-
tion of q. Inserting it into Eq. (13) yields the decay rate

In the small-q limit we find that

That is, the dispersion law for small q (large length scale)
is that of phonons, co~ -cq, with a sound velocity c scaling
as (p —p~ ) . The decay rate 111 this hmlt ls much small-
er than co~ so that the excitations are well defined. How-
ever, this holds only for p &p, and for small q such that

q'&q'* q'=2{p p. )/{p.6) . —

We depict the full range of c0 vs q in Fig. 1 for the case
d =3 and p-p, . We see that co„as defined by Derrida
et al. , represents the maximum value of m in the phonon
regime (i.e., for q & q, ). Explicitly,

~,'=(p p. )'/[2'. (1 p. )j—. —(17)

Purthermore, the decay rate [i.e., the imaginary part of
co(q)] increases remarkably fast. For q&q„5»»~~.
This means that the poles of the propagator (5) do not lie
close to tbc real axis, and hcncc do not describe a physi-
cally accessible excitation spectrum. The frequency m,
was shown to mark the crossover between the phonon
and the fracton portions of the vibrational density of
states within the EMA. Our calculation shows that at fre-
qucnclcs less than N~q 01 g g g~~ thc plane-wave rcprcscn-
tation which yields a dispersion law of ~=eq is indeed
meaningful. However, as q increases beyond q„ the decay
rate 6~ increases sharply. Consequently, the plane-wave
representation in which the propagator (5) was derived is
no longer adequate. We note that this breakdown of the
plane-wave representation occurs at q of the order of q„

(1-p)mq (p-p-)q -p 2-q-pXd q
4 2 ~ 4 (1) 4+2

2{X(2&)2q2d+4/4(1 p ) 0 (14)

which scales as (p —p, )'/ . As shown in Ref. 6, this is re-
lated within the EMA to the excitation length scale equal-
ing the connectivity length of the percolation problem, in
accordance with the conjecture of Ref. 2. That is,
I/q, -g», the percolation correlation length. Hence, g»
sets the length scale. For 1/q «g», one is in the phonon
regime. For 1/q &g», one is in the fracton regime T. he
critical frequency c0, scales as p —p, [Eq. (17)]. Noting
that c scales as (p —p, )'/, we see that co, scales as cq„so
that a), can be identified with co, , of Refs. 1 and 2.

In order to see what excitation spectrum applies at fre-
quencies higher than co„we return to Eq. (3). In d =3
and within thc Dcbye approximation, thc integration 1s
easily carried out. The result is

p( 2
~

)
1 1 i(u/[w(~))'/ )8

4'crt g (~)

R=(s —so/ .

The absolute value of ImIco/f W(co)'/ j defines an inverse
length scale, which we denote by I {co),

N

2I(c0)
I

[gq~)]~/2

Here, l(co) represents a mean &ee path which, in the q & q,
regime, we interpret as a frequency-dependent localization
length At l. ow frequencies it is very large, in accordance
with the vahdity of a plane-wave representation at that
length scale. However, at frequencies greater than ru„
l(co) becomes substantially smaller. From Eqs. (4) and (9),
it can be shown that, to leading order,

.()2 '1 '&/z

Im =,— = — — {cu—co, ),
[8'(co)j'/

(
26'

(20)

Th1s leads to the rclatlonsh1p

) I/2 t

APE '1
, g(1 —p, ) I'

It ls very lntcrcstlng to compare th1s result with thc
dispersion law at small length scales ffracton (fr) regime],
as conjectured fmm scaling. One finds

I —(2+8) /2

Thus, Eq. (21) and ' co, &r(p —p, )~g» both imply
consistently that 8=2 in the EMA. %'c note that this is
different &om the mean-field result (valid for d&6)
%'hiCh g1vCS 8=4.

In order to demonstrate thc full dispcrs1OD lMv wc note
the following. Prom Eq. (18), we see that the quantity
co/[8'(ar)]'/ represents an inverse length such that its
real part corresponds to the wave vector ln the phonon re-
gime (where its imaginary part is small) and its imaginary
part corresponds to I ' in the fractal regime (where the
real part is of the order of the imaginary part) Conse-.
quently, we plot, in Fig. 2, u versus the imaginary and
real parts of co [/8'(~)]'/ We see t.hat this yields the
phonon dispersion law at low frequencies, and the fracton
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quantities m, and q, are defined by Eqs. (17) and (16), respectively. The critical percolation concentration p, = —,'. (a) p =0.339:

(p —p, )/p, =0.017, m, =0.0104, and q, =0.226. (b) p =0.35: (p —p, )/p, =0.05, m, =0.0306, and q, =0.387. (c) @=0.39:
(p —p, )/p, =0.17, m, =0.104, and q, =0.714.

dispersion law [Eq. (21)] at high frequencies, with a cross-
OVCI at 6)&.

A word should be said about the comparison of Figs. 1

and 2. The zeros of the expression in large parentheses on
the right-hand side of Eq. (5) represent a mapping of the
complex q plane onto the complex co (or co) plane. If one
had R tAllp perl. odlc px'oblcm, I'cal g would IDap oQto I'cal

(positive) co, giving the usual type of q, co dispersion rela-
tion. For the density of states, and for dispersion, one is
interested of course in real co but not necessarily extended
states (real q). Within the EMA one can always associate
R complex g %vith I'cal N, QI' vlcc vclsa, ID Flg. 1, g ls tak-
en as real aad co is allovved to be complex. This is ap-
propriate if one is interested in plane-wave solutions. Fig-
ure 2 refers, however, to the converse: co is taken as real

and the inverse length co/[ lI (co)] is complex

tify the localization length, 1/[2I (co)],
1m [co/[g (co)]' I. At co gco„ 1/[21(co)] is very small,

implying extended states appropriate to the phonon

gime. At, co&co&, 1/[2l( )] cois quite finite, and can be

identified with the range of the e»elope function which

specifies the characteristic length of the localized fracton
state with energy co. For co&co„Refco/[Wco)]' I is
pvc11 behaved, and is gust q. That is, the eigenstate is in the
phonon regime. For co &co„ReIco/[8'(co)]' I roughly

equals 1/[21(co)], a condition appropriate to critical
damping of the fracton modes. A convenient way to plot
a significant relationship between co and co/[8'(co)]'~ is
to keep co real and plot it against

~
co/[ 8"(co)]'~

~
. This is

doQc 1Il Flg. 3. OQc secs this ls R I'casoARblc %'Rp to ][Dtct-



Q.$

FIG. 2. Plot of co vs the real and imaginary parts of ~/[fV(m)]'», the localization length, for d =3 from Eqs. (4) and (9). The
normaHzing quantities m, and q, are given in the caption of Fig. l. (a) p =0.339, (b) p =0.35, and (c)p =0.39.

polate between the phonon and fracton regimes.
F1I1811$, wc coI1816cI' tkc c48pcI'810Il 18%' III t11c cRsc

1&d &2. From Eqs. (4) and (10) we obtain

and inserting W'=coz(q)/q from Eq. (7), we find

Pe)~q [(7—j'g)g +P~Xg g + ja)v

-P2(xd(2))2q2d+4/4(1 p, )=0.
1t ts seen that for p &p„~s is a monotonicaHy increasing
function of q. Namely, the "double-valuedness" feature of
the frequency versus q (see Fig. 1) ts tmsslng here. "fhis ts
«fi««d in the fa« that the density of states at dimension
~ & 2 does not show a rapid increase at cd~ as opposed to
fb+ I'QglIHc 2 Q 6 Q 4. T4c I'BtIo bct&ccI1 (ac (iccRQ I'3,tc RIlg
the frequency co& from Eqs. (25) and (26) is
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FIG. 3. Plot of co vs the absolute value of ro/[ W(co)]'~, the localization length, for d =3 from Eqs. (4) and (9). The normalizing
quantities co, and q, are given in the caption of Fig. 1. (a) p =0.339, (b) p =0.35, and (c)p =0.39.

dispersion 1', %'ith the soUnd velocity scaling as

+I:(s s.+JAd"q')'—

2(y (2))z 2d]1/2I —1 (27)

The r1ght-hand 81de 1s seen here as a monoton1ca11y 1n-

creasing function of q". This means that as q increases,
the poles of the propagator (5) move away from the real

axis. However, a natural crossover frequency does not
seem to exist, in contrast with the case for 2 &d ~4. We

note that at small q„Eq. (26) does imply a phononlike

We have shown, within the EMA, that the general form
for ~ vs q, 1/1 hypothesized earlier' ' does in fact obtain
for vibrations on a percolating network. Forcing a plane-
wave representation yields sensible results only for small q
(large length scales), or ru ~re„ the critical frequency ex-
hibited by Derrida et al. Indeed, cu vs q exhibits zero
slope at the value co=co„suggestive of a feature in X(ro),
as indeed found by Derrida et al. For wave vectors
higher than q„corresponding to ra~co, (shorter length



scales) within the plane-wave representation, the decay
rate 5» increases precipitously, implying that the plane-
wave representation fails. We then adopted a localized
representation in terms of an inverse localization length
I/l(ro). We found for d =3 that ro-I/I in complete

agreement vvIth the scahng results, ' ' ' ' ~-I ~ when
the EMA value 8=2 (for d =3) is used. Again, for
ro (ro, l(Co) dlvcrgcs, llllplylng tllat a locallzcd picture
within the EMA is inappropriate, and that the excitations
are more appropriately extended phonon states. %e have
exhibited in Fig. 3, therefore, an ro-vs-

I
ro/[8'(ol) j'

I
ex-

citation spectrum which can be thought of as generating
the N (ro) derived previously by Derrida et aL

For 1 ~d ~2, Derrida et al. do not find a rapid in-
crease in N(ro) at ro, . We too find no feature in the char-
acter of our solutions across q space, consistent with their
flllldlllgs.

It is remarkable that the EMA which, after all, replaces
all uno|.cupled and occupied l3onds Vvith a uniform
frequency-dependent bond, can mirror the character of the

vibrational eigenstates so clearly . It would be of great
value now to simulate the vibrating percolating network
directly to obtain explicit cigenfunctions in order to test
the EMA conclusions. It would also be of great interest to
extend experimental phonon dispersion and "lifetime"
measurements in amorphous systems into the frequency
regime near ro, to see if our predicted sharp increase in 6»
is found. This is predicted in Refs. 1 and 4. The experi-
Inents of Dietsche and Kinder' in fused silica appear to
come close to co, from the estimates of Ref. 1.
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