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Green's-function study of optical properties of polymers:
Charge-transfer exciton spectra of polydiacetylenes
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The visible optical spectrum of two typical polydiacetylene (PDA) crystals, poly[2, 4-hexadiyne-

1,6-diol-bis-(p-toluene sulfonate)j (PTS) with an acetylene-like structure and poly[5, 7-dodecadiyne-

1,2-diol-bis-(phenylurethane)j (TCDU) with a butatriene-like structure, is investigated with the use

of a first-principles Green s-function formalism of charge-transfer exciton theory. The energy-band

structures of the ground state are calculated first at the Hartree-Fock level with nonlocal exchange

and they are corrected afterward for electron correlation effects using the electron-polaron model of

Toyozawa. The electron-hole interaction H, q is treated by first-order perturbation theory in the
framework of the Lax-Koster-Slater resolvent method as proposed by Takeuti. The influence of

screening on H, I, is also investigated with the help of an r-dependent static dielectric function. The
results show that correlation corrections play an important role in the calculation of the optical

spectrum since they substantially modify the Green's function of the host crystal as well as H, q.
Both the singlet and triplet excitons are found to be delocalized with a radius of 25—30 A in PDA s:
the Frenkel exciton contributes only -30% of the binding energy. The calculations predict the
first-singlet absorption maximum for PTS at 2. 1—2.2 eV and for TCDU at 1.7—1.8 eV, with an ex-

citon bandwidth of -2.9 and -3.5 eV, respectively. The exciton binding energy is found to be
-0.4 eV for both systems. Triplet levels are located at 0.8—0.9 eV below the singlets at E=O and

they form relatively flat bands. The theoretical ionization potentials are 5.7 and 5.0 eV for PTS and

TCDU crystals, respectively.

I. INTRODUCTION

The optical properties of polydiacetylene (PDA) crystals
have been the subject of a number of experimental' and
theoretical ' investigations. These polymers are unique
among the newly discovered highly conducting organic
polymers in that single crystals of considerable size can be
synthesized from them. These crystals contain a very
low concentration of defects and are characterized by an
extensive electron delocalization along the main polymer
chain. Numerous PDA crystals have been synthesized
with different side groups and their physical properties
have been investigated (for recent reviews see Refs.
49—52). The PDA conjugated backbone exhibits one of
the two mesomeric structures represented by the acetylen-
ic, [=RC—C=C—CR =]„and the butatriene,

[—RC=C=C=CR —]„bonding sequences.
The mostly studied PDA crystal with an acetylene

pattern is poly[2, 4-hexadiyne-1, 6-diol-bis-(p-toluene sul-
fonate) j (PTS), for which the side group R is
—CH2OSOqC6H4CH3. It crystallizes with the monoclinic
(P2i/c) structure containing two polymer repeat units in
the elementary cell. Its visible spectrum consists of a
complex series of transitions starting with a strong ab-
sorption edge and an associated reflection peak at
—16000 cm ' (-2 eV). ' The absorption is highly an-
isotropic and it has been initially interpreted as an inter-
band transition since the absorption profile shows the
form of a van Hove singularity characteristic for the den-

sity of states in a quasi-one-dimensional (quasi-1D) band.
The absence of photoconductivity at the absorption max-
imum near to 2 eV casts doubt, however, on this interpre-
tation. ' In fact, the above-mentioned singularity in the
line shape appears also for a 1D exciton band. The obser-
vation of surface polaritons as well as signs of an exci-
tonic behavior in the resonance Raman spectra supports
the original suggestion of Bloor et al. ' that the first ab-
sorption peak is due to excitons. Changes in the backbone
conformation may substantially modify, however, the op-
tical spectrum of PDA s offering in this way a very sensi-
tive tool to detect structural phase transitions.

A well-known crystal with butatriene-like chain
geometry is poly[5, 7-dodecadiyne-1, 2-diol-bis-(phenyl-
urethane)j TCDU, for which the side group R is
—(CH2)4OCONHC6H5. It undergoes a first-order phase
transition at low temperatures ((100 K) or at high pres-
sures () 5 kbar). This transition is reversible and it can be
detected by resonance Raman' as well as by optical
spectroscopy. At room temperature (phase II) the back-
bone structure appears closer to the butatriene structure
though distortions in both the —(CH2)4 —linkage and in
the polymer backbone have been observed. The lowest-
energy optical transition occurs in phase II at —18500
cm ' (-2.3 eV) while it is reduced to —15300 cm
( —1.9 eV) in phase I. This red shift has been attributed to
a butatriene-to-diacetylene bond reorganization' though
this assignment is not supported by theoretical considera-
tions. In our calculations, the geometrical data of the
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butratriene-like high-temperature phase of TCDU have
Scen used.

The purpose of the present paper is to calculate exciton
levels for both crystals from first-principles formalism
and to investigate the effect of the above-mentioned
structural differences on the optical properties. The or-
ganization of this paper is as follows: In Sec. II we
present the formalism of charge-transfer exciton theory in
its first-principles implementation. The electron-polaron
method which obtains correlation corrections to the
Hartree-Pock (HF) one-electron bands will be briefly
described in Sec. III and it is applied to the calculation of
quas1partlclc cilcl'gy baIlds 111 PDA s. T11c cxcltoI1 spectra
are calculated in Sec. IV using both the HF and quasipar-
ticlc cncrgy bands. Thc thcorctical results arc (4scussed
and compared with experimental results in Sec. V.

II. FIRST-PRINCIPLES FORMALISM
QF CHARGE- TRANSFER EXCITON THEORY

Organic polymer crystals represent a special class of
solids from the point of view of their optical properties.
The traditional methods to treat bound electron-hole
pairs are inapplicable to them: their monomeric units
are strongly (covalently) interacting, therefore, intracellu-
lar and intercellular excitations must be treated on the
same footing. This is in clear contradiction to the Frenkel
model, based on the assumption that the excited electron
primarily shares a unit cell with the hole. On the other
hand, the dielectric screening in these materials is certain-
ly too weak to produce %annicr-Mott —type excitons with
a large radius. A theoretical framework to bridge the gap
between the above two limits of the excition picture has
been proposed by Takeuti. It is based on the Green's-
function formalism developed earlier by Lax and by
Koster and Slater to treat lattice vibrations and impurity
states, respectively. A similar method has been worked
out also by Altarelli and Bassani5 which is based on a
Fredholm-type solution of the integral equation determin-
ing the expansion coefficients of the exciton wave func-
tion.

To obtain quantitative results Takeuti had to assume at
that time simple parabolic bands and he had to restrict
himself to the diagonal part of the electron-hole interac-
tion matrix. These restrictions are, however, not necessary
and the purpose of the present paper is to present a first-

H= X —
2 + pX X X

+ ~ X X
fx —x'f

y f(x')g(x)d x d x',

where x represents the spatial and spin variables x =—(r,o )

and V~(x) is the periodic potential due to the ions. The
field operators P(x), gt(x) obey the usual fermion commu-
tation rules and will be expanded using as a basis the com-
plete orthonormal set of Wannier spin orbitals belonging
to the valence bands (VB's) and conduction bands (CB's),
respectively:

It(x)= gal„w„(x —I)+ gal, w, (x —I),
l l

|( (x)= g a~, w„'(x I)+ g—ai, w,'(x —t),
1 1

(3)

whe~e the notation wJ(x —l)=w (r —RI)x.(o) is used (Ri
stands for the lattice vector of the cell in which the Wan-
nier function is localized). Substituting Eqs. (2) and (3)
into (1) and separating the one- and many-particle terms
we obtain

principles calculation of the excitonic levels in PDA in
wlllcll Iio scmlcmplrlcal Rppl'oxlIIlatlons Rlc mRdc 111

evaluating the matrix elements of the Green's function
and the electron-hole (e-h) interaction. It seems to be
especially recommended to avoid the use of empirical pa-
rameters if typical correlation effects such as excitonic
binding are investigated in extended systems. Semiempiri-
cal schemes contain, namely, parameters adjusted to
describe the experimentally observed properties of rela-
tively small molecules. The effect of correlation is built,
therefore, ab ovo into these parameters and their use in a
perturbation theoretical scheme to calculate e-h attraction
may lead to inconsistent results. On the other hand, we
may also have situations in infinite systems not appearing
for a few atoms, for which the parameters were optimized.
These may be the reasons why Takeuti's scheme has led to
a comparatively large exciton binding energy of -2.3 eV
in a semiempirical n.-electron study on polyenes.

In deriving the e-h interaction we start from the Hamil-
tonian (in atomic units):

H=h+g,
C Ug alcamchim + Q alcamc him

I,m

~I ~Z 4 4
aiijia&zJPI3J3aV4g gi J,

l/p ~ ~ s p l4 J/p e a e p jg

The monoelectronic and bielectronic integrals are defined here by

Aim = f w (x —1)[— 5+ V (x)]w (x —m)d x, J =v, c

l2 l3 l4 1
g = w*. (x —li)w*(x' —ll) —,w. (x' —ll)w (x —4)dlxd3x'.

Jt J2 J3 J4 x —x'

(4)
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To obtain more transparent expressions, we introduce at
this point the particle-hole picture using the operators
a! =—a!, and a!=—a!, for the creation and destruction of a
particle in the conduction band and similarly 1!=a!, and
d!=a!„in the case of a hole in the valence band. In terms
of these operators, we can construct the wave function of
an exciton through the following steps.

(i) First, we create an e-h pair from the completely filled
n-electron valence band 4=d! ' ' ' d! 4p (C p is the vacu-

1 N

e, h Xi &!
)
&14dl3dl2 g

l)p ~ ~ ~ p l4

It] l2 l3 l4,

lg 1! 13 l4

V C

(16)

4 - =N, g exp(i K R!)a!+,d!4, (10)

where N, is the number of elementary cells in the crystal.
(iii) Finally, the wave function of an exciton with

momentum K is formed as a linear combination of sym-
metry adapted e-i! pair functions with different separa-
tion:

um) with a separation R, :

+I+s,! ul+sd! @

(ii) As the second step, stationary eigenstates with

quasimomentum K are formed in the Bloch form

To obtain H, we neglected in Eq. (13) those contributions

from H which contain more than two electron or hole
operators, respectively. Since the wave function q!- con-

tains only one e-h pair operator, the matrix elements of
those terms are automatically zero. The Wannier func-
tions are not eigenfunctions of the Fock operator I', it is,
therefore, worthwhile to switch to a Bloch representation
to calculate the matrix elements of H, and Hh with the
exciton wave functions 4 . The Wannier basis w is re-

s, K
lated to the Bloch one p by the unitary transformation

w, (r R!)=N, ' '—+exp( ik R!)y—'
k

k

The weight of the different charge-transfer components in
the excitonic wave function can be determined by solving
the Schrodinger equation

H% „=E„%„, (12)

A A
H =EHF+H, +HI, +H, p, (13)

where EHF ——(4
J
H

~

4) is the energy of the completely
filled valence band in the HF approximation and

providing also the exciton band structure E-. For this

purpose we partition the Hamiltonian by substituting the
particle-hole operators in Eqs. (4)—(6). After some alge-
bra we obtain

In fact, the p -'s are at our disposal since the band-
j, k

structure problem

FV . -=&.-V. -j, k j, k j, k

has been solved previously for various PDA's using atom-
ic basis sets of different quality. The above transforma-
tion is still not a trivial problem since the localization
properties of the w's sensitively depend on the phase of the
p's which is undetermined in Eq. (18). We shall return to
this problem later and substitute now only the ur's in Eqs.
(14) and (15) and form the matrix elements of H, and Hh.
After some algebraic computations we obtain

(4
J
H,

J
4 ) =N, 'g exp[ik. (R„—R, )]e -„,

k

lp pm
H, =pa(a h!' +g g

l, m
(~ -„JHh J~ -„)=N; yexp[ik (R, -R, )]

k

r

pl pm
vcr v c

J

= ga(a (w, (x —l) JI"
J
w, (x —m)),

l, m

(14)

X( —~ - -).
U, k —K

(20)

On the right-hand side of Eq. (12) we need, furthermore,
the matrix element of E, which can be written in the

K
form

I p pm
Hh gdmdl i!lm+ g g

l, m p

t'

p I pm
V V V V

= —gd dk(u!„(x —l) JF J!v,(x —m)),
l, m =[E (H, +H„)] 'H, h%—-(22)

(4 - ~E-
J
4 - )=N, 'E-ge p[xik (R„—R, )] .

k

(21)

Applying now the resolvent method ' for the perturba-
tion H, h and fixing the origin of the energy by setting
EHF ——0 in Eq. (13), we can write
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Substituting this into Eq. (11), multiplying from the left-
hand side with 4, and integrating we obtain

s, K

n „=gg(e „~IE„—(II,+I„)]-'

(iii) Finally, we determine E- by finding the zeros of
K

the determinant D =
~

6 V I—~, where I is the unit ma-
trix, and solve the system of equations of (25) to calculate
the normalized values of 0 -.

r, K

x ie „)(e „iII,„ ie, &n, „.

(+ ~il, & ~%' )=—+exp( —iK R„)
Q

s+uo u t
C U U C

Qs+u u t

U C U C

—= V'""(R R K) (24)

The matrix elements of the e-h interaction are again easy
to calculate using the expansions of %' from Eq. (16)

and we obtain for them in terms of the IJ's

From the numerical point of view, step (i) is the simplest
one and amounts only to a few percent of the total com-
putational efforts. Since the HF bands of PDA's show a
relatively simple shape, the only problem in calculating
elements of 6 arises from the fact that for more distant
neighbors the integrand in Eq. (26) has an oscillatory
character due to the exponential factor. We have had,
however, very good experience by using for its integration
the Gauss-Legendre method which has been applied also
in our crystal-orbital calculations to obtain the long-range
parts of the density matrix.

The most time consuming part of the calculations is the
evaluation of the matrix elements V'""(R„R„K)defined
by Eq. (24). For the purpose of the construction of the
Fock operators E, as a first step in the HF calculation, the
bielectronic integrals are calculated in terms of atomic
basis functions (in our case Gaussians), which are used to
construct the Bloch functions. The transformation (17)
produces Wannier functions expanded in the same basis
set:

Collecting all the calculated terms from Eqs. (19)—(21)
RIld (24), Rnd substltutlng tllcII1 lllto Eq. (23), wc Rrllvc Rt

a system of homogeneous linear equations for the deter-
mination of the unknown coefficients 0

t, K

6""(R„R„E ) stands here for the matrix element of

the Green's function belonging to the periodic crystal. It
can be easily calculated using the results of previous
band-structure calculations * as

exp ik (R, —R, )6'"'(R„,R„E )=X
Pc

K e, k v, k —K

In summary, we can determine the exciton band struc-
ture E in the following steps.

(i) From the HF energy bands e.- we calculate the ma-
j, k

trix elements of the Green"s function, using Eq. (26) in the
region of the HF gap where excitonic levels can be expect-
ed.

(ii) We transform the Bloch functions to a set of op-
timally localized Wannicr functions (see below) and calcu-
late the matrix elements of the e-h interaction in the whole
Brillouin zone (BZ) using Eq. (24).

~,(r —Rl)= graf„(R, —Rl)X, (r —R, —R, ),
q

(27)

I(A, , -)= I w (rI)z Ic, (r)d r,
j, k

(28)

where the z axis is identical to the chain direction. This
variational procedure provides, besides loca1ization, one
more degree of freedom which can be used to keep the av's

real (by applying the auxiliary condition A, . -= —A, . - in
j, k j,—k

the whole BZ).
The zeros of the function D (E- ) were found finally byK

(r —R& —R&) is a lineal combination (colltrRc-

tion) of Gaussians centered at the posltlon Rq ln thc ele-

mentary cell with lattice vec'tor Rg. Thc Icj.(r —Rl) Itself

is centel cd around thc cell Rl, while tile cocfflclcI1'ts

f (Rt —R&) giv.e a measure of the extension of the tail

over neighboring cells. For an efficient calculation of the
e-h interaction matrix elements, it is very important to
keep these tails as short as possible. %e obtained very

reasonably localized Wannier functions in PDA's by mak-

ing use of the undetermined phase of the p's as obtained

from Eq. (18). Together with a given q. - we obtain,
j, k

namely, a whole group of eigenfunctions in the form

exp(iA--), w, h. ich belong to all the same eigen-jk j, k j, k

value. This degree of freedom can be used to influence

various properties (symmetry, real or complex nature, lo-

calization) of the Ic's (Refs. 65—68) by an appropriate
choice of the phase factor. We found, after comparison of
different methods, that the most efficient localization is
provided by the maximization of the zero cell contribution
of the functional



IocRllzlllg flist tile lcglolls of its slgll cllallgc lll R prchml-
nary step and then iterating to each solution with a finer
mesh. Since D (E- ) turned out to be a rather slowly

varying function, a simple interpolation scheme was
cIlough to find 1ts zeros 1n 8—lo 1tcratlon steps with Rn

accuracy of ~D
~

~10 . The energy values E- contain

at least five significant digits in eV in this case. The cor-
responding excitonic wave-function components 0

r, K
were obtained by a subsequent solution of the system of
homogeneous linear equations. VAth the above conditions
their accuracy was better then four significant digits.

than without correlation effects, i.e., this correction is al-
ways poslt1vc.

(iv) If we set an extra electron into a conduction band
state, it establishes first its correlation bonds with the par-
ticles in the filled valence band. This is the electronic
scif-energy in the (E+ I)-particle system X,' +"(e) which
1S R1%VRys nCgat1vC.

(v) Finally, the occupation of a state which has been
empty in the X-particle system reduces the number of pos-
sible scatterings and, therefore, the pair correlations in the
(%+1)-particle system are smaller than in the S-particle
system. This gives rise to a positive hole self-energy
correlation X,' "(h ).

The first applications of the previously described for-
malism to calculate cxc1tomc lcvcls 1n PDA s lcd to I'Rthcr

disappointing results at the HF level: The excitation ener-
gies were stiH in error of about 2 CV (as we will show in
the next section). Since there are basically three important
ingredients in the calculation (the one-electron dispersions,
the band gap, and the e-II interaction matrix), it was not
difficult to find out in test calculations that the position
of cxcltoIllc Icvcls ls Blost, scIlsltlvc to tile VRluc of tile
single-particle gap. On the other hand, we know from a
number of previous investigations that reasonable
values for this quantity can be obtained also only if corre-
lation effects are included in the calculations (assuming,
of course, that the size of the atomic basis set is properly
saturated in this respect).

T11c Blost llllportRllt, palt of tlM rcBlalnlng cl'lol' lll tllc
gap can be eliminated, therefore, only if we take into ac-
count the changes in correlation upon creating a hole in
the valence band and setting an extra electron into the
conduction band. In a previous work we described in
more detail ho%' thcsc corrcct1on tcrGls can 4c calculated
in the framework of Toyozawa's electron-polaron theory
using first-principles matrix elements. The major steps of
such a calculation, which have been performed in this
work also for the PDA's in question, are the following.

c, (polaron) =c,(HF)+X,' +"(e)+X,' +"(h) . (30)

We performed the calculations with the above outlined

43 C~~
C

In terms of the above terminology, each particle in the
sohd is surrounded by a cloud of virtual excitons consti-
tuting its pair correlations, i.e., the bare HF particles are
transformed to polarons. The corresponding quasiparticle
cncI'g1cs can bc obta1ncd Rs 1onlzRtlon potcntlals Rnd clcc-
tron affinities of the correlated N-particle system. Col-
lecting the above discussed contributions, we obtain for
the energy of a polaron in the quasiparticle valence band

e„(polaron) =e, (HF)+X,' '(e)+X', '(Il),

(i) The correlation energy per unit cell of the crystal
E„« is calculated using second-order Mufller-Plessct per-
turbation theory (MPPT) as a sum of individual electron-

pair contributions (correlation "bonds" ) e (i, k;;j,kj ).
Each e contains a large number of contributions from
various double-scattering processes of the type
(y y )~(g y ), i.e., virtual double exci-

i k; jk uk+q bk —q

tons.
(ii) The creation of a hole in the valence band means to

break first all correlation bonds of the corresponding elec-
tron, leading to a negative self-energy correction of the
electron in the N-particle system X„' '(e).

(iii) At the same time, the creation of an empty state in
the valence band increases the remaining pair correlations
in the (N —1)-partic1e system due to extra scattering pro-
cesses involving the new hole. This gives rise to a hole
sdf-energy in the N-particle system X„' '(h). Since the
hole stabilizes itself, less energy is needed for its creation

t=~.»
FIG. 1. Geometrical structure of the unit cell for the PTS

Mld TCDU backbollcs, respectively, Used ln thc calculations {dis-
tances al'c given ln A).
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TABI.E I. Total energy per elementary cell calculated with two different atomic basis sets at the HF
and correlated levels. E„„is obtained by second-order MPPT and AE is the energy needed for the
PTS—+TCDU backbone structural transition.

HF/STO-3G
HF/6-31G
E„„/STO-3G

EHF +E„„/STO-3G
E „+E„„/6-31G**

EpTs (a.u. )

—150.5735
—152.5215

—0.271032
—0.544208

—150.8445
—153.0657

ETCDU (a.u.}

—150.5553
—152.5074

-0.276132
—0.549168

—150.8314
—153.0566

AE (kcal/mole)

11.42
8.85

—3.20
—3.11

8.21
5.74

method both for the PTS and TCDU backbones of PDA.
The side groups have been substituted, as in previous
work, by hydrogen atoms. The geometrical structure of
the two polymers, shown in Fig. 1, was taken from Ref.
53 for PTS and from Ref. 54 for TCDU, respectively.
The first quantity of interest from these results is the total
energy per elementary unit in the crystal characterizing
the stability of the polymer chains. It is calculated as the
sum of electronic and nuclear contributions. Its electronic
part has been obtained in this work at two different levels,
without correlation (E =EH„) and including correlation
effects (E =EH„+E„„) To ca.lculate E„only virtual
excitations within the valence shell have been taken into
account since we are not interested in this work in pro-
cesses involving core electrons. The values given below
for E 0«Crefer, therefore, to the valence-shell correlation
energy. The infinite lattice sums had to be performed in
direct space with a radius of 16 unit cells to obtain con-
vergent results in the case of the minimal basis. In the
meantime, we worked out a more efficient procedure for
this summation which results in convergent total ener-
gies if the interactions are summed up until the fifth-
neighboring diacetylene unit. This program has been used
for the calculations with an extended basis set.

To demonstrate the importance of the size of the atom-
ic basis sct cspccially in the correlation part wc prcscnt ln
Table I results which have been obtained with a minimal
basis [expanding the ls, 2s, 2p„, 2p», and 2p, atomic orbi-
tals into a linear combination of three Gaussians, STO-3G
(Ref. 77)] and with an extended one [containing for carbon
six Gaussians for 1s, four Gaussians for 2s, and the 2p's
contracted in a double-g manner and five d's: for hydro-
gen again four s-type Gaussians in a double-g contraction
and a set of p functions 6-31, G'* (Refs. 78 and 79)]. It
must be mentioned that according to our previous esti-
mates, the latter basis covers in second-order MPPT
approximately 70—75% of the full valence-shell correla-
tion in polymers which gives a sound basis to discuss vari-
ous physical properties in these systems. Two conclusions
can be drawn from Table I.

TABLE II. Self-energy corrections to the HF band eigen-
values calculated by the use of second-order MPPT and the ex-
tended 6-31G * atomic basis set (all energies in eV).

CB max.
CB min.

PTS TCDU

—1.596
—1.126

Turning now to the polaron energies entering the Green's
function, we present first in Table II the values of the
correction terms obtained at the extrema of the conduc-
tion and valence bands, respectively, using the extended
basis set [in fact, these corrections have been calculated
for five points in each band and have been fitted by a tri-
gonometric polynomial to obtain a fine mesh in the BZ
for the calculation of the matrix 6 in Eq. (26)]. As we
can see from Table II, the self-energies follow the previ-
ously discussed general trends and shift together [accord-
ing to Eqs. (29) and (30)] the conduction band to lower en-
ergies and the valence band to higher energies, respective-
ly. We also observe that the shift X', +"(e)+2', +"(h) is
larger at the top than at the bottom of the conduction
band, leading to an effective band narrowing. At the same
time, the terms X'„'(e)+X,' '(h) produce a stronger shift
at the bottom of the valence band than at its top. This sit-
uation is analogous to the Franck-Condon effect in
phonon-polaron theory,

%e present the obtained band extrema and bandwidths
for both systems in Table III. It can be seen that the pola-
ron corrections are really substantial ones reducing the
forbidden gap by more than 2 eV. The significant
changes of —1.2 eV due to correlation in the ionization
potentials (IP) (IP= —e„,„) should also be noted. The
changes in band positions and bandwidths of the PTS po-
lymer due to basis-set improvement and inclusion of
correlation are shown schematically in Fig. 2 (the situa-
tion is very similar for TCDU). According to our previ-
ous experience with a number of basis sets with gradually

(i) The transition energy very sensitively depends on
both the basis set and correlation effects which reduce its
value from 11—12 kcal/mole (predicted earlier also by
other HF calculations ) to 5—6 kcal/mole.

(ii) This latter value is sufficiently small that the energy
gain through hydrogen bonds, formed between the side
groups of TCDU, can compensate for it and thus lead to a
stable crystal structure as proposed by Enkelmann and
I.and o.'4

y(N+ l)(I )
CB max.
CB min.

VB max.
VB min.

VB max.
VB min.

0.267
0.184

1.724
2.518

0.340
0.231

—0.625
—0.936

1.834
2.626



increasing quality, in polymers of this type the values
of one-electron levels are practically converged with
respect to IMsls extension at t4c 6-31 6 level. %c can
see that the minimal basis very inaccurately represents
both bandwidths and forbidden gaps even at the one-
electron level. The corrdation influences, on the other
hand, mostly the value of the gap. It should be noted that
inclusion of correlation at the minimal basis level (not
shown on the diagram) does not solve the problem: the
gap of 8.6 eV 1s reduced only by less than 1 eV. The use
of basis sets of this type should be, therefore, avoided if
physical properties closely related to the band structure
are lnvcstlgatcd,

HF/5TO-3g

el. pot. /6-3)Q""

8.6

Since the band-structure calculations which form the
starting point for the investigation of the exriton spectrum
have been performed at the restricted HF level (setting for
thc sRIHc spatial Bloch orbital t%'o electrons with oppGsitc
spin) also the Wannier functions as obtained from Eq. (27)
conserve this closed-shell property. The e-h pair wave
functions %I+', q are, therefore, eigenfunctions of the com-
ponent of the total spin in the direction of the axis of the
qUantization. Slncc thc Hamiltonian applied docs Qot
contain spIQ-dependent terms %'e can take linear combina-
tions of the e-h determinants to form eigenfunctions of a
definite spin multiphcity. Substituting the appropriate
combinations for singlet and triplet states, respectively, we
obtain after simple algebra for the elements of V in Eq.
(24):

PIG. 2. Effect of baMs sct iGlprovcmcnt (STO-3G to 6-
31G *)at the HF 1cve1 and the importance of corrc1ation (HF to
electron po1aron) demonstrated on tile VB and CB stroctgrc of
thc PTS po1$Incr (all energy va1Ucs arc given I cV).

V'""(R„R„K)=—g exp( —iK R„) g
5 +9 0

C V U C
I

The definition of the bielectronic four-center integrals g is
the same as those of g in Eq. (8) except for the difference
that instead of spin orbitals here only the spatial part of
the Wannier functions is used. For true singlet states
5~ ——1 and for triplets 5~ ——O. The lattice sum over R„ in
Eq. (31) is not a problematic one. The first "Coulomb-
typc integral contains cxpoBcntlaHy decaying charge dis-
tributions on both electrons. The second one (appearing
only for singlet exritons) is, from the point of view of the

e-h pair, an exchange contribution but it can be regarded
also as a CogloQ1b-type lntclactloQ bet%'ccQ hvo neutral
charge cloods. Its leading part ls thc dipole-dipole coU-
pling, therefore, one does not expect serious problems with
its summation. In fact, we obtained reasonably converged
results for the exciton energy by letting the index u run
until the fifth cellular neighbor. Owing to the tails of the
Wannier functions and the fact that their centers are shift-
ed to each other for both electrons, integrals over atomic

TABI.E III. Band extrcma (ej;„,ez~,„), bandwidths (5ej), and forbidden gaps (AEg) calculated at
t1lc HF 1cvc1 and Using thc electron-po18x'on modc1 (aB cncrglcs I cV).

2.891
1.02 1

3.912
—6,812

—10.940
4.128
5.791

3.754
—0.924

4.678
—6,21 1

—11.121
4.910
5.287
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TABLE IV. The lowest singlet-exciton energies (at E=O) for two polydiacetylene structures obtained
by including excitations until the nth neighboring unit cell both at the HF and electron-polaron levels,
respectively (all energies in eV).

5.282
4.718
4.319
4.107
3.994
3.965

Electron polaron

3.206
2.624
2.211
1.958
1.823
1.791

HF

4.762
4.275
3.854
3.672
3.548
3.514

TCDU
Electron polaron

2.901
2.317
1.925
1.550
1.392
1.366

orbitals must be included until ten neighboring elementary
cells. It should be noted here, however, that the dorm-
nance of the exchange term (called also "excitation
transfer" interaction ) in long-range effects is not ab ouo
clear since also the first integral in Eq. (31) contains far
reaching contributions when near diagonal (R, -R, ) ele-
ments of V are calculated. On the other hand, the off-
diagonal elements of the Green's function in Eq. (25) de-

cay very fastly, so that the spatial extension of the exciton
is determined by the long-range contributions in V. The
lowest singlet exciton energies obtained for both polymers
at K=O are presented in Table IV as functions of the
number of neighbors for which the exciton is delocalized.
We can make the following observations on the basis of
these results.

(i) The Frenkel exciton (n =0) represents only a relative-
ly small part of the e-h binding energy (-30% on the
average) for all cases. The exciton must be delocalized at
least with a radius of 25—30 A in the crystal to obtain
reasonably convergent excItatjon energies. Thts is a conse-
quence of the spread of the wave-function components
Q, ~ which are shown, as a typical example, for the case
of PTS singlet excitons in Fig. 3.

(ii) The electron-polaron correction to the HF bands
changes fundamentally the exciton energy by reducing its
value for both polymers by 2.1 cV. This change ts

caused basically by the band-shifting effect of correlation;
the band narrow1ng plays only a secondary lole ln lt.

(iii) The excitation energy obtained for TCDU is in both
the HF and electron-polaron schemes lower by -0.4 eV
than that of PTS. This difference is similar to but some-
what smaller than the one observed also for the corre-
sponding single-particle gaps (-0.5 CV) and seems to be
related to the phase differences, observed also in previous
works, in the in-phase and out-of-phase combina-
tions of the m atomic orbitals of the "-yne"- and "-ene*'-

type bonds in PDA's, respectively.

We can see from these results that the inclusion of
polarization-screening effects during the formation of the
extra electron and hole states influences profoundly the
properties of the exciton. There remains, however, the
question to be answered, how does polarization change the
e-h interaction by screening V? The proper solution of
this problem presumes the knowledge of the position-
dependent dielectric function e(r, t) if we are working
with integrals over Wannier functions in direct space.
Different methods have been proposed for the evaluation
of the Fourier transformed of this important quantity,
e(q, co). ' Their implementation at a level of sophisti-
cation compatible with the above calculations is a rather
intricate problem whose solution is in progress in our lab-
oratory. In terms of this dielectric function, however, we
can perform the following preliminary qualitative analysis
which shows also the order of magnitude of the correc-
tions we can expect from this side. Taking, for instance,
e( q, co) in the random phase approximation (RPA) as

4m.
eRpd q ~)= 1+

—E —AN
c, k v, k+q

(32)

5

FIG. 3. Components 0 of the singlet-exciton wave
s, K=0

function in neighboring elementary cells of the PTS crystal cal-
culated with the help of the Green's function of the electron-
polaron model.

it can be easily proved that eRp~( q, 0) converges to a fin-
ite eo for small values of q, while it drops rapidly to 1

after a few reciprocal-lattice vectors. This Ineans in terms
of our direct space e-h interaction that until the electron
and hole share the same elementary cell, no screening of V
occurs, while for large e-h separations the dielectric con-
stant eo can be used. T'he most interesting is, of course,



the intermediate region of a few elementary cells where
the excitonic wave function drops gradually to zero as
shown by Fig. 3. Until a more accurate c(r) will be avail-
able, we can make use of the interpolation scheme pro-
posed by HCITIlanson Rnd Phillips ' by Writing

e I(r) =eo '+ f (eo —1)/c'0]exp( —Qr), (33)

where Q
' plays the role of a characteristic "breakdown"

length for dielectric effects. Q is a phenomenological con-
stant related to the Thomas-FerIni wave number and in
these calculations we have used for it the value Q =a
where a is the lattice constant. The screening has been
taken into account at the level of the integrals over atomic
orbitals (AO's). Since the product of the two Gaussians is
again a Gaussian centered for each electron in the weight-
ed middle point of the AO's, ' we have used the distance
of these middle points in calculating the screening between
neighboring cells according to Eq. (33). Since the precise
value of eo belonging to the backbones of PDA's is not
known, we have performed these calculations for co=2, 3,
Rnd 5.

The results obtained for both PTS and TCDU are
shown in Fig. 4. %C can see that around the expected
value of co-3 the binding energy of the e-II pair is sub-
stantially reduced, the singlet level at E=O is shifted from
1.79 to 2.16 CV for PTS and from 1.37 to 1.74 CV for
TCDU, respectively. The difference between the PTS and

TCDU values, on thc othcI hand, 1s ncal. ly 1ndcpcndcnt of
screening. These results suggest that the first-singlet ab-
sorption maximum of PTS should be around 2.1—2.2 eV
while that of TCDU is at 1.7—1.8 eV. The width of the
exciton band is -2.9 eV for PTS and -3.5 eV for
TCDU. There exist also triplet-type solutions to Eq. (25)
for both systems. The corresponding exciton bands are
relatively flat and start at Ex 0 0.8——7 and 0.56 eV for
PTS and TCDU, respectively. %e did not recalculate the
triplet levels using screening but we expect for them a
shift similar to that observed for singlets.

The main purpose of this study has been the evaluation
of thc cxcl'tolllc lcvcls Ill Rll ol'ga111c solid fl'onI fllst-
principles formulation without using any empirically ad-

justed paIameters. Slncc, according to ouI' knowledge,
this is the first attempt in this direction, it may be useful
to recapitulate the main steps and approximations made in
these calculations, before we compare our results with ex-
periments. The critical evaluation of these approxima-
tions gives a hint for the limit of reliability of the results
but it also shows how the calculations could be refined in
the future.

The exciton states have been calculated in three major
steps in this work.

(i) As a zeroth-order wave function, a HF determinant
has been calculated for the infinite crystal using a linear
combination of atomic orbitals Bloch functions.

{ii) Electron-electron correlation effects, missing from
the one-particle picture, have been introduced using
Toyozawa's electron-polaron model and second-order
MPPT.

{iii) The energy levels of charge-transfer excitons have
been found, finally, by treating the electron-hole attraction
as a perturbation in the framework of the Lax-Koster-
Slater resolvent formalism.

2 3 S 6

Step (i) is the most straightforward one in studies of this
kind. If technical problems such as the handling of a
large number of AO integrals and the proper truncation of
infinite lattice sums are solved, the only open question
here is the size of the AO basis set to be used to expand
the Bloch functions. This is certainly system dependent
and the proper saturation of the basis must be separately
tested for different crystal types. We have found that for
hydrocarbon crystals the extended spd sct described in Sec.
III gives a satisfactory accuracy at the HF level. The in-
clusion of further (f-type) polarization functions would,
of course, further reduce the total energy toward the HF
limit, but a number of physically relevant quantities such
as one-particle levels, relative conformational energies, etc.
would not signif1cantly change 1n go1ng beyond thc st
bas1s 64,74, 75

The second step is, on the other hand, a really sophisti-
cated problem and its more accurate solution requires im-
provements at least in three directions in the future.

FIG. 4. Effect of dielectric screening on the singlet-exciton
energies at E=O. The matrix elements of the e-h interaction
have been screened using different values of eo in Eq. (33).

(a) According to ollr prcvlous cxpcrIcncc, tllc basis sct.
Inus't bc cxpRIldcd wl'tll further polarlzaflon fllIlctlolls to
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obtain the missing part of correlation. At the same time,
one must go also beyond second order in perturbation
theory. Wc llopc 'that, lly llslllg Rll lllflllltc sunlIIlatloll
scheme over selected diagrams (which seem to be especial-
ly important in infinite systems) it will be possible in the
future to cover the major part of the missing -25—30%
of correlation energy. It must be noted, however, that the
influence of correlation effects on physical quantities such
as the quasiparticle gap is not simply proportional to the
correlation content in the wave function. A more sys-
tematic study of this problem in the case of polyace-
tylenes has shown that the corrections become smaller
and smaller with increasing correlation and an extrapola-
tion of the results from -70 to 100% reduces the gap
only by -0.5 CV.

(b) It must be taken into account, furthermore, that in
calculating polaron corrections the HF orbitals of the IV-

particle system have been used to construct approximate
(N+ 1)-pRrtlclc wave fllllctlolls. T110llgll tllc Inlsslllg rc-
laxatlon contributions Rlc pI'obably Qot 1Rfgc 1n thc outcr
valence region of the infinite system, they could still
somewhat modify the gap. Their calculation using the
Green's-function approach is in progress.

(c) Besides electronic correlation, we expect similar po-
larization effects between electrons (holes) and high-
frequency optical phonons (involving especially bond-
length modifications) which may lead to the formation of
phonon-polaron states with a binding energy of a few
tenths of an eV. The above-mentioned three important
coffcct1ons 1cduccd thc quRslpaftlclc gap ln polyacctylcnc
by —1 eV (from -3 to -2 eV). Assuming similar
corrections also in PDA's, our calculations would predict
8 gRp of 2.5—2.6 cV 1n PTS and 2—2.1 cV 1Q TCDU,
respectively.

The last part of our calculation, step (iii), in the above-
Incnt1oncd 11st, 1nvolvcs two ma)or approximations. Thc
first is the restriction to a two-band model. It can be easi-
ly seen that even in expanding the field operators in Eqs.
(2) and (3) all valence and conduction bands would have
been used, the anticommutation of the a,at operators be-
longing to different valence and conduction bands, respec-
tively, would decouple the problem by introducing factors
of the type 5, , 5„, into the matrix elements of the one-
particle Green's function. For a more accurate descrip-
tion, therefore, the use of two-particle Green's functions is
ncccs sary.

The second approximation here is the use of a
phenomenologlcally determined dielectric function This
made only the estimation of the order of magnitude of
screening effects possible. Since the calculatio n «c'(r r)
for PDA 8 will soon be fl111811cd 111 ollr laboratory
part. of the calculations will be repeated in the near future
to obtain a more appropriate description of this important
effect.

As the previously shown details of our results prove, the
excitons in both PDA structures are strongly delocalized.
The importance of these charge-transfer components has
been established previously also in semiernpirical +-
electron calculation at the Pariser-Parr-Pople level by
Philpott in the case of PTS and by Yarkony for both

crystals, though the quantitative details of their results are
different from the present ones. Other semiempirical cal-
culations reproduced the band gap at the Huckel ' and
Xa levels, respectively, without invoking excitonic ef-
fects. It is interesting to note, however, that all calcula-
tions performed for infinite PDA crystals (including those
Rlnllllg Ollly Rt baIld strllctulcs wltllollt cxcltolllc cf-
fects6' ' ' ) predict a larger gap for the butatriene
structure than for the diacetylene structure.

Tum1ng 11ow to thc compaf1son of ouI' fcsults w1th ex-
periments, we note first that different groups agree
without exception in the interpretation of the absorption
edge at -2 eV in PTS as an excitonic transition. There is
a slight uncertainty about the size of the band-to-band gap
since in the photon energy region comparable to the gap
the processes of creating a bound electron-hole pair (exci-
ton) and a free-charge carrier pair compete with each oth-
er. The analysis of the corresponding photoresponse
curves is further complicated by temperature effects (pos-
sible phase transitions) and by disorder. The comparison
of recent results obtained from optical absorption and dc
photoconductivity measurements ' ' indicates that the
gap should be in the region of 2.1—2.5 eV. It is to be not-
ed, however, that the upper limit is much more probable
since if the excitonic absorption peak would be situated
close to the comparatively broad conduction band, its in-
tensity would be much smaller than the observed one.
This view is supported by recent electroreflectance studies
which relate a strong signal at -2.4 eV in PTS to the fun-
damental gap. There seems to be, however, general
agreement among experimentalists that "a successful in-
terpretative separation of these two processes which would
lead to 8 concluslvc determination of thc band-gap cncI'gy
b,ss, still remains one of the most important unanswered
questions regarding the electronic structure of PTS."' lt
should be remarked in this respect that from the two fac-
tors determining the gap (IP and electron affinity) the
theoretical value of the former is more reliable and its
value of 5.68 eV, obtained for PTS in this work, is in
reasonable agreement with experiment [IP=5.5+0.1 eV
(Ref. 40)j. The larger inaccuracy in theoretical electron
affinities is related to the previously discussed problem of
the nonvariational determination of conduction-band
states.

The experimental situation is less clear in the case of
TCDU crystals. In earlier work, the higher-absorption en-
ergy (as compared with the PTS spectrum) has been as-
signed to the butatriene-type bonding sequence of this po-
lymer. ' ' ' ' Th1s assignment 1s not supported by our
results predicting 8 transition in TCDU which is 0.4 eV
lowcf 1Q cncI'gy than thc cofrcspond1ng onc ln PTS. In
fact, another investigation of this problem has also led to
thc conclusion that thc higher-absorption max1IHR 1Q the
high-temperature phases of TCDU are due to distortion of
the polymer backbone rather than being a consequence of
the diacetylene-to-butatriene phase transition.

The role of such structural deformations in the optical
behavior of these polymers together with pressure and
strain effects in PDA (Refs. 102—105) is under investiga-
tion in our laboratory using the above-described theoreti-
cR1 method. Including Rlso terms into ouI' HamiltoniaIl
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which describe the interaction between the exciton and -the

electfoIIlagnetlc field, calculations usIng the Gleen s-
function formalism are also in progress for the polariton
spectra and for nonlinear-optical effects in PDA's.
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