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A microscopic Inodel for the dephasing of optical impurities in amorphous hosts such as glasses
or polymers is presented. The characteristics of the host system are taken into account via two-level

systems (TLS's) proposed some time ago to explain the low-temperature properties of inorganic
glasses. The TLS s couple to the impurity and to the vibrational degrees of freedom of the matrix.
Exact eigenvalues of the equation of motion for correlation functions describing the optical line

shape are obtained. In the case of weak coupling between TLS's and impurity, and after averaging
over the parameter regime characterizing the TLS's it is found that the optical linewidth depends

strongly on the boundaries of this regime. At temperatures well below the Debye temperature one
obtains a crossover from a quadratic to a linear temperature increase of the linewidth in the case of
coupling to acoustic vibrations, and a crossoveI' from exponential to linear for coupling to optical (11-

brational) modes.

I. INTRODUCTION

In the past several years a considerable number of ex-

perimental papers on dephasing in inorganic and organic
glasses and polymers have appeared. ' " This is due to
the advent of novel, high-resolution spectroscopic tech-

niques such as fluorescence line narrowing, ' ' ' photo-

physical * * ' ' and photochemical' '"' "" ' ' ' hole

burning, and accumulated echoes.
Considerable effort has been expended to explain the

temperature dependence of the homogeneous linewidths of
various impurities. In particular, the exceedingly large
range (6~T &300 K) of the T dependence of Pr'+ in

BeF2 and Ge02 (Ref. 8) has presented a difficult chal-

lenge. For some other impurity —amorphous-host com-
binations, homogeneous widths with a linear temperature
dependence ' ' ' as well as a superlinear T dependence
(a=1.3) (Refs. 19 and 20) have been observed. As the
most general feature of homogeneous linewidths of impur-
ities in glasses, we note that at low temperatures they
exceed the same parameter in crystalline solids by 1—2 or-
ders of magnitude. In order to account for this very large
difference in dephasing time, the existence of low-
frequency degrees of freedom is required. Such degrees of
freedom have been postulated by Anderson, Halperin, and
Varma, and by Phillips, to explain other anomalous
properties of glasses and are discussed in Ref. 27. These
degrees of freedom are considered to be a broad distribu-
tion of two-level systems (TLS's) describing various de-
generate energy states of the glass separated by barriers.
In a configuration-coordinate model the two energy levels
may be thought of as the two lowest states in a double-
well potential with a tunneling barrier separating them
(see Fig. 1).

To connect the temperature dependence of the homo-
geneous linewidth of impurities to the TLS s and vibra-

tions of the host glass, a variety of theoretical models has
been proposed. These various models include (1)
pseudo-spin-diffusion between an isolated impurity and
several TLS's, (2) coupling of the ground and the excited
state of the impurity to different TLS's, 93o (3) coupling
of the ground and excited states of the impurity to TLS's,
which communicate by phonon-mediated tunneling, '
(4) coupling of an impurity to a TLS and direct coupling
to a local librational mode, and (5) use of fractons in-
stead of phonons as inducing the tunneling of the TLS's.

These models produce a range of temperature depen-
dcnccs bctwccn T and T ' which dcpcnds on various de-
tails of the physical mechanisms and TLS parameters
used. A satisfactory explanation of the experimental data
from a general point of view is not available despite these
efforts.

In this paper we present a detailed development of one
of the models mentioned above and compare it to other

configuration coordinate

FIG. 1. TLS represented in a configuration-coordinate model
by a double-well potential.
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treatments. In Sec. II we write the model Hamiltonian,
introduce the notation, and transform it to an exactly di-
agonalized four-level system interacting with vibrations of
the matrix. In Sec. III an equation of motion for the re-
duced density operator p of the system is derived, treating
the phonons as a heat bath. Section IV derives a set of
differential equations for the various dipole correlation
functions and finds their exact eigenvalues. In Sec. V we
expand the exact eigenvalues found previously and carry
oui the averages over the parameters characterizing the
TLS and its coupling to the impurities and vibrations.
Section VI presents a summary of our results and outlook
on future work. Appendix A contains a summary of ab-
breviations used in the main body of the text. Appendix 8
gives an alternative approach to the derivation of the cou-
pled system of equations for the correlation functions via
the density matrix.

II. HAMILTONIAN OF THE MODEL

We wish to calculate the temperature dependence of the
optical linewidth of an impurity in a glassy matrix. To
that end we introduce the Hamiltonian of the model sys-
tern, some basic notation, and write the Hamiltonian in a
prediagonalized form. We start from the following model
whose basic features go back to Lyo and Orbach: ' The
impurity is described in the simplest possible way by only
two energy levels, and it is assumed that the characteristic
degrees of freedom of the glass are the so-called TLS's
with a broad distribution of low-lying excitation energies;
the third component in the model are the vibrational de-
grees of freedom of the matrix. In the model we assume
an interaction between the impurity and a single TLS.
The most probable interaction is an electrostatic one and
can be thought of in terms of a multipole expansion. The
TLS's, in turn, are coupled to the vibrations of the matrix.
A direct coupling between the impurity and the vibrations
is not taken into account because it it believed that its con-
tribution to the optical linewidth is comparable in both
glasses and crystals and therefore negligible at low tem-
peratures. At elevated temperatures corresponding to a
k~T value greater than the relevant phonon energies, the
direct coupling between impurities and phonons becomes
important. This is obvious from the comparison of the
linewidth in crystals and glasses. The Hamiltonian of this
model is given by

Ei and E„are the energies of the lower and upper states

~

I& and
~

u & in the double-well potential, respectively,
and W/2 is the tunneling matrix element through the po-
tential barrier. The energy asymmetry between the upper
and lower states in the double-well potential is

h=E„—EI . (2.4)

The vibrations of the glass matrix are described by the
Hamiltonian

H3 ——g coq, bq, bq, .
qs

(2.5)

Here co~, is the energy of a vibration with "wave number"

q in branch s. The interaction between the impurity and
the TLS is contained in

Q

H2p ——g g h', (b +b )
~ j&&j

~l—
(2.7)

The coupling matrix elements h~~„j =l,u, are proportional
to the deformation potential and also need to be different
for the lower and upper states. In Sec. III we will treat
the phonons as a reservoir interacting via H2i with the
system consisting of an impurity and a TLS. In this way
we arrive at the following grouping of the terms in the
Hamiltonian:

H =Hg+Hg +Hgg,

Hg ——H ) +Hp+H (p,

Hg ——H3,

Hs~ =H23

(2.8)

(2.9)

(2.10)

(2.11)

where Hz and Hz are the system and reservoir Hamiltoni-
ans, respectively, and Hq~ describes the interaction be-
tween them.

812 g ( V» I
l & & l

I
+ ~» I

u & & u
I

)
I l & &l

p=a

V» and V„z are the coupling matrix elements of the im-
purity in state

~ p& with the TLS in its lower and upper
states, respectively. The coupling matrix elements have to
be different in order to enable this interaction to contri-
bute to dephasing. The interaction between the TLS's and
the vibrations of the matrix is given by a deformation po-
tential and expressed by the following Hamiltonian:

H —H ) +H2 +H3 +H/2 +H23 ~ (2.1) A. Diagonalization of the TLS Hamiltonian H2

Ki is the Hamiltonian of the impurity,
~
a& and

~
P& are

its ground and excited states with energies E and E~, and

P~i= XE&ll &&&
I

(2.2)
p=a

The Hamiltonian Hi of the TLS (see Fig. 1) is represented
in the following way:

Jf2=«Il&&l I+&. I&&&& I+
2

(Il&&& I+ I&&&l I) .
8'

H, ~y, &=E, ~1l, &, (2.12)

are written as a superposition of the lower and upper
states,

~

l & and
~

u &, respectively, in the double-well po-
tential, in the following form:

~
1l; & =C„~ I &+C2;

~

u &, i =1,2 . (2.13)

The Haniiltonian of the TLS, II2, is given by (2.3) and
can be diagonalized exactly. The wave functions in the
Schrodinger equation,

(2 3) Explicitly, the eigenvalues are given by
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and

E) z
——,' (—E„+Eg+E),

C)) ——C22 =sing, Cp) =—C)2 = —cosf i

1/2E+5
E —d

(2.14)

(2.16)

E +S~+ +f(E/2} —V b, +V ]'~ =e2,
2

(2.26a)

(2.26b)

63—Ep+Sp+
E1+E2

2 2 1/2 P
2

—[«/2} Vp—~+ Vp]
(gz+ IV2)1 j2 (2.17)

(2.18)

The diagonalized form of the Hamiltonian then reads

a, = QE, jy, )&y, I
.

(2.27a)

(2.27b)

ec Ep+——Sp+ +[(E/2)' —Vp~+ Vp]'~'=e2p,
2

In the following we need the transformation between the
eigenstates

I g~), I g2) and basis vectors
I
i),

I
u), which

is written concisely as

sing —cosP
I
i ) cosu and sinu are given by

(2.28a)

(2.28b)

sing cosP
—cos((} sinII} (2.19b)

+ v, E(IA&& I%I+ IA&&@ij Ip&&pl

Equation (2.9} gives the system Hamiltonian Hs. With
the use of the transformation (2.19) the Hamiltonian H~2
describes the interaction between the 1IIlpUrity and a TLS
becomes

(2.29)

and cosP and sinP are obtained by replacing V~ and Vp on
the right-hand side.

The diagonalized form of the Hamiltonian becomes

Hs= pe; ji)&i I
. (2.30)

The eigenvalue spectrum consists of two closely spaced
pairs of energy levels (see Fig. 2) when the energy splitting
E in the TLS and the interaction Vp between the TLS and
the impurity are small compared to the energy difference
between the ground and the excited state of the impurity.

The transformation between the eigenstates
I 1), I 2)

and the basis vectors
I tp~, a),

I 1t 2,a ) is given by

(2.20)

(2.21)
j4&

I

I

Vp ———,( VIp —Vgp} .
The eigenstates of the Schrodinger equation,

IJs I
i )=e; I

i ),
are expressed in terms of product states.

I g;„p)=
I g; ) I p) (p=a, P) in the following form:

Ii&=Ct
I &i ~&+C2

I A~»&+C3 I 4»~&+Cc I 4»~&

i = 1, . . . , 4 . (2.24)

The four eigensolutions are given by

e( E~+S~+ ———[(E/2) —V~A+ V~]'~ =Pj,2

(2.25a)

FIG. 2. EQCrgg-ICVC1 SChCIC Of thC SQStCI HRI1ltOQIRQ Hg.
ThC SOlid-11QC RITOWS lmIlCRtC OPtlcR1 tI'RQSltlOQS, RQd thC
dRShCd-llQC OQCS ShOW PhOQOQ-lQdgCCd I'C1RXRtlOQ.
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~
1) sina —cosa

~
2) cosa sina (2.31a)

& =(6/E)(cos a —sin a)+2(8'/E)sina cosa

= (4/E) cos2a+ ( JY/E) sin2a, (2.39)

S1QA . COSA

—cosc slnA
(2.31b)

The transformation for the eigenstates
~
3) and

~
4) is ob-

tained from (2.31) by the following replacements:

i~A ~ i~

(2.32a)

(2.32b)

C. Interaction between TI.S and matrix vibrations

The H~iltonian describing the interaction between the
TLS and the vibrations of the matrix is given by (2.11)
and (2.7). With the use of the transformation (2.19), Hqx
becomes

=X ~q. +—D„{Ill&&all —I&1&&~2l)$$ E $$

+ E D„( I A&&A I

+ IA&&AI) {hq+h-q»

hq, +hq,
Sqz

hq, —hq,
Dqs = (2.35)

In this expression we have used the following abbrevia-
tlOQS:

n„=lI„+D„Ia.(~1&&2) + ~2&&1~)

+~p(]3)(4 ) + )4)(3 ))I,
II„=S„+D„I~.( [2)(2[ —[1}(1[)

+Ap( (
4) (4

(
—

]
3)(3

J I,

Lyo and Orbach ' took into account only the last (off-
diagonal) term of (2.33). In a later paper, Lyo ' 5 also in-
cluded thc diagonal part, Rnd argued lt %'ould doImnatc
the dephasing. In our exact diagonalization (2.36) of the
full four-level system we included both terms throughout.
The differentiation between distinct diagonal and nondiag-
onal interactions can be misleading in different parame-
ter ranges of the TLS because of partial compensation be-
tween these terms. Lyo seems to have recently noticed
this fact.

With the use of the transformations (2.31) and (2.32) to
the eigenstates of Hq, Hsx is written in the following

form:

(2.36)

8 =2(h/E)sina cosa —(8'/E)(cos a —sin a)
= ( &/E)»n2a —{8'/E)cos2a,

$$ ~ps +b —gg

(2.40)

(2.41)

In Flg. 2 wc have lndlcatcd by solid-linc affo%'s tlM four
possible optical transitions 81, . . . , Rq. The dashed-line
arrows indicate relaxation transitions which are intro-
duced by the interaction with vibrations and which are
contained in Eqs. (2.36) and (2.37). This simple picture al-
lows some qualitative discussion of the behavior of the op-
tlcR1 spectra. Generally, the optical linc will bc composed
of four contributions corresponding to Rl, . . . , Rq. The
lifetimes of levels 1 and 3, connected by the transition 8 ~,
are shortened by phonon-induced transitions to levels 2
and 4 under phonon absorption. With increasing tempera-
ture, we have an increasing transition rate and therefore a
broadening of the line. For very low temperatures, how-
cvcI', phonon absorption ls Qo longcf posslMc Rnd thcI'c-
fore this contribution to the optical line becolnes very nar-
row. The optical transition E.2 connects levels 2 and 4,
which may decay to levels 1 and 3 on account of phonon
emission. At very low temperatures spontaneous phonon
emission is still possible, and therefore this contribution to
the optical line remains finite even at T=0 K. Similar
arguments apply to the transitions R1 and R4 where
phonon-absorption Rnd -cIQlsslon ploccsscs Rfc lnvolvcd.
Another interesting feature may be seen from Fig. 2. The
frequencies of optical transitions 8

~ and R1 are very close
to each other. For small phonon-induced scattering rates,
compared to the difference in optical frequencies, we have
a broadening of the contributions from R 1 and R1 to the
optical linc. Fof lal'gc scattering rates, however, wc cxpcct,
R xQotional narrow1ng ln this contribution. Thc linc shRpc
actually observed will finally also depend on the size of
the transition dipole moments and on the occupation
probabilities of the various levels.

III. DENSITY OPERATOR GF THE SYSTEM

N'(1) = i [H, 8'(r)], — (3.1)

with the Hamiltonian H given by (2.g), fp{t) is the total
density opelatol of tile system alld the reservoir. The re-

In this section we derive the equation of motion for the
density operator of the system. As stated earlier the sys-
tem consists of the impurity and the TLS along with their
interactions. The phonons are treated as R heat bath cou-
pled weakly to the system. The density-operator equation
allows one to discuss the time development of the system,
and we shall use it in Sec. IV to derive equations of
motion for two-time correlation functions relevant to opti-
cal line shapes. The equation of motion for the density
operator of the coupled system and bath is
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p(t) =Trn W(t) . (3.2)

duced density operator of the system, p(t), is obtained by
taking the trace over the variables of the reservoir,

The equation of motion for this quantity is obtained from
(3.1) using the Nakajima-Zwanzig projection tech-
nique. ' Introducing the Born and Markov approxima-
tions, ' ' wearriveat

d 00—P(t) = i [H—S,P(t)]—y y dr{Trtt [eqseq s ( —r)P 0][n qn qg ( 7)P—(t) nq—, ( r)—P(t)nqs]
qs q's'

+Tr11 [eq'g'( r)eqsPO][P(t)nq' '( r)nqs nq P(t)nq ( r) j (3.3)

The interaction representation of the operators n», and eq, which are defined in (2.37) and (2.41) are given by

—iH~~ sH~re„(—r) =e eq, e

po is the equilibrium density operator of the reservoir, and is given by
—PH~e

—I3H~
Try e

The evaluation of the integrals may easily be carried out, and introducing the abbreviations

Pt»J'(r) =P (nqs ir)
COqs

—6') +EJ

and

5qq(r)=»r5(O3»s ei+ej)(nq +r—), r =0, 1

the equation of motion for the density operator becomes

p(t) = i [Hs—,p(t)]+i gP [n „II,p(t)+p(t)II, ]+i g [Pf'1(1)—P f2(0)]D,B K12
qs qs qs

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

+1 g [—P)'1(0)+Pf2(1)]D qsBssK21+1 g [P/3(1) P$4(0)]D q—sBPK34+1 Q [—P/3(0)+P$4(1)]D qsBttK43
qs

»r5(coqs )(2nqg + 1)[nqg II qgp(t) p( t)II qs ] g [5)'1(1)+5f2(0)]D qsB~K 12

y [511(0)+5f2(1)]D qsBuK—21 y [543(1)+534(0)]D—»SBt3K34 y [543(0)+534(1)]D—q BPK43
qs qs qs

Ktj*=[nqs
I

1 &&j I
p(t)+p(t) Ij &&1

I ] .

(3.9a)

(3.9b)

In writing this equation we have used II», from (2.38), and Bit from (2.40).
Explicitly, the equation of motion for the density-matrix elements, using the eigenstates (2.24) as basis vectors, reads

p11= W12p11—+ W21p22 2(1PO+ ~0Aa)Bnp12+ 2(1PO ~0A~)B~p21 (3.10)

P22 P11 ~ (3.11)

p12=2( —1' {Po—A~[P1+P2(0)] j —~2(0)A~ )Bssp11+2(1 {Po+A~[P1—P2(1)]j +~2(1)A~)B.p22

+ { t(el e2) 2 ( W12+ W21) 4~0A(g jp12+ { 1 [P2(0)+P2(1)]B~+ 2 ( W12+ W21) jp21

P21=P12 ~

p31 ——[—i (e3—e1)——,
'

( W12+ W34) —60(A~ —Ait) ]p31+ {1[P2( 1 ) —P4( 1 )]+62( 1 ) +64( 1 ) jBssBpp42

+ ( —i {2P0+ (A ~ —A p )[P1 —P2 ( 1 ) ] j +b 2( 1 )(A ~ —A t1 )—60(A +A t1 ) )B p32

+(i {2P0—(A Att)[P1 P4(1) j b4(1)(A~———A p) —~o(An+A p))BpP41—

(3.12)

(3.13)

(3.14)



pg2 ——[ —i [P2(0)—Pg(0)]+52(0)+64(0)jB Bpp3(+[ —i (e4 —ep) ——,
'

( W2)+ %43) b—o{A~ —A p) ]p~~

+(i [2Po+(A A—p)[P&+P4(0)] j +64(0)(A —A p)+ ho{A +A p))Bpp3$

+(—i j2Po —(A —Az)[P, +P,(0)]j b,,—(0)(A Ap—)+ho(A +A p))8 p4i

p3g
——( i—[2Po —(A +Ap)[P)+Pp(0)) j —b2(0)(A +Ap)+ho(A —Ap))8 p3)

+(i t 2Po+(A~+A p)[P) P4—(1)]j +kg(1)(A~+A p)+ ho(A~ —A p) }8pp4q

+ [—i {e3—e2) ——,
'

( W2)+ 8'34) —ho(A~+A p) ]p32+ t i—[Pp(0)+P4(1)]+hp(0)+ 64(1)jB Bpp4),

p& &
——(i ( 2Po —(A ~+A p )[P& + P4(0) ] j —b &(0)(A ~ +A p ) —ho(A ~ Ap )—)8pp3]

+(—i(2Po+(An+Ap)[Pi —P2(1)]j+hz(l)(Aa+Ap) —ho(Aa Ap))—Bapcz

+ ti [P2(1)+Pg(0)]+62(1)+64(0) j8 8pp32+ [ i (—e4 r—$) —,
'—( w'$2+ %$3 )—ho(A +A p) ]p4, .

(3.15)

(3.16)

The factors P, and PJ (r) contain the principal-value parts, and the quantities ho and b J.(r), contain the 5-function parts
of integrals of the form J exp(icot)dt. Explicitly, these quantities are defined in {Al)—(A11). Equations {3.10) and

{3.11) for the occupation numbers of levels 1 and 2 (see Fig. 2) show that vibrations induce transitions only between these
two levels, and that there is no coupling to the occupation numbers of levels 3 and 4. The transition rates between the
levels are 8'~2 and 8"2~ and defined in (A12) and (A13). In addition to these transitions, there is also a coupling of the
off-diagonal elements p&z and p2&. Analogously, the time derivatives of these qualities couple to the occupation numbers

p~~ and pq2, and to p&z and p2~. In these equations, the quantity e~ —e2 occurs, which is the difference of renormalized
energies in (A16) and (A17). The equations for p33, p44, p34, and p~3 are obtained from (3.10)—(3.13) by replacing 1—+3
and 2~4 with P3 P&, they——also form a closed set. Inspection of (3.14)—(3.17) shows that the off-diagonal matrix ele-

ments p3&, p4z, p3z, and p4& form a closed set of equations in the same way as their conjugate-complex matrix elements.
In the following and in connection with Appendix 8 we shall see that these are the essential matrix elements for the
description of optical absorption.

IV. CORRELATION FUNCTIONS FOR THE OPTICAL LINE SHAPE

To describe the interaction of light with our system we have to couple the light field to the electronic-transition dipole
of the impurity. From linear-response theory the optical line shape is determined by the one-sided Fourier transform of
the two-time dipole-dipole correlation function as follows:

X"(~)=if dr since' Tr[P{r)[Ppro]j, (4.1)

The dipole operator may be represented by
2

P= Xc«14 a&&P;,&I+ It,&&&4;,al), (4.2)

using as basis functions the product states of both the impurity and the TLS, as in (2.24). The transformation (2.31b) to
the eigenfunctions of Hs results in

P=pi{13&&11+
I

1 &&31+14&&21+12&&41}+s2(14&&11+ I
1 &&41 —13&&21 —12&&31) (4.3)

p&
——p cos(a —P),

p2 ——p sin(a —P),

(4.4a)

(4.4b)

where a and P have been defined in connection with (2.29). On account of the coupling between the impurity and the
TLS, the original transition dipole between levels a and P is now replaced by the four transitions indicated by Fig. 2.
The reduced density operator p~o at the initial time in these states may be represented as

pso= Xp li&&i
I

. (4.5)

With this representation for pso, we have

[P»o]=pi[(pi —p3)(13 & &11 —
I

1 & &31)+(p2—p4)(14& &21 —12& &41)]

+JM~[ —(p2 —p3}(13& & 21 —12 & & 31 }+(pi—p4}(14& &11 —
I

1 & & 41)l

and the two-time correlation function of the dipole operator reads
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TrIP(r)[P,pro] j =p)(p) —p3)[s)(~)—S) (~)]+@)(p2—p4)[S2(&)—S2 (&)]

-p.,{p,-p, )[s,(.)-s;(.&]+~,(p, -p.)[s,( &-s,*( )], (4.7)

with the following abbreviations for the various two-time correlation functions:

Si«&=TrIP«) I 3&&1I j =TrIPe "'I 3&&1I I =(P' 8 "'I 3&&1I & (4.8a)

S2«)=TrIP«) I4&&2I J=TrfPe "'14&&2I l=(P'e "'I4&&2I) (4.8b)

(4.8c)

S4(~)=TrIP«) I4&&1I ]=TrIPe "'l4&&1I l=(P' e "'I4&&11&. (4.8d)

In writing (4.8) the quantum regression theorem ' has been used, and I. is the Liouville operator describing the time
development of the reduced density operator according to (3.9),

(4.9)

A. Equations of motion fol the cof'f'elation functions

To derive equations of motion for the correlation functions we differentiate St (r) with respect to r and arrive at

S,(r) =(P+,e-'"(—iL. )
~
3 & &1

~
) . {4.10)

Applying the Liouville operator L from (3.9) and (4.9), and proceeding in the same way with the other correlation func-
tions of (4.8), we obtain the following closed set of equations for S;(~), i = 1, . . . , 4:

S)(v) =[—i(F3—e))——,
'

( W)2+ 8'3g) —bo(A~ —A p) ]S)+I i [P—2(0) —P4(0) ]+by(0)+64(0) jB 8 S2

+( i I2PO ——[P)+P2{0)j{A +Ap)I —b2(0)(A +Ap)+60(A —Ap))8 S3

+{iIZPo—[P)+P4(0)](A +Ap)j —bd(0)(A +Ap) —Ao(A Ap))Bpsg, —

S2 ——fi [P2(1) Pg(1)]+62(1)+—64(1)IB~Bps)+[ i (eg e—2) —,
'—(8'2)—+8'g3) —bo(A~ —Ap) ]Sg

+(iI2P0+[P) P4(1)](A +—Ap)+54(1)(A +Ap)I+ho(A —Ap))Bps3

+( —i I2PO+ [P) —P2(1)](A~+Ap)+52(1){A~+Ap) I 60(A~ Ap)—)B~sg, —

S3 ——( —iI2PO+[P) —P2(1)](A —Ap)1+62(1)(A Ap) 60(A +Ap—))8 S—)

+(i I2PO+ [P)+Pg(0)](A~ —A p) J ~by(0)(A~ —
A

p}+ho(A~+A p))BpS2

+[—i (e3—F2) ——,( 8'2) + 8 3g) —60(A~+A p) ]S3+Ii (P2(1)+P4(0)]+52(1)+54(0) I B~Bpsg,

S4 (i I2PO———[P) P4(1)j(A~ —A p) J
—b4( 1 )(A —3p) —60(A—+A p))Bpst

+( i I2PO —[P(—+P2{0)](A —Ap) J
—62(0)(A —Ap)+50(A +Ap)&8 S2

+I i [P2(0)+—P4(1}]+62(0)+54(1)IBBps3+[ i (e4 F)) ——,'(W—)2+—W'43) —bc(A +Ap) ]S4 .

(4.1 1)

{4.14)

This set of equations may also immediately be obtained from the equations of motion (3.14)—(3.17) for the density ma-
trix, as shown in Appendix B. To simplify the set of equations we shall neglect all principal-value parts in the coeffi-
cients of (4.11)—(4.14), and we arrive at the following set of equations for the correlation functions:

s( =[—&'(e3 —e) ) ——, ( 8'|2+ 8'34)]S(+[b 2(0) +kg(0)]8~8ps2 —62(0)(A~+A p)B~S3 hg(0&(A~+A p)Bpsg, —

S2 ——[b2(1)+64(1)]8~8pst+[ i(e4 e2) —,
' (—8'2, +—%~3—)S2+64(1)(A +Ap)Bps3+62(1)(A +Ap}8 S4,

S3 ——62(1)(A —3p)8 S)+bg(0)(A —3p)Bps~+[ —i(e3 —e2) ——,
' (8'2)+ 8'34)]S3+[&2(1)+&g(0)]8BpS4,

Sg ———54(1)(A~ —A p)Bpst —52(0)(A~ —2p)B~S2+ [b2(0)+54(1)]8~8ps3+[—i (e4 —e))——,( W)g+ II 43)]sg . (4.18)

8. Exact calculation of the eigenvalues

» this subsection we obtain the exact eigenvalues of the simplified set of Eqs. (4.15)—(4.18). With the ansatz
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S;(t)=e 'S; , (4.19)

the solution of the coupled set of differential equations is transformed to a four-dimensional non-Hermitian eigenvalue
problem. The exact eigenvalues are given by

R, =——,[A+(8 ~2~C )'~'],

R„=——,
' [~+(8—2~C)'"] .

A, 8, and C are abbreviations for the following expressions:

A =i (es e)~—« ep)—~ [by(1)~kg(0)]BN+ [kg{1)~kg(0)]8p,
8= [i (« eq—)+[hq(1)—hq(0)]By] + ji(ez —e&)—[hq(1) —Az(0)]8~]

y2[hp(1)8~ ~hg(1)Bp][bg(0)8 ~kg(0)Bp] ~2[kg(1)8 ~kg(0)Bp][hp(0)8~ phd(1)Bp],
C= [-(«—.,)(~,-~,)+ (.,—.,)[~.(»-~,(»]8,'-~(«-;)[~,(1)-~,(0)]8.']'

—4(Bp —8')[(&p—~)) &g(1)&g(0)Bp—(«—eg)'&g(1)&p(0)8 ] .

(4.22)

(4.23)

(4.24)

The imaginary parts of these eigenvalues determine the central frequency of each transition in the optical line, their real
parts determine the corresponding linewidths. The association between the eigenvalues R &, . . . , R~ and the transitions
ln Fig. 2 depends on the relative magnitude of the model parameters.

To simplify the following discussion of the eigenvalues, we introduce the following approximations:

kg(1) =hp(1) =b(l },
kg(0) =kg{0)=5(0),

(«—ep), (ep —e)) )~h(1)8 p, h(0)8 p .
Equations (4.25) and (4.26) imply that the density of the phonons which contribute to the transitions between the levels
with energies e~ and eq and between the levels with energies es and « is the same. The assumption in (4.27) is that the
transition rates (A12)—(A14) between the levels e~ and eq and between eq and «, and thus the lifetime broadening is
much smaller than the energy splitting between the levels. The latter approximation is consistent with the Born approxi-
mation used in the derivation of the equation of motion for the reduced density operator.

With (4.25) and (4.26) the expression (4.23) for 8 simplifies to

8 =—(«—es) —(eq —e~) +2i(«—eq)[h(1) —5(0)]Bp—2i(eq —eq)[h(1) —6(0}]8 +[4(1)+6(0)](8 +By) .
(4.28)

In the discussion of the eigenvalues we need ~C, and the expansion of this expression using (4.27) reads

2~C =2(«—eq)(eq —e~) —2i(eq —e~)[h(1)—b( 0)] Bp+ 2i(« eq)[d (1)——6(0)]8 +4 6{1}b(0)8~(8,—8~)

{4.29)

8+2~C = —[(«—eq)+(eq —e~)]~+2i [(«—eq)+(eq —e~)[b,(1)—b,(0)](8~+8 )

~[5(1)~h(0)] (8 ~Bp) +4 5(1)5{0)Bp(8 —Bp}+4 6(l)h(0)8 (8 —Bp) .
&z—&].

Using (4.27) again, we have

(8 —~2C)'~ =i(« es~eg e—)) [6(—1)—6—(0)]8 y[4(1)—4(0)]Bp .

We insert this result into (4.21), and obtain for the eigenvalues Rs and Rq,

R z —— i (e&—ez) ——5( 1)8 —5(0)8~,
Rg —— i (« e))—6(0)—8 ——b,(1)8p .

(430)

(4.32)

(4.33)

In deriving this result we have assumed 8 gBp. If8 ~8~, R& and R~ interchange with one another.
The eigenvalue Rq describes a line centered at ez —ez whose width is determined by the real part of R&. 6(1)BN de-

scribes transitions from level 2 to level 1 with the emission of a phonon, and 4(0)By gives a contribution to the
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linewidth due to transitions from level 3 to level 4 with the absorption of a phonon. The central position of the transi-
tion described by Rq is at e4 —e 1, and its width is determined by transitions from level 1 to level 2 due to phonon absorp-
tion, and from level 4 to level 3 due to emission of a phonon. Both eigenvalues have a finite real part also for T +0—K
arising from spontaneous phonon emission.

In order to evaluate R 1 and R2 we have to differentiate between two cases. In the first case of small phonon transition
rates (slow motion), we have

~

(e'q —e2) —(e3—ei)
~

&&b,(0)8 p, h(1)8~ p,
and the evaluation of (8 +2@C )

'/ results in

(8 ~21/C )'/'=i (e4 e2—e3—+ei)+[i}(1) &(—0)](8'+8p) .

The eigenvalues R 1 and R 2 finally become

8 1
———i(e3 —ei) —b(0)(8 ~8ii),

R2 —— i (—e4 e2—) 'h—(1)( 8~~8P) .

(4.35)

(4.36)

(4.37)

The imaginary parts indicate lines centered at e3—ei and e4, —e2. The real part of 81 disappears for T~O K, whereas
the one of R2 remains finite.

In the second case of rapid phonon transitions (fast motion leading to motional narrowing),

~
(e4 e2)—(e3—ei )—

~
&&6(0)8~ P, b,(1)8~P, (4.38)

h2 ——[b(1)~h(0)] (8~ ~8p) ~4 5(1)h(0)8p(8 —8p) —4 5(l)b(0)8~(8N —8p) .

Again expanding (8+2M C )'/ using (4.38), we have

[&(1)—&(0)](8,'+8P) 1 (eg ei —e2+—ei )'
(8~2 C)'/2=(i, )'/2~1{e, ~, ~,~~, )

)
1/2 )1/2

1 (ez—e3—@2+@1) [A(1)—6(0)] {8 +8P)
)1/2 hp

Inserting into (4.20) we obtain, for the eigenvalues,

(4.40)

RI [b{1)—b (0)](8 +8 p)
Rg (E4 62+E2 ei—)+ (E4 'E—

2 E3+e 1
—)''—

(I )1/2

1 (e4 e2 @3~—ei) — [&(1)—&(0)]'(8 +8P)
+ 1—

)
1/2

A deta11ed Investlgatloil of I12 sllows 'tllat, for

(V~ —Vp) &&E,v, vp, h

——,
' [5(1)~h(0)]{8,+8P)+ —,(ii2)'

(4.44)

with N~ given by

{4.45)

the first term in ii 2 is much larger than the foGowing ones. Unde«hese conditions the «» parts « the eigenv»ues «e

Re(82)= —[h(1}~h(0)](8 ~8p}, (4 4

&(1)&(0) ~2 &P—& &(19(0) 1 ~ +P
&(I)+&(0) (X Ep)'/2 [b(l)~b(0)]' W' (Ep+& )[(&p)' '+(& )' ']

Nii is obtained by replacing V~ in (4.45) by Vii. Finally, we specialize (4.44) to the case

E,5~~ V~, Vp .
Then Re(R1) is given by

(4.46)

g(1)g(0) W dk ( V —Vp)

&(1)+&(0) E'
~(i)~(0)

32[(5{1)~6{0)] W
(4.47)
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According to (4.41) in the case of motional narrowing, we
have two imaginary parts which are slightly shifted away
from the average value —,'[(ea —e2)+(e3—ei)] to lower
and higher frequencies, respectively. The real part of Rz
is increasing linearly (for high temperatures) with increas-
ing temperature, which is obvious from comparison with
the defiiution of b(0} and b,(1}according to (4.25}, (4.26),
(AS)—(Al 1), and (3.8), and indicates a contribution to the
optical line which broadens with increasing temperature.
The real part of R i consists of two contributions, the first
of which increases with increasing temperature, whereas
the second decreases and describes a notional narrowing
on account of the phonon-induced scattering between the
energy levels ei and ez and between ei and e4. The first
contribution to Re(R, ) has been obtained recently '

and will be discussed in more detail in the following sec-
tion.

tunneling matrix element 8' through the potential barrier
of the double-well potential is given by

(5.1)

where A, describes the overlap between the wave functions
in the two minima of the potential. It is assumed ' that
the distribution function is also constant in a range 1, ;„to

coo is an attempt frequency of the TLS to tunnel
through the barrier between the two minima, and is
chosen to be of the order of the Debye frequency coa. We
shall assume that we have also a distribution of coo values.
The interaction V= V~ —Vp between a TI.S and the im-
purity, and the interaction h =h' —h" between the vibra-
tions of the matrix and a TLS, will also be different for
various TI.S's and must be described by a distribution
function. We shall assume that the various distributions,
except those for b, and A, , are independent, which allows
us to ~rite

V. AVERAGING OVER TLS'S P(h, V, roo, b„A, ) =Pi, (h)Pi ( V)P„,(cop)P(A, A, ) . (5.2)

In thc prcccd1ng scct1on wc have calculated thc clgcn-
values of a system of equations of motion for the correla-
tion functions which describe the optical line shape.
These calculations have been carried out for fixed values

of the parameters of the system. The TLS's which are as-
sumed to be characteristic for the glass, have, however, a
broad distribution of system paraineters. In the inodel of
Anderson, Halperin, and Varma, and of Phillips, 6 it is
essential that the distribution function of the energy asym-

metry is constant between zero and a maximum value

h, „and decays rather rapidly outside of this range. The
l

(5.5)

According to the model given in Refs. 25 and 26 the dis-
tribution function P(b„A, } is taken to be a constant

» the f»lowing di~~u~sion the detailed form of P„(h),
Pi (V), and P„,(~0) is not very important. We shall as-

sume that they are normalized in the following way:

fPi, (h)dh =1, (5.3)

I'y V V=1, (5.4)

I Q)o QPO= l

P(b„A, )= P independent of b, and A, for 0&5, &b, ,„, A, ;„(A,&A, ,„,
0 elsewhere .

(5.6)

The normalization condition

f dh f dA, P(K, A, )=1

results in

II'=—
~max( ~max ~max }

(5.8)

I

Transforming to new variables E, W, and coo,
' 1/2E= 6 +No e

GPO=QPO ~

(5.10)

(5.1 1)

(5.12)

The average value of a function hm(h, V, coo, b„l,) is given

by

ha)= fdh fdV fda)0 fdh fdibs(h, V,coo, h, A)

&&P(h, V, coo, b„A, ) . (5.9)
I

The average value now becomes

(5.13)

(bra}a„=fdh fdV fdcoo fdE fdW bee(h, V coo,E, W)Pi, (h)Pi (V)P, (coo) z, . (5.14)
~max ~max ~min W(E —W )

From this expression we see that the distribution function
in the new variables E and 8 is peaked at E = 8'. In the
following we shall evaluate the first term ' of the
linewidth (4.47), and use, for Aco in (5.14), Here we have used the abbreviation (V~ —Vp) = V . On
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account of the approximations (4.25) and (4.26) and insert-
ing (2.36) from (AS)—(Al 1), we have (m =0, 1)

4(m) =g n5(a)q, —E)[n (roq, )+m]
2 N 2

In the following two subsections, (5.14) will be evaluated
for interaction with acoustic and optical phonons
scparatcly.

A. Averaged liam idth fox' inteI"action with acoustic phoIloIls

In this subsection we evaluate tke averaged linewidth in
the case of the interaction of the TLS's with acoustic pho-
Ilons. Thc Interaction matrix clcmcIlt may then bc wrlttcn
in the following form:

hq, 5„f'(c——oq, /2Mc2)'~', j=l, u .

IB writing this expression we RssUIDC that the TLS in-
teracts only with a single acoustic branch. fJ is the defor-
mation potential describing the interaction of the acoustic
mode with the lower and upper states, respectively, in the
TLS. c is the sound velocity of the mode and M is the
mass of the unit cell. In the following it is convenient to
usc thc abbrcvlatlon

which shows that 81 Rnd 82 are sIDallcr than ND, and

6 ) ——(a)D —8') ), b,2
——(co~ —8"2 )

2 2 1/2 2 2 I/2 (5.28)

As mentioned in connection with (5.13), we use IV and E
as integration variables. The regime of integration
these variables is pictured in Fig. 4. For the evaluation of
these integrals it is useful to introduce variables which are
normalized to the Debye temperature and frequency,
respectively,

X=
AD

(5.29b)

Therefore the maximum value of the energy splitting in
the TLS, E =(8 +dP)'~, is larger than coD. However,
on account of energy conservation in the interaction be-
tween TLS's and vibrations„which is expressed by the 5
functions in (4.25) and (4.26), only TLS's with E&co D
contribute to relaxation. Therefore the integration extends
over the regime pictured in Fig. 3 instead of over the rec-
tangle suggested by (5.6). Here we have introduced

fMfl (5.27)

Using (5.9) and (5.24), we then arrive at

~qa=c IV I

(5.20)

h(m)= f E [n(E)+mj,
16m' pg5

where we have introduced the mass density

(5.21)

where Vo is the volume of the specimen. Equation (5.16)
thCQ bCCOIQCS

x (y'-x')'"
X

y sinh(y/T„)
(5.30)

(f'& and ( V & are averages of interactions of the TLS's
with vibrations and the ion. x ~ and x2 are defined by

Here X is the number of unit cells in the specimen. The
evaluation of the last factor in (5.15) results in

6(0)h(1) 1 1

5(0)+b,(I) 32m pc5 sinh(PE) '

1 1 V2f2
8' (E —8' ) (5.24)

2~ pc E sinh(PE)

For the calculation of the averaged linewidth (5.14), we
now assume that the attempt frequency uo has a definite
value co, which is smaller than the Debye frequency,

It is assumed2 that the maximum value of the energy
asymmetry is larger than the Debye frequency,

PIG. 3. Integration Iegime of the variables 6 and 8 fol the
evaluation of (5.14) in the case of acoustic phonoIls.
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flinx2 ——W2/coa ——r e

Carrying out thc x 1ntcgratlon, wc obtain

2

(~ &.,=(I'&(I"&-
2~p& ~max( ~max ~min )

X 3Fa« ~ma*~ma. T.» (5.32)

W„ W2

FIG. 4. Integration regiIne for the variables E and 8' result-
ing in (5.30).

2 2 3/2

y sinh(y/T, ) "~ y»nh(y/T, )
(5.33)

For high temperatures T„we may replace sinh(y/T, ) by
its argument. Equation (5.33) then immediately shows
that E~ is proportional to T„and vvc recoveI' the linear
temperature dependence of the Lyo-Orbach 9 result. In
the first integral this approximation is valid for
T„»10 if we assume A, ;„=5, as is generally accept-
ed. In thc second 1ntcglR1 this approxiDlation requires
T„»1,and therefore we would expect the linear tempera-
ture dependence to be valid only above the Debye tem-
perature. However, on account of the difference of the
roots ln thc second integral~ thc 1ntcgl"8nd dccRys to zclo
ratllcI rap1dly Rnd docs Qot contribute to thc 1Qtcgral Qcar
the upper limit. This has been shown in detail in a recent
publication. The consequence of this partial compensa-
tion of the integrand is that the linewidth depends linearly
on tcIDpcrature Qot only above, but also below', the Dcbyc
tC1TlPCI'Rtul C.

As is obvious from Fig. 1 of Ref. 32, for very low tem-
peratures, the integrand decays rather rapidly on account
of the hyperbolic sine function in the denominator.
Therefore, if A, ;„ is not too large, and thus x2 is not too
small, the second integral does not contribute to F,. In
the f1I'st integral wc Hlay rcplacc thc low'cI' and uppcI' lim-
its by 0 and oo, respectivdy. If we neglect xi in the root
of the first integral from dimensional considerations simi-
lar to those made tn Ref. 31, we arrive at a quadratic m-
crease of the linewidth with temperature, which, however,
is valid only for low temperatures.

IQ thc Qumcncal cvalUatlon of thc tcmpc18turc-
dependent part Fa of the linewidth, we have assumed
P' = 1~ 1.e.~ Q)~ =6)g)~ Rnd A,m~~= IO. Thje result 1s ncRrly 1Q-

dependent of A, ,„for A, ,„&10 and is shown in Fig. 5 for
A, ;„=1,3, and 5 as a function of the reduced tempera-
ture. The curves show that the linewidth depends linearly
on temperature also well below the Debye temperature.
This is most clearly seen from the inset, which represents
the range 0~ T„~0.01 for A, ;„=5. Another interesting

result of the numerical evaluation is the strong depen-
dence of F Rnd thus of thc dcphasing time on thc value
of A, ,„. The physical reason for this increase in thc dc-
phasing rate is that, with decreasing A„ thc interaction Rnd
therefore the splitting between the two energy levels of the
TLS is increased. The density «acousticai phonons with
this higher energy, however, increases quadratically within
the Debye model, and thus gives rise to faster dephasing.

Comparing these results with the experimental tempera-
ture dependence of Hegarty and Yen, it is obvious that
the Dlodcl can explain oIlly the very-low'-teIDpcraturc part

0.50

0.35—

0.25—

C)
0.20—

0.00 -—
0.00

T

FIG. 5. E„detcrlmning thc temperature depcndcIlcc of tIlc
linevridth for X,„=10, and A, ;„=I, 3, and 5. The inset shove
Fy. 1I1 thc case of A,mttl=5 fof sIQall values of T~ oI an cnlargcd
scale.
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of the experimental curve. For higher temperatures other
dephasing mechanisms, such as Raman processes and a
direct coupling of the impurity to phonons, should be tak-
en into account.

TLS optical phonons

B. Averaged linewidth for coupling to optical phonons

A large number of experimental investigations of the
temperature dependence of the linewidth of impurities in
glasses has been carried out using organic matrices. In
these materials in addition to the acoustic vibrations, opti-
cal and vibrational modes play an important role. For
that reason, in this section we investigate the influence of
these vibrations on the temperature dependence of impuri-
ty dephasing. As in the preceding section, the vibrations
are coupled to the TLS, in contrast to the recent investiga-
tions of Jackson and Silbey in which the librational
modes are directly also coupled to the impurity.

The coupling matrix element between TLS's and pho-
nons now becomes

I

E „= 6 „+W2

1 E
sinh(PE) alp

( )
W(E 8')—

E6

FIG. 6. Model for the density of optical modes.

min

IIq', (OI, /OI p——)I'g', j=I, u

where p = —,
' (Ref. 44) or 1." We introduce the abbrevia-

tion

(5.34)

I u

and neglect the dispersion

qs =COs

Using g 1=%from (5.16), we obtain

b (m) =Ircr(E)[n (E)+Ij ,' (E/oIp) I'g—

(5.35)

(5.36)

(5.37)

cr(E)= +5(o3, E) . — (5.38)

The temperature-dependent factor in (5.1S) is given by

6(0)b (1) 1 E 2 1

where the density of optical phonon models o(E) is given
by

(5.40)

5„=b, /OIp,

(g2+ 2)1/2 (g2+ 2)1/2 (S.42)

In order to carry out the averaging in (5.14) we have to
specify the parameters in our model. In Fig. 6 the distri-
bution of the energy splitting in the TLS's and the fre-
quencies of the optical modes is presented. It is assumed
that the energy splitting in the TLS's extends from some
minimum value E;„=8'~ below the Debye frequency to
some Ininimum value E,„=(b, »m+8'2)' above the
Debye frequency. With respect to the density of optical
modes, we assume that it is constant between a minimum
value co;„below E,x and a maximum value ~,„aboveF,„. Taking into account the energy conservation in the
interaction process between TLS's and vibrations, we ob-
tain the integration regime in Fig. 7 instead of the rectan-
gle given in (5.6). Transformation to variables W and E
gives the regime in Fig. 8. For the numerical evaluation
of the integral (5.14), we introduce reduced variables as in
(5.29), and in addition

and (5.15) becomes xi and x2 are defined in (5.31). The integral now becomes

2~(g') ( V')
~OI av= 2

COD

X
0(y) x(y —x )'/

sinh(y /T, ) y

f 'dy f'dx+ f 'dy+ f 'dy f 'dx f,', „,dx
I'

(5.43)

Performing the x integration, we obtain, for the averaged linewidth, the following result:

with

(b,OI),„= Oy 2
3 +0(ri~mini~maxi~riymini Tr ) i

max max min

X2

slI111 y /Tr y 2 SII111 y /T„y
3'2

I'1 slllll y /T„y

(5.44)

(5.45)
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0.36 — 0.06

0.32 — 0.04 - ~

C

0.20—

~min

FIG. 7. Integration regime of the variables 6 and 8' for the
evaluation of (5.14) in the case of optical phonons.

0.08—

0.04—

0.00
0.00 0.20 0.40 0.60 0.80 t.00

Here cr~ describes the constant density of librational
modes. IIl thc nDIDcrical cvaluatlon wc have assumed

p = 1» P' = 1» and kp =2» l.c.» Ng =GAD» 6~~~=26)g)» and
A,~,„=10. The temperature-dependent part of the
linewidth I'0 is represented in Fig. 9 for y;„=0.5 and in
Fig. 10 for y;„=0.1. The three curves in each figure
represent Iio for A, ;„=3,4, and 5, respectively. The inset
gives the temperature dependence for I, ;„on an enlarged
scale. From the figures it is clearly seen that the linewidth
depends strongly on A, ;„. Comparison of Figs. 9 and 10
shows that the onset of the linewidth contribution from
the optical phonons is strongly influenced by the value of
y;„. For larger values of y;„, a smaller part of the
TLS's contributes to the dephasing because of energy con-
servation, leading to s1owcr dephasing and thus a smaller
linewidth. Another interesting outcome of the numerical
evaluation of the integrals is that as in the case of acoustic
phonons the linear temperature dependence of the high-
temperature approximation extends to rather low tempera-
tures. The formal reason for this behavior is again the
difference in terms in the integrand of (5.45). A numeri-
cal estimate of the prefactor of the linewidth expression
shows that the presence of low-frequency optical modes
can influence the linewidth considerably.

T

FIG. 9. Fo determining the te1TlperatUre dependence of the
linewidth for the onset of the librational- and optical-mode fre-
quencies y;„=0.5 for A, ;„=3,4, and 5. The inset shows, on an
enlarged scale, the nonlinear part of Iio.

In this paper we have presented the first treatment of
optical dephasing of impurities in amorphous hosts using
the density-operator approach. The density-matrix equa-
tion allo%'s us to describe rclaxatlon proccsscs ln thc
model used in the preceding sections, as well as to derive a
coupled set of equations for the correlation functions
describing thc Optical linc Shape.

We obtained, in Sec. IV, a full set of exact eigenvalues
for the equivalent four-level problem describing the sys-
tem part coupled to the bath, and give results in the weak
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C

0.50—

0.40—

0.20—

0, 'l0—

Wp ~max It W& + ~max
2 2 W2+ A,„E

0.00
0.00 0.20 0.40 0.60 1.00

FIG. 8. Integration regime for the variables E and 8' r'esult-

ing in (5.43).

FIG. 10. Temperature dependence of the linewidth I'0 for
y;„=0.1. Note the crossover to a linear temperature depen-
dence occurs at very low reduced temperature, 1",&g 1.
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coupling regime (V, Vj3~~E). In the course of the full
treatment for the various contributions to the optical
linewidth, we have identified several different mechanisms
for the temperature dependence: With increasing tern-
perature we find lifetime broadening on the one hand and
the Lyo-Grbach term and motional narrowing on the oth-
Cl.

%'e have introduced phonon-induced tunneling both via
acoustic and optical vibrations (librations) with compar-
able contributions to the optical dephasing rate. The
averaging over the various parameter ranges characteriz-
ing the TI.S's has been performed and shows a strong
dependence of the linewidth on the range limits.

We find that the crossover from quadratic to linear T
dependence for acoustic-phonon —TLS coupling occurs at
much lower temperature (by 2—3 orders of magnitude)
than in the calculation of Lyo and Orbach. For coupling
to optical modes, thc clossovcr ls from cxponcntlal to
linear at temperatures determined by the lowest
librational-mode frequency.

It is not possible to explain the Hegarty-Ycn T depen-
dence over the observed temperature range of several hun-
dred degrees K. Another challenging problem is the ab-
sence of any break in the linewidth-versus-temperature
curve. Additional theoretical and experimental work is
needed to clarify presently open areas such as the direct
coupling to phonons, higher-order scattering processes,
and the influence of fractons.
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(Alo)

(A 1 1)

(A13)
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Hclc wc glvc an alternative, conclsc derlvatlon of thc
connection between the equations of motion for the
density-matrix and two-time correlation functions.

Expressing the density operator by the eigenstates (2.25)
of the system Hamiltonian, we have

We wish to thank D. Haarer, R. Macfarlane, and S.
Volker for discussions, and G. Castro for support and in-
terest. One of us (H.M. ) wishes to thank A. Schenzle for a
careful reading of the manuscript. They also acknowledge
the receipt of preprints from D. Huber, S. K. Lyo, R. Or-
bach, and R. Silbey.

APPENDIX A

p=gp fi)&j I

Its equation of motion is given by

p= i XI Ii)&—j Ip;,

and can be written in the following way:

p= i++— ;,C„Im)(n Ip;;,
/J m/1

(81)

(82)

(83)

1Po= gP $ qsDqs
qS q$

P) ——gP D qDq, ,
1

q$ q$

Pz(o) = g l PH(0) —Pfr( 1)]D-q.Dq.
qS

P, (1)= y [Pg(1)— [P;( )]0D, D, ,

P4(0) g [Pf3(0)—PC(1)]D-q Dq
q$

P4(1)= y [Pr3(1)—P'rq(1)]D-q. Dq.

ho= g m'5(a)q )(2nq +1)D q Dq

(Al)

(A3)

(A4)

(A5)

(A6)

(A7)

Here we give the definition of the abbreviations intro-
duced in Sec. III in connection with the derivation of the
equation of motion for the density operator (3.9). We
have

4

pmn g Cij, mnpij
EJ

In these expressions, CJ Im is the tetrad corresponding to
the superopex'ator I..

The two-time correlation functions in (4.8) are given by

E „(r)=(P+ fe ' 'I m)(n
I

) .

Differentiating with respect to r and using (82) and (83),
we have

E „(r)= i(P+
I
e ' 'I—.

I
m)(n

I ), (86)

IC „(r)= i(P+ fe ' 'gC—„; fi)(j I
) .

Taking into account that Cm„,& are e numbers, and again
using the defirution of the correlation function, we find

(88)E „(r)= i +C „;~K,i(r), —
EJ

showing that the matrices describing the time develop-
rnent of the density matrix and the correlation functions
are transposed to each other.
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