
PHYSICAL REVIE%' 8 VOLUME 29, NUMBER 8 15 APRIL 1984

Variational solutions of simple quantum systems subject to variable boundary conditions.
II. Shallow donor impurities near semiconductor interfaces: Si, Ge

Donald B.MacMillen and Uzi I.andman
School ofPhysics, Georgia Institute of Technology, Atlanta, Georgia 30332

{Received 1 November 1983)

Variational solutions to the effective-mass equations describing hydrogenic donor impurities lo-

cated near sexniconductor-vacuum and semiconductor-insulator interfaces are presented and dis-

cussed. Results for the ground and excited eigenstate, binding energy, and spectra as a function of
the location of the impurity from the sexniconductor-vacuum interface axe presented for Si{001)and

Ge{111)surfaces. The electronic binding energy of a hydrogenic donox impurity as a function of its
distance fx'om the interface both into the insulator or into the semiconductor is studied in detail for
the Si-SiQ2 case. The effect of an external electric field on the impurity binding energy is investigat-

ed and the results are compared with othex -recent theoretical calculations and experimental data.

INTRODUCTION

The electrical and optical properties of bulk semicon-
ductors and of semiconductor interfaces [either with vacu-

um of in metal-oxide-semiconductor (MOS) devices] are
strongly affected by impurities. ' In the case of a bulk
semiconductor characterized by a dielectric constant e and
isotropic effective mass m the bound states associated
with singly charged attractive Coulomb center impurities
embedded in the semiconductor have (for a parabolic
band) a hydrogenic spectrum, E„=—m*e /2e A n,
n=I,2, . . . , with respect to the adjacent band edge. It
was first pointed out by Levine that when the impurity is
placed at the semiconductor surface, the spectrum is
modified. As argued by Levine, since the height of the
surface barrier can be several electron volts [and in the
case of Si-Si02, about 3 eV (Ref. 3)] and the binding ener-

gies of shallow donor impurities are of the order of mil-

lielectron volts, the surface can be modeled as an infinite
potential barrier requiring that the electron wave function
vanish at the boundary (the effect of the infinite-
discontinuity approximation has been shown to be negligi-
ble ). In the context of the effective-mass approxima-
tion, neglect1ng the image potential and band bending
and assuming a spherical band, one obtains again, for an
impurity located exactly at the surface, a hydrogenic
energy-level spectrum subject to the selection rule that
only states with

~

l —m
~

being odd are allowed (i.e., s
states are excluded).

Since that time there have been several investigations of
the energies and properties of these states. ' Bell et al.
used the selection rules of Levine and the bulk energies of
silicon and germanium to calculate transition energies.
Petukhov et al. included image charges in the effective-
mass Hamiltonian and performed a perturbation calcula-
tion on that system. Karpushin extended that pertur'ba-
tive treatment with the inclusion of linear band bending
near the surface. In a later article, Karpushin" used a
variational method to calculate the binding energies of
donors on silicon and germanium surfaces. It is impor-
tant to note that all of these authors constrained the im-

purity to lie exactly on the surface.
Realistically, the impurity will be distributed in the

near-interface region, rather than being localized at the in-
terface. The first computation which considers such a sit-
uation is that of Godwin and Teft, ' who employed a sim-
ple form of the trial wave functions for the ground and
exerted states 1n a var1at1onal calculat1on. A more com-
plete basis set, including the effect of an external electric
field (see Sec. II), has been employed by Lipari. '

Armed with the variational method which we have
described in detail in a preceding paper' in this series
(which will be referred to as paper I), we study in this pa-
per'" the spectra of shallow donor impurities near semi-
coiidllctoi' iiiterfaces (vacuum aild MOS interfaces, iiicllid-
ing the effect of electric fields) within the context of the
effective-mass approximation.

In Sec. I the case of a donor impurity near a semi-
conductor-vacuum interface is considered. Results are
given for Si(001) and Ge(111) surfaces. In Sec. II a donor
impurity near a semiconductor-to-insulator interface is in-
vestigated. The impurity is embedded in the semiconduct-
or or in the insulator. Results are given for Si-SiOz as a
function of the location of the impurity and under the in-
fluence of an external electric field. Comparison to previ-
ous theories ' and experimental data is given.

We first consider a donor impurity embedded in the
semiconductor near, but not necessarily at, the serni-
conductor-vacuum interface. In constructing the model
Hamiltonian for this system several simplifying assump-
tions shall be made. First, because of the multiple minima
of the conduction band in k space, the crystallographic
orientation of the surface becomes important. When con-
sidering the (001) plane of sihcon or the (111)plane of ger-
manium there exists3 two kinds of constant-energy ellip-
soids, those with their major axis parallel to the surface
and those with their major axis perpendicular to it. One
of the results of Karpushin" is that the ellipsoids with

QC 1984 The American Physical Society



VARIATIONAL SOLUTIONS OF SIMPLE QUANTUM SYSTEMS. . . . II.

their major axes perpendicular to the surface give rise to a
series of states which lie lower in energy than those with
their major axis parallel to the surface. Consequently,
only these types of ellipsoids will be considered, because
this allows a simplification in the requirements of the
boundary condition /=0 on the surface plane. In addi-
tion, ere shall assume that there is no change in the band

l

structure near the surface, such as the formation of a
space-charge layer, so that there is no band bending near
the surface. Finally, we shall be working in the one-valley
cffcctlvC-II1RSS RPPI'OxlIIlat1011.

The preceding considerations lead to an effective-mass
cquatlon glvcn by

B' B' rP B'

2m, Bx By 2mi Bz

&2—&1 2 (C2—CI)el
+ 2 2 I&I

— — F(r)=EF(r) . (1.1)
ci(F1+&2) (r +4R 4rR —co8s)'~ I 4&1(&I+&I)(R —r cos8)

This equation must be solved subject to the boundary con-
dition

(1.2)

The impurity is located at a distance R flin the planar
interface (see Fig. 1). Note that Eq. (1.1) follows from the
choice of the (001) surface for silicon or the (111) surface
for germanium. In Eq. (1.1), rn,

' and mi' are the trans-
verse and longitudinal effective masses, and ei denotes the
static dielectric constant of the region containing the im-
purity. The static dielectric constant of region 8 (see Fig.
1) is denoted by c2. This leaves open the option of solving
for a semiconductor/insulator interface or a semiconduct-
or/ vacuum interface. The last two terms on the right-
hand side of Eq. (1.1) are the electron-image proton and
the electron-image electron terms, respectively.

and the energy is in units of effective rydbergs,

ply e
Ry* =

2
——13.6 —

2 CV .
2III' C'I

The scaled version of Eq. (1.1) is then given by

(1.4)

Bx 2 Byz Bz r (r +4R 4rR cos8)'i-2+y 2
— +

In the following we shall be concerned with solving a
scaled version of Eq. (1.1). All distances, including R, the
distance of the impurity from the surface plane, are scaled
to units of effective Bohr radii given by

A 6'I 6'(I o
2

ao ——— — ———0.529 A, (1.3)
mg e

F(r)=EE(r), (1.5)
(2R —r cos8)

Q =(Cz —CI)/(C2+&I),

FIG. 1. Coordinate system of Eq. (1.1) centered at the hydro-
genic impurity, and the boundary surface at z =8 —r cos8.

and y is the effective-mass ratio defined as y=m, /mI .
We note in passing that the effective-mass equation has
been scaled to the bulk semiconductor parameters rather
than the surface units defined by Stern and Howard. l

This scaling has been chosen for easier comparison to the
bulk limit (R becomes large), and also because this choice
yields the factor (ez —c'I)/(c'I+ c2). This factor always lies
between —1 and 1, whereas this is not the case for surface
units. This feature is a practical one since large constants
multiplying matrix elements RI'c Undcsirablc ln thc solU-
tion of the matrix equations.

In the solution of Eq. (1.5), subject to the boundary con-
ditions of Eq. (1.2), a strategy that is a combination of a
variational method described in Paper I (Ref. 16) with a
method pI'cscntcd by Faulkner 18 Used. IQ our pI'cvlous
study' we solved for the spectrum of a hydrogen atom
approaching R surface wvhcrc thc exchange I'cpulslon ln"
teraction between the atomic electron and the substrate
was modeled via the surface boundary condition [Eq.
(1.2)]. Gill' prcscilt, Hamlltonlan [Eq. (1.1)j ls cqlllvRlcnt
to that used in our previous paper when m, =mI (i.e., iso-
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tropic effective mass). Therefore the Hamiltonian used in
this study differs from that used by us before only in the z
dcpcndcncc, aQd thus all thc symmetry propcrt1cs dis-
cussed by us previously' are valid. In particular, for fin-
ltc 8» P?l rcIIlalns a good quantum number» whllc n and 7

do not. However, due to the symmetry properties of Eq.
(1.5), the behavior when 8—+ oo {i.e., bulk hydrogenic im-
purity embedded in the semiconductor medium) is dif-
ferent in our present case from that encountered in the
previous study. The effective-mass Hami! tonian is invari-
ant under operations of parity and rotation about the z
axis. This means that for the bulk impurity, n and I are
no longer good quantum numbers, while I is; however,
states of even and odd I are not mixed. Therefore, the ef-
fmt of the boundary condition in this situation is to mix
states of differing parity.

Since m remains a good quantum number, the problem
can be reduced to a separate variational solution of Eq.
(1.5) for each value of m. Consequently, the trial function
for states characterized by a given value of m can be writ-
ten as

E n —1

+„(r)=G(z) g g &t„,i)X„+,(+ (r),
n=l I=0

where the choice of G (z)=R rcos8 is ma—de in order to
satisfy the interface boundary condition [Eq. (1.2)]. The
X~(~ s aie clioseii as

I„I (x,y,z)=(rz/y)' P„( (x,y, (&/y)' 'z, P), (17b)

where y is the effective-mass ratio and a is another non-
linear variational parameter. The basis functions
P„i~(r,P) are given by

(2P)' (E—I —1)!

X(2Pr)'L„'+~' i(2Pr)e ~"YP(8,$) . (1.7c)

of the combination 13r, where P is an additional variational
parameter independent of any quantum number» rather
than the combination r/n which depends upon the partic-
ular state under consideration. The advantages of this
choice are twofold .First, the isolated hydrogen-atom or-
bitals do not form a complete set without the inclusion of
the continuum states. Use of the set given by (1.7c) has
been shown to include contributions from these states. '

Second, the virial theorem is automatically satisfied for
any quantum-mcchan1cal system whose potent1al 1s a
homogeneous function of the coordinates, if a scale factor
is introduced into the appmximate wave function and
varied so as to give the lowest energy. The parameter P
is such a scale factor, and because its optimum value will
be found, the properties of the states found with the ap-
proximate wave functions of Eq. (1.7a) will be better than
those which do not contain such a scaling. The parameter
a is a measure of the asymmetry induced in the wave
function due to the asymmetric effective mass. The
choice of the functions given by Eq. {1.7b) was inspired by
the success of the Kohn-Luttinger ' form for the
ground-state trial wave function; upon setting P= 1/a and
a=a /b, Xi 00(x,y, z) reduces to their trial function.
This basis set differs from that used by Faulkner
inasmuch as we use the combination Pr rather than Pr/n
in the radial function where n .is the principal quantum
number. Therefore, for the calculations presented here
there are only two nonlinear variational parameter,
whereas Faulkner must use a set of such parameters, the
number of which depends upon the size of the basis set
used in the expansion of the trial function. Of course, this
means that we must calculate an overlap matrix, but as it
has been shown this is not a great handicap.

The variational solution of Eq. (1.5) using Eqs. (1.7)
leads to a matrix eigenvalue problem which, due to the az-
imuthal symmetry, can be partitioned according to the I
value, thus reducing to a set of matrix equations for
m=0, 1,2, . . . . Hence,

In Eq. (1.7c) the YI are the usual spherical harmonics, the
Lp arc thc associated I agucrIc polynomials» and I' ls taken
to be in units of effective Bohr radii, ao. The difference
between the set of functions given by Eq. (1.7c) and the
isolated hydrogen-atom eigenfunctions is the appearance

II(m)A (m) E~(m)A (m)

where II( ' and X(™are the Hamiltonian and overlap
matrices and A ' is the vector of expansion coefficients.

The Hamiltonian matrix elements are given by

a(,'„,= I «/y)''2{x rcos8)y„*.,~ rx,y—, (~/y)'~z, P)

+ 2 2 1 /2{r +4R 4' cos8)'~ 2(&——«os8)
„

X (& rcos8)p„l~ (x,y, (a/—y )'~zz, I3)&V,

which, upon making the substitution (a/y)'~ z'=z, yields
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H«~p «i
—J [R (y/a) r cos8]$«,i,~(x g z P)

B2 a2 cj2 82 2
X ——,+,+y, +(1—a)

Bx By Bz Qz2 [x 2+@2+(y/a) 2)1/2

+ 2

2

[x +y +(y/a)z +4R 4(y—/a)'~ rR cos8]'

I [R (—yla)'~ r cos8]g„i (x y, z,P) Id V .
2[R (y/a—)'~ r cos8]

(1.10)

and

7[R (—yl—a)'r r cos8)g„i (r, I3) (1.12)

(1—a) t [R (y la)' r cos8—]g„i (r,P) j . (1.13)
dz2

The first of these expressions [Eq. (1.12)] has already been
encountered by us before [see paper I, Eqs. (1.11) and
(1.16)]. The second yields a somewhat complicated sum
of terms involving the Legendre and Laguere functions of
various orders and will not be repeated here. Most of
these terms can be integrated in closed form. However,
for the third and fourth terms in Eq. (1.10) this was not
found to be the case. Consequently, these terms were nu-

merically integrated as previously described.
The general method of the numerical solution of the

matrix equations is the same as described in the previous
paper. ' However, there is now an additional parameter,
namely a, which must be varied to yield an optimized en-

ergy. In practice, the energy is a relatively slowly varying
function of a near the optimum values of these quantities,
and this feature eases the problems associated with locat-
ing a minimum in the two-parameter space. The calcula-
tion proceeds as follows. Given a distance from the inter-
face R, a value of m (m=0, 1,2, . . .} is chosen. The ith
eigenvalue, E '(R) (i=1,2, . . . ), of the corresponding
eigenvalue matrix equation is then optimized with regard
to variations in the parameters a and P for a chosen num-

TABLE I. Values of physical constants.

Si
Ge

0.2079
0.051 34

11.4
15.36

ao
(A}

31.7
99.7

(meV}

19.9
4.7

The overlap matrix elements are given by

N„' i'„&——f [R (y/a)'r—r cos8]

Xp*„i (r,p)p„i (r,p)d&.

The subscript T in Eqs. (1.9)—(1.11) indicates truncated
regions of integration. In the calculation of the matrix
elements, the integration over the azimuthal variable P
yields 2m.5 ~

The matrix equation whose elements are given by Eqs.
(1.10) and (1.11) shall be solved numerically. The first
step in this direction is the calculation of the quantities

2
A es;(ao)si=, =31 7 A

(m,')s;e
(1.14a)

(m,*}s;e'
Rys1= 2

——1.99)&10 eV,
2A'esI

while those for germanium are

(ao)o, ——99.7 A, Ryo, =4.70X10 i eV .

(1.14b)

(1.15)

In addition to the introduction of an anisotropic effec-
tive mass, the major difference from the problem of the
preceding paper is that the "hydrogen atom" is now im-
bedded in a dielectric media and is near an interface with
a media possessing a lower dielectric constant. This
means that the image charges posses the same sign (posi-
tive or negative) as the charges that induce them. This
can be seen from the form of the dielectric quotient given
by (e2—ei)/(ei+e2). This results in a repulsive elec-
tron —image-electron interaction, while the elec-
tron —image-proton interaction now becomes attractive.

The results of the "perfectly imaging" plane show that,
at least for the ground state, the absolute value of the ex-
pectation value of the electron —image-proton interaction
is greater than the expectation value of the elec-
tron —image-electron interaction. Since the former of
these quantities is negative, at a sufficiently large distance

I

ber of basis functions N(N+ 1)/2 included in the trial
function, Eq. (1.7a) (note that the optimum values of a
and P depend upon which eigenvalue is being minimized).
This procedure is then repeated for N+ 1 until conver-
gence to a certain number of significant figures in the cal-
culated eigenvalues is achieved. In our calculations we
found that taking N=7 yields results accurate to four sig-
nificant figures.

Prior to discussing the results of this section, all of
which are presented in effective units, the various physical
constants of silicon and germanium that are relevant to
this problem are presented in Table I. The effective
masses and corresponding y values of Si and Ge are taken
from Refs. 23 and 24, respectively. The static dielectric
constants of silicon and germanium are taken from
Faulkner, ' who determined the low-temperature values of
these dielectric constants by requiring that the donor spec-
trum calculated in the effective-inass approximation have
an optimum fit to the experimentally determined donor
level spacing. By using these values, the effective units
for silicon are given by



TABLE II. Ground-state properties of a shallow donor near the surface of a symmetric (y=1) sil-

icon. All quantities are given in bulk units defined by Eqs. (1.3) and (1.4). Eo denotes the ground-state

energy, T the average kinetic energy, and V~, V2, and V3 are the average values of the three potential
terms in Eq. (1.5), respectively.

0.2
04
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
3.0
4.0
5.0
6.0

—0.6064
—0.6507
—0.7221
—0.8098
—0.8945
—0.9640
—1.0158
—1.0521
-1.0767
—1.0925
—1.1086
—1.0944
—1.0794
—1.0676

0.6373
0.7670
0.9696
1.1662
1.2853
1.3268
1.3204
1.2912
1.2539
1.2160
1.0827
1.0302
1.0121
1.0057

—0.8658
—1.0594
—1.3522
—1.6626
—1.8972
—2.0379
—2.1092
—2.1381
—2.1434
—2.1364
—2.0674
—2.0273
—2.0115
—2.0056

V2

0.2380
0.2586
0.2841
0.3001
0.3000
0.2882
0.2708
0.2519
0.2332
0.2157
0.1498
0.1111
0.0875
0.0720

V3

—0.6159
—0.6169
—0.6237
—0.6135
—0.5825
—0.5410
—0.4978
—0.4571
—0.4204
—0.3878
—0.2736
—0.2084
—0.1674
—0.1397

from the surface, the ground-state electronic energy is ex-
pected to be lower than the R = Oo limit when there is no
image-charge contribution. As the impurity is moved
closer to the surface, the change in the energy due to the
exclusion of the dectron from the half-space r cos6I&R
will begin to dominate and begin to raise (as a function of
the impurity distance from the surface) the ground-state
energy. Therefore, we expect to see the development of a
minimum in the ground-state electronic energy.

The results presented in Tables II—IV show that this is
precisely what takes place. Table II presents the ground-
state energy of an impurity near a silicon surface for
y=1.0; that is, as if silicon possessed a spherical conduc-
tion band. The bulk hmit in this case is given by the hy-
drogenic —1.0 Ry*. Tables III and IV give the ground-
state properties of a donor impurity near the (001) silicon
surface and the (111) germanium surface, respectively.
The bulk values for these two systems, in effective ryd-
bergs, are given by'

proximately 2.6ao, 1.0ao, and 0.5ao for the "isotropic"
silicon, real silicon, and germanium systems, respectively.
Finally, when the impurity is close to the surface there is a
steep rise in the electronic energy. The main difference in
the behavior of the energy as a function of the impurity
distance from the surface between these three systems lies
in the location and the depth of the energy minimum.
This difference is due to the changing value of y, the
effective-mass ratio, and can be explained in the following
manner. In the bulk situation, the change in the wave
function due to y & 1.0 in Eq. (1.5) allows for a corripres-
sion of the wave function slightly in the z direction.
Sliicc thc surface ls pcrpciidlclllar to thc z axis, this means
that an impurity wave function for a specific value of the
effective-mass ratio will expermnce a lesser perturbation
than the wave function corresponding to a large value of

Eo'(R ~ oo ) = —1.568 Rys;,

Eo '(R +oo )= —2.087—Ryo, .

(1.16a)

(1.16b)

As a calculational check, the energies of these ground
states were computed at a distance from the surface of
100ao, yielding

Eo'(R =100(ao)s;)=—1.571 Rys;,

Eo '(R = 100(ao )o,)=—2.094 Ryo, ,

(1.17a)

(1.17b)

-15-

which is in agreement with the bulk values to within
0.1 %%uo.

The ground-state energies of the "isotropic effective-
mass" silicon and the real silicon systems are presented
graphically in Fig. 2, while those for the germanium sys-
tem arc g1vcIl 1Il Fig. 3. Thclc afc basicaHy three I'cglons
of different behavior depicted in these graphs. At large R
the impurity levels are approaching their indicated bulk
levels. Also, there now exist minima which occur at ap-

3 4 5 6
oisTAwcE{a' )

FIG. 2. Ground-state energy of a shallow donor impurity
near the (001) surface of silicon. Also included are the results
for an isotropic effective mass. The bulk values are given by the
lines under the 8. Units are those of effective rydbergs and ef-
fective Bohr radii as defined in text.
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TABLE III. Ground-state properties of a shallow donor near the (001) surface of silicon.
(y =0.2079; entries and units are as in Table II.)

V2

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
3.0
4.0
5.0
6.0

—1.3601
—1.5927
-1,7496
—1.8133
—1.8278
-1.8210
—1.8061
—1.7890
—1.7722
—1.7568
—1.7013
-1.6697
-1.6499
—1.6365

1.3555
1.6827
1.8436
1.8267
1.7695
1.7255
1.6701
1.6466
1.6243
1.6094
1.5796
1.5723
1.5698
1.5688

—2.0850
—2.7632
—3.1709
—3.2815
—3.2845
—3.2681
—3.2350
—3.2085
—3.1891
—3.1755
—3.1469
—3.1396
—3.1372
—3.1361

0.6374
0.6695
0.6084
0.5165
0.4345
0.3685
0.3167
0.2762
0.2441
0.2183
0.1425
0.1060
0.0845
0.0702

—1.2679
-1.1817
—1.0307
—0.8750
—0.7472
—0.6469
—0.5670
—0.5032
—0.4515
—0.4089
—0.2765
—0.2084
—0.1671
—0.1394

the effective-mass ratio. Consequently, the minimum in
energy will occur at smaller sealed distances from the sur-
face as the value of the effective-mass ratio is decreased.
Note that this argument is true only for the sealed Hamil-
tonian, and that the minimum energy of a donor in ger-
manium occurs at a larger distance than it does for a
donor in silicon.

The excited-state energies for a donor impurity near the
(001) surface of silicon and the (111) surface of germani-
um are presented in Figs. 4 and 5. The approach to the
bulk values of the energy levels of the excited states takes
place at a slower rate due to the larger "spatial" extent of
these states. Note that because the states labeled (0,3) and
(1,1) (the first label refers to the value of the m quantum
number, while the second give its position in the spectrum
of levels with the same m quantum number) possess dif-
ferent azimuthal quantum numbers, there is not, as it
might appear, an avoided crossing between them.

Finally, we note that using the results for the ground-
state electronic energy given in Tables II—IV, the 1ID-

purity-surface "holding potentials, " consisting of the
change in the electronic energy from its bulk value and

the interaction of the positive impurity with its image, can
be calculated (similar to the physisorption holding poten-
tial calculated in Sec. II of Paper I). The results suggest a
tendency of the impurities to be concentrated near the
senuconductor surface (at distances of 20—50 A from the
interface).

II. SHAX, LOm DONOR IMPURITY NEAR
THE Si/SiO, INTERPACE OF A MGS

PIEI.D-EFFECT TRANSISTOR

The acronym MOSFET is derived from the combina-
tion metal-oxide-semiconductor field-effect transistor.
The metal gate is used to apply an electric field perpendic-
ular to the surface of the semiconductor, from which it is
insulated by an oxide layer. An n-type inversion layer can
be produced in a p-type semiconductor at the surface if
ihe energy bands near the surface are sufficiently bent
down so that the bottom of the conduction band lies near
or below the Fermi level. Such a situation is referred to as
an inversion layer, since the majority-carrier type in that
region is the opposite of the bulk majority carrier. The

V3

TABLE IV. Ground-state properties of a shally donor near the (111) surface of germanium.
(y =0.051 34; entries and units are as in Table II.)

V) V2

0.2
0.4
0.6
0.8
1.0
1.2
1,4
1.6
1.8
2.0
3.0
4.0
5.0

—2.3013
—2.5389
—2.5485
-2.5035
—2.4538
—2.4104
—2.3743
—2.3447
—2.3203
—2.2998
—2.2343
—2.1980
—2.1785

2.2378
2,4841
2.4160
2.2929
2.2164
2.1721
2.1460
2.1298
2.1194
2.1124
2.0981
2.0943
2.0132

—3.7971
—4.4397
—4.4679
—4.3725
—4.3039
—4.2622
—4.2369
—4.2211
—4.2108
—4.2038
—4.1896
—4.1848
—4.1847

1.2923
1.0238
0.7463
0.5673
0.4523
0.3747
0.3195
0.2785
0.2469
0.2216
0.1470
0.1100
0.0879

—2.0343
—1.6071
—1.2428
—0.9912
—0.8185
—0.6951
—0.6030
—0.5320
—0.4757
—0.4300
—0.2898
—0.2183
-0.1749
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FIG. 8. Binding energy at zero field as a function of impurity
distance into the silicon dioxide layer.

FIG. 6. Binding energy of an electron to a donor iInpurity lo-

cated on thc 1ntcrfacc bet%'cen thc silicon and silicon dlox1dc as
a function of electric field. Energy is in units of effective ryd-

bergs, while the electric field'is given in esu.

B2 B2 B2 4Ei
+

Bx By» (&i+&2)"

Once the matrix elements involving the field term have
been included in the Harniltonian matrix, the energy levels
Rrc obta1ncd 1Il thc Glanncr dlscusscd prcvlously.

The binding energy of the electron in the present case is
not simply given as the absolute value of the ground state
of Eq. (2.2). This is due to the fact that the electron is
making a transition to the first, electric subband and not to
a bulklike conduction band. In the absence of the impuri-
ty potential, the Hamiltonian (2.2) becomes

'2
&2 —&I

+2E, , 8'(8 rcos8) .—3 m

2(E,+E2)(R rcos8) m—,'
O' E2—Ei

Ho ———y +KS'z .
Bz' 2(Ei+E2)z

(2.3)

(2.2)

The Schrodinger equation with the Hamiltonian given in
Eq. (2.2) is to be solved subject to the condition that /=0
when R =r cos8. All distances are in effective Bohr radii,
and all energies are in effective rydbergs [Eq. (1.14)].

In Eq. (2.3), 8' is to be given in electrostatic units, and
therefore E has the value

(2.4)

Of course, the electron in this system also experiences the
potential jump upon entering the silicon dioxide and the
boundary condition itI(0) =0 must be applied.

If the repulsive image term of Eq. (2.3) was absent, the
system would be the exactly solvable one of a triangular
potential well where the eigenfunctions are given by the
Airy functions. When the image term is present, a simple
variational calculation yields very accurate values for the
electric subband energy levels. A trial function of the
form

(2.5)

2 3
DISTANCE (a' )

FIG. 7, Binding energy at zero field as a function of impurity

distance into the silicon (semiconductor) layer.

is chosen. Notice that this trial function satisfies the
correct boundary conditions. As 1n the prev1ous situa-
tions, the linear variational parameters A„ lead to a matrix
equation whose c1gcnvalucs Rrc optlImzcd by vary1Ilg thc
parameter a. The binding energy of the electron is there-
fore given by
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+ e
K

1.0

0.5

EI, =E (IIP ) —E (II), (2.6)

and is dependent upon the electric field through Eqs. (2.2)
and (2.3).

This system has been considered by several different au-
thors recently. Martin and Wallis' have used a simple
variational form to calculate binding energies only when
the impurity is located on the interface. Lipari' has uti-
lized a basis set which is certainly correct when the im-
purity is on the interface, but may not be so when the im-
purity is at a finite distance from the semicon-
ductor/oxide interface. Hipolito and Campos have used
the variational form of Martin and Wallis to calculate the
effect of electrons in the electric subbands screening the
impurity potential and thus changing the binding energy.
This screening shall not be considered further in this re-
port.

The binding energy of an electron to a donor impurity
located on the interface between the silicon and silicon
dioxide as a function of electric field is presented in Fig.

l

2
DlsTANcE (a )

FIG. 9. Binding energy at several field strengths as a func-
tion of impurity distance into the silicon dioxide layer. The ex-
perimental results of Hartstein and Fooler are also included.
Curve 3 is at 10 esu, curve 8 is at 19.9 esu and curve C is at 60.4
esu electric field strength.

g (r)= g f;(r)&~(0,$), , (2.7)

f;(r)= g C; e
J

(2.8)

and the C,J and aj are the linear and nonlinear variational
parameters, respectively. Later it is noted that only the
odd I terms contribute to the ground state in Eq. (2.7)
(m=0). However, this is only correct when the impurity
is located on the interface, and this is illustrated by the
coincidence of the results of Lipari and our calculations at
R=O.O. The point to note in this connection is that the
binding energy of the electron decreases more rapidly as a
function of impurity distance from the interface (when in
the oxide layer) than has been calculated by Lipari.

The electron binding energy to an impurity center locat-
ed in the oxide layer for several electric field strengths has

6. The results of Martin and Wallis and those of Lipari,
which are the same as in the present calculation are
presented. Because of the simple variational form, the re-
sults of Martin and &allis are inferior, giving less binding
than those of Lipari and of the present calculation. The
binding energy given in Fig. 6 is larger than that found

experimentally by Hartstein and Folwer, but as shall be
seen, when the impurity is moved off the interface and
into the oxide layer the binding energy decreases.

The binding energy of the electron at zero field is exhib-
ited in Figs. 7 and 8 as a function of impurity distance
from the interface. In the first of these figures the donor
impurity is located in the silicon layer while the second lo-
cates the impurity in the silicon dioxide layer. As can be
readily seen, there is a large discrepancy between the
present calculation and the results of Lipari. This is prob-
ably caused by Lipari's use of an inadmissible basis set [in
the sense that the trial function employed in a variational
solution must obey the same boundary conditions imposed
upon the solutions to the Schrodinger equation; see discus-
sion in Paper I (Ref. 16)]. While noting the importance of
a boundary condition f=0 on the interface, Lipari
chooses as a basis set

8'=60.4 esu8'=0.0 esu 8'=16.0 esu

TABLE V. Binding energy as a function of impurity distance into the oxide layer for several values
of the electric field strength.

R 8'=19.9 esu

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
3.0

0.9423
0.7327
0.6143
0.5347
6.4763
0.4311
0.3949
0.3650
0.3398
0.3183
0.2996
0.2336

1.1949
0.9723
0.8437
0.7553
0.6891
6.6369
0.5942
6.5584
0.5277
6.5010
0.4775
6.3912

1.2963
1.0566
6.9198
0.8298
0.7530
6.6960
0.6492
0.6097
0.5757
0.5461
6.5199
0.4234

1.5062
1.2373
1.0762
0.9627
0.8762
0.8070
0.7499
0.7017
0.6602
6.6239
0.5920
0.4747
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bccn calculated and thcsc 1csults ale prcscntcd 1n Table V
and Fig. 9. Also shown are the experimental results of
Hartstein and Fowler, who have found that for electric
fields of 19.9 and 60.4 esu, the binding energies are 18 and
25 meV, respectively. These results differ from those of
Lipari inasmuch as distance from the interface does not
turn out to be the same for both field strengths. The bind-

ing energy of 18 meV for the field strength of 19.9 esu
occurs for the impurity located at approximately 10 A,
while the 25-meV binding energy at the 60.4-esu field
strength occurs for the impurity at -4 A into the oxide
layer. These results demonstrate that agreement with ex-
periment is improved if the impurity ions are located at.

small, but finite distances from the Si-Si02 interface into
the insulator. In light of the approximations made in the
formulation of the problem, the above results should be
regarded as the first step towards a theory in which effects
due to screening of the itnpurity potential, due to electrons
in the inversion layer and intervalley coupling, could be
quantitatively ascertained.

ACKN0%LEDGMENT

This work was supported by U.S. Department of Ener-
gy under Contract No. DE-77-S-05-5489.

~See review by T. Ando, A. B. Fowler, and F. Stern, Rev. Mod.
Phys. 54, 437 (1982), in particular, Sec. II E.

J. D. Lev1Ile~ Phys. Rev. 140, 586 {1965).
3F. Stern and W. E. Howard, Phys. Rev. 163, 816 (1967).
4J. Lauer and T. S. Jayadevarah, Solid State Electron. 16, 644

(1973).
5W. Kohn and J. M. Luttinger, Phys. Rev. 98, 915 (1955).
W. Kohn, in Solid State Physics, edited by F. Seitz and D.

Turnbull (Academic, New York, 1957), Vol. 5, p. 257.
7S. T. Pantelides, Rev. Mod. Phys. 50, 797 (1978).
8R. J. Bell, %. T. Housman, Jr., G. M. Goldrnan, and D. G.

Rathbun, Surf. Sci. 7, 293 (1967).
98. V. Petukhov, V. L. Pokrouskii, and V. Chaplik, Fiz. Tverd.

Tela (Leningrad) 9, 70 (1967) [Sov. Phys. —Solid State 9, 51
(1967)].

~OA. A. Karpushin, Fiz. Tverd. Tela (Leningrad) 10, 3515 (1968)
[Sov. Phys. —Solid State 10, 2793 (1969)].

~~A. A. Karpushin, Fiz. Tverd. Tela (Leningrad) 11, 2163 {1969)
[Sov. Phys. —Solid State 11, 1748 (1970)].

~~&. E. Teft, R. Bell and H. V. Romero, Phys. Rev. 177, 1194
(1969); W. E. Teft, and K. R. Armstrong, Surf. Sci. 24, 535
(1971).

~38. G. Martin and R. F. %'allis, Phys. Rev. B 18, 5644 (1978).

~"V. E. Godwin and %.E. Teft, Surf. Sci. 34, 108 (1973).
~5N. O. Lipari, J. Vac. Sci. Technol. 15, 1412 (1978).
16D. B. MacMillen and U. Landman, J. Chem. Phys. 80, 1691

(1984).
I7A preliminary report of this work has been discussed by D. B.

MacMillen and U. Landman, Bull. Am. Phys. Soc. 24, 274
(1979).

~8L. J. Sham and M. Nakayama, Surf. Sci. 73, 272 (1978).
~9R. A. Faulkner, Phys. Rev. 184, 713 (1969).
20H. L. Davis, J. Chem. Phys. 37, 1508 (1962).
2~P. O. Lowdin and H. Shull, Phys. Rev. 101, 1730 (1956).
22J. O. Hirschfelder and J. F. Kincaid, Phys. Rev. 52, 658

(1937); S. T. Epstein, The Variationa/ Method in Quantum
Chemistry (Academic, New York, 1974).

238. %. Levinger and D. R. Frankl, J. Phys. Chem. Solids 20,
281 (1961).

2"J. C. Hensel, H. Hasegawa, and M. Nakayama, Phys. Rev,
138, A225 (1965).

25A. Hartstein and A. B. Fowler, Phys. Rev. Lett. 34, 1435
(1975).

A. Hartstein and A. B. Fow'ler, Surf. Sci. 73, 19 (1978).
27O. Hipohte and V. B. Campos, Phys. Rev. B 19, 3083 (1979).


