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The theory of resonance Brillouin scattering has been developed for diamond and zinc-blende-
type crystals by the consideration of the intermediate electronic states involved in the scattering pro-
cess as discrete exciton and electron-hole continuum states. The intraband and interband transitions
involving the conduction band, the valence band, and the split-off band have been taken into ac-
count in the calculation of the resonance Brillouin scattering tensor. From the scattering tensor the
expressions of the photoelastic coefficients and those of the deformation-potential constants have
been derived. The results are applied to Brillouin scattering data of ZnSe measured at frequencies
below the fundamental absorption-band edge. For the deformation-potential constants the values
d=—14.6eV,b=—0.7 eV, and d = —4.9 eV are obtained.

I. INTRODUCTION

During the past few years resonant Raman scattering
(RRS) investigations of semiconductors for the determina-
tion of deformation-potential constants have received con-
siderable attention. It has been found that the observed
first- and second-order Raman scattering intensities are in
good agreement with results of pseudopotential calcula-
tions. Accordingly, as discussed in the review article by
Cardona,! both the electron—one-phonon  and
electron—two-phonon  deformation-potential constants
have been determined for the E,, Ey+ Ay, and the other
next-higher-lying absorption edges in a number of dia-
mond and zinc-blende structure semiconductors with ei-
ther a direct or indirect energy gap.

It has been shown that resonance Brillouin scattering
(RBS) from coupled phonon-exciton energy (fiw; > E;) is a
powerful technique to obtain exciton-polariton spatial
dispersion curves. In this case Brillouin shifts exhibit
strong dependence on excitation frequency. At excitation
energies #iw; < E, the dispersion curve of light inside the
crystal is linear, and the frequencies of acoustic phonons
do not depend on the excitation frequency. When the en-
ergy of the exciting light approaches the band edge, pro-
vided that the absorption of light does not increase too
steeply, a resonance enhancement of the cross section for
Brillouin scattering can be observed. In cases where small
differences in the population of thermal phonons with
K=0 can be allowed, resonance Brillouin scattering can be
conveniently investigated by tuning the energy-band edge
of the crystal through the energy of the laser line. This
method was actually used in the first observation of RBS,
which was made by Pine? in CdS for LA phonons propa-
gating along the C axis of the crystal.

The first theoretical description of resonance Raman
and Brillouin scattering was given by Loudon® under the
assumption of an interaction between a phonon with a vir-
tual electron-hole pair created by light in the crystal.
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Ganguly and Birman* and Zeyher et al.® further
developed the theory of RRS by taking into account the
exciton states. To interpret the results of resonance Bril-
louin scattering from acousto-electrically amplified pho-
non domains in certain crystals Adachi e al.® have used a
quasistatic approximation.

In this paper we briefly consider the theory of resonant
Brillouin scattering assuming the intermediate states for
the scattering process as exciton states belonging to
discrete exciton zones and continuum spectra. We give an
expression for the resonant term R, of Brillouin scatter-
ing and compare it with our recent experimental data for
ZnSe at T=295 K.” The main purpose of our investiga-
tion is a more adequate theoretical and experimental study
of Brillouin scattering in the nonresonant region which al-
lows the Coulomb interactions between electrons and holes
to be neglected. We derive explicit expressions for the
scattering tensor and photoelastic coefficients, relating
them to the deformation-potential constants. The results
are applicable to cubic crystals with either diamond or
zinc-blende structure.  Accordingly, the fourfold-
degenerate valence band I'y, which leads to the existence
of heavy and light holes, and the twofold spin-orbit-split
band I'; are taken into account. Both the interband and
the intraband transitions for the conduction and the
valence bands are involved in our expressions.

II. EXPERIMENTAL PROCEDURE

The single crystals of ZnSe were cut to shapes of paral-
lelepipeds with typical dimensions of 23X 4 mm®. The
faces of the samples were oriented perpendicular to the
crystallographic directions [100], [011], and [011]. The
(011) and (011) surfaces were as-grown and the (100) sur-
face was carefully optically polished. The measurements
of Raman scattering from TO and LO phonons in the
temperature range from 6 to 600 K show that there are no
additional contributions to the scattering by LO-
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phonon—plasmon modes. From this we can conclude that
the concentration of free carriers in our samples was less
than 10'> cm—2 and therefore the influence of the free car-
riers through the acousto-electric interaction can be
neglected in the investigated spectra. Observations of
luminescence spectra in the region of fundamental absorp-
tion edge at T=6 K show that the intensity caused by
exciton-impurity complexes and donor-acceptor pairs was
weak, which also indicates the high quality of the sam-
ples.

Brillouin scattering was excited with the aid of single-
mode Kr* and Ar™ lasers. The spectrum of the scattered
light was analyzed by a piezoscanned Fabry-Perot inter-
ferometer, which could be used either in a triple-pass or in
a five-pass configuration. The detection system consisted
of a cooled photomultiplier followed by a multichannel
analyzer. The free spectral range of the interferometer
was calibrated to an accuracy better than 0.1% by observ-
ing Brillouin scattering from fused quartz or directly by
measuring the separation between the mirrors of the inter-
ferometer. Fused quartz was also used to determine the
absolute values of the photoelastic coefficients of ZnSe by
comparing the intensities of Brillouin scattering from both
materials.

The Brillouin shift Av of the frequency of light due to
the inelastic scattering between photons and phonons can
be given by the equation

Av= %(n,—z—knsz—2n,~nscos¢)1/2 , (1)
where v is the velocity of phonons, A is the wavelength of

the incident light, and n; and n, are the refractive indices
of the incident and scattered lights, which propagate with
J
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the mutual angle ¢. The refractive indices were calculated
from Marple’s equation.® The velocity of phonons was
determined from measurements of Av made at 568.2 nm
and using the value n =2.631 in Eq. (1).

III. THEORY OF BRILLOUIN SCATTERING
IN SEMICONDUCTORS

In the following we briefly outline the development of
theoretical models for the cross section of Brillouin
scattering. The final goal of this section is to derive for-
mulas needed to obtain the values of photoelastic coeffi-
cients and deformation-potential constants in semicon-
ductors with the diamond or zinc-blende structure.

Classical models for deriving the cross section of Bril-
louin scattering have been described in the book of Fabel-
inskii.’ A detailed quantum-mechanical treatment, based
on the use of third-order time-dependent perturbation
theory, has been given by Loudon.> He obtained the cross
section 8p for light scattered into a solid angle d Q) as

e ¢ N D5 kT
83 = VO - - 2
mqc n; ; 2pv
X l espvaeiv I 2 . (2)

Here ¥V, and p are the volume and the density of the crys-
tal, respectively, ng;, o ;, and &;; are the refractive index,
the frequency, and the unit vector of polarization of the
scattered (s) or incident (i) light, and v is the velocity of
acoustic phonons in the crystal.

The components of the scattering tensor may be given
as

(0|py | BK)(BK | Haple'; ) | ak){ak |p, | 0)

[#ieo, — E(K)][#ieo; — Eq(K)]

where |0) is the wave function of an electron in the
ground state, |ak ) and |BE) are the wave functions of
an electron-hole pair in zones a and [, where the wave
vector of an electron is denoted by K and the wave vector
of a hole by —K. E,(K) and EB(E) are the energy of an
electron in the zones a and B. Further, (|p|) is a

_1__ <0|py.|ﬁE)(BE]HaB(€"(]'j)|aE)<aE[PvIO> "

[#iw; +E g(K) ][#iw; + Eo(K)]

(3)

[

momentum matrix element and H (671’ j) is the Hamiltoni-
an of the interaction between electrons and long-
wavelength acoustic phonons of the j branch with the
wave vector . The deformation caused by phonons is
given as

1|8uy Oy | _ S (jga= ¢ TR _joat ¢ —ig-7
“w=7 |ox, " ox, % (199 1€ 1m0 199 5i€)m ) “@
I
where and a:j and a¥,, are the annihilation and creation opera-
1. = (= tors of the acoustic phonons with the unit polarization
€., =—I[el(q)g,+el(q)g,] — p p !
qj.mv 2q[ wdMyTey # vector e/(q). In Eq. (2), as throughout in this paper, it is
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assumed that the wave vector d of phonons is negligible
in comparison with the wave vector K of electrons.

The frequency dependence of tensor R, is a particular-
ly interesting feature, especially from the experimental
point of view. It is usually supposed that the frequency
dependence of R, arises mainly from transitions between
states located near the top of the valence band and the
bottom of the conduction band. We shall call this contri-
bution AR,,. In addition, the higher valence- and
conduction-band states contribute a slowly-frequency-
dependent term called Rﬁv

For cubic crystals with zinc-blende structure the lower
conduction band is nondegenerate and therefore

(ck | Haple; )| ek )= Ce; —Czeq] o (5

where C is the corresponding deformation-potential con-
stant.

A. Excitonic theory of resonant
Brillouin scattering

Under the conditions #iw; ~E; the exciting light in-
cident on the crystal may create virtual electron-hole
pairs. The electrons in the conduction band and the holes
in the valence band interact with acoustic phonons
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through the deformation-potential mechanism. When the
electron-hole pair is recombined, the emitted light has the
frequency shift corresponding to the energy of the acous-
tic phonons. Neglecting the Coulomb intraction between
electrons and holes the following expression has been de-
rived®* for the resonance part of R,

1 s " ppoH pal€3 )P0

Ly Wgp—Wga+@q

#i

X[(wgg—'w_\-)1/2—(6033—60,')1/2] , (6

where u is the reduced mass of the electron-hole pair, @,
and w,g are frequencies corresponding to the optical gaps
for the incident and scattered light, respectively.

Ganguly and Birman* modified Loudon’s® treatment by
taking into account discrete and continuum exciton transi-
tions in their theory of resonant Raman scattering (RRS).
Zeyher et al.’ have further developed this theory and
given an explicit expression for the RRS tensor in the case
of one valence and one continuum exciton state. In the
same manner we have developed the theory of RBS for a
three-band process. By using hydrogenlike exciton states
for the conduction, valence, and the split-off bands the
following expression is obtained for the RBS tensor:

1
PpoHpal€gipao | 1 & 1 1 1
Ris=2 © 3 2 ) 2 2
ap ©gpPgatay 2map yo1 ° | —Wge—w;—R/n wgg—ws—R/n
32 3/2 ) 172
+—1— 2 Rl/zlnwgﬁ s i 2 R'2| cot TR
dr | # Ogq— T4 n Wgp— W
2 172
— cot | TR , (7)
wgg—w,-

where ao=e#?/u? is the exciton Bohr radius and
R =pe*/2#%€* is the exciton Rydberg constant. The first
term inside the curly brackets represents the contribution
of the discrete excitonic states to light scattering and the
last two terms are due to the continuum states. It should
be noted that this expression differs from that derived by
Adachi and Hamaguchi.!® In the derivation of Eq. (7) we
have assumed that @, is the same for all the three excitons
-formed from states of the conduction and the three
valence bands. Details of the evaluation of Eq. (7) and re-
sults of contour integration of scattering amplitude in the
complex plane will be given elsewhere.!!

B. Photoelastic and deformation-potential constants

In cubic crystals with diamond or zinc-blende structure
the valence-band edge at k=0isa sixfold-degenerate mul-
tiplet. The orbital symmetry is "5 for the diamond and
I'ys for the zinc-blende structure. The degeneracy is re-
moved by the spin-orbit interaction resulting in the forma-

I
tion of a fourfold p,, multiplet with J =3, m; =+ 3+
and a twofold multiplet p,,, with J=<, m;=++. For
the I';s representation the Hamiltonian of the electron-
phonon interaction in Eq. (4) has been given by Bir and
Picus'® in the form

H(e)=(—a+3b)e—b sze,,,,

- _‘/-:3— % [JpJv]G;w ’ (8)

where a, b, and d are the deformation-potential constants.
The angular momentum matnces J“ and [J Jv] are
formed by usmg the functions ¥,/> (m=++,+3) and
w2 (m= +) as basis functions. The explicit wave
functions of the fourfold I'g state are given by Bir and

Picus. 12(b)

By using Eqgs. (7) and (8) the expression for the
frequency-independent part, AR,,,, of the matrix R, can
be written as
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In the derivation of this formula all possible interband and intraband transitions of the electrons for conduction, valence,
and split-off bands with emission of acoustical phonons were taken into account.
In Eq. (9) D and B are constants of the valence band'?® and @=a +C. The functions f,; =f,;(»;) are defined as

g 2w 172 " 1/271-1
1 1
Fu=Ffuton=="23 l 7 B —ti0)) |+ |~ (Eg—fiv)
) 172 2w 1/27-1
B Bguttio) | + ﬁ—z’(E 1 +#w;) ] ] , (10)
|
where Eg, is the energy separation between Fhe conduction , 1 m Ey(Eg+A)
band and the three valence bands labeled with n (n=1 for p=—mo ATV (11)
the light-hole band, n=2 for the heavy-hole band, and me g +24/3

n =3 for the spin-orbit split-off band). The reduced mass
Wn=m.my, /(m,+my,) is given by the effective masses
of electrons m, and holes my,,.

Equation (9) and (10) do not take into account the non-
parabolicity of zones and may be not quite correct when
the frequencies of incident and the scattered light ap-
proach the value of the energy gap. In this case the main
contribution to AR,, will arise from states near the T'
point where the terms linear in K become important.

The momentum matrix elements are given as
I

where E, is the energy gap and A is the spin-orbit split-
ting of the valence band in the I" point.

The photoelastic coefficients p,,;; and R, are connect-
ed by the formula

2 2 2
mow, nun q]
R,tl,v="‘ ez 4 4 Puvij€ 1( )q s (12)

where n, is the refractive index corresponding to the u
axis. By using Eqs. (7) and (9) we obtain the expressions
of the photoelastic coefficients Ap,;, Api,, and Apy, as

4 3
Apy = Apun—g}‘m—iﬂ‘n“ @ fuin—2bl6 11+ =2 1)+ ra+f13+F2]
001 n=1
4 3 .
Aplz—Apuzz_a“‘i‘a}% 2fnn+b[1_10(f11+f22"2f12)+f12+f13+f23]} ) (13)
mow;n; n=1
2V3 ep% 1
Apu=pppn=—-"— Y Wla))zn; f12+f13+f23+30 (f11+f22‘*2f12 ] .

It can be easily shown that the following relations exist
between the photoelastic coefficients:

Apy —App=—— _eTL b w5 (f11+f2—2f1)
T moyw; n,
+fu+fi3+3], (14)
and
4 e2p? 3
Apy+28p=——%557% 2 2 (15)
T moa),n =1

f
Another useful relation can be found in crystals for which
the masses of light and heavy holes greatly exeed the ef-
fective mass of the electrons (my;,my;, >>m,). In this case
M1~=p, and

Apyy 1
Ap;—Apy, ~ 2V3

(16)

e-l&

The experimentally measured values of the photoelastic
coefficients p;; are given by
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1
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(2F

where p,-(jm are the frequency-independent contributions to
the photoelastic coefficients arising from higher valence
and conduction bands. They can bc determined from
measurements made at different wavelengths of the excit-
ing light. Thus we have obtained explicit expressions for

the photoelastic coefficients taking into account the con-
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tributions from the interband and the intraband transi-
tions between the conduction and the valence bands.
From the experimentally determined three independent
photoelastic coefficients it is possible to obtain the values
of the deformation-potential constants &, b, and d.

Tada et al.'> have used the theory of Higginbotham
et al."* to determine the values of the deformation poten-
tial constants from their experimental data for ZnSe.
However, this theory is based on the assumption
my >>m,, which is not valid in ZnSe, where we have
m, /my; ~2 (see Table II). Consequently, the values of the
deformation-potential constants should be determined us-
ing Eqgs. (10)—(13) which allow the proper values of the
effective masses to be taken into account.

A,=5208 nm L

INTENSITY (arb.units)
N

o

0 20 40 60
FREQUENCY SHIFT (GHz)

10 (d) R

INTENSITY (arbunits)
(o))

N

S
20 40 60
FREQUENCY SHIFT (GHz)

FIG. 1. Examples of Brillouin scattering spectra observed at different excitation wavelengths A in ZnSe at T=295 K. The scatter-
ing spectra from longitudinal-acoustic phonons (L, solid curve) and from transverse-acoustic phonons (T, dashed curves) are observed
in the geometries y(xx)z and y(xy)z, respectively. The effect of resonance is seen as changes of the relative intensities of the (L) and
(T) components when the energy of the laser line is varied near the band gap. The level of noise is indicated by horizontal bars.
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TABLE 1. Brillouin scattering data for ZnSe at 295 K. In the notation a (bc)d the first and the last
symbols stand for the directions of the incident and the scattered light and those in parentheses their
polarizations, respectively. Definitions used: x||[100], y||[011], and z||[01T]. The data are obtained
at A=568.2 nm. The combinations of the elastic constants equal to pv? and the photoelastic coeffi-

cients « I; used in this experiment are also given.

Av v
Case (GHz) (m/s) pv? o Iy
Cii+Cp+2Cy 2%
y . 4599 _— I 2 R
y(xx)y 42.61 9 > T
2
x(y)x 38.09 4112 Cy P2
Cn
P%z
y(xx)z 27.22 4155 Ch £Z12
Cu
P§4
y(xy)z 17.97 2744 Cu on
(p11—p12)?
y(zp)z 27.16 4146 Cu _PH_CP_Iz_
11

IV. RESULTS AND DISCUSSION

A. Experimental results

Some typical Brillouin scattering spectra containing
both Stokes and anti-Stokes components for scattering
from longitudinal (L) and transverse (T) acoustic phonons
in ZnSe are shown in Fig. 1. In these spectra the effect of
resonance scattering is qualitatively seen as changes of rel-
ative intensities between the (L) and (T) components when
the energy of the laser line is varied in the vicinity of the
fundamental band gap, E;=2.68 eV (462.5 nm). The
Brillouin shifts observed in different scattering
geometries, the corresponding values of the velocities of
phonons, and the combinations of the elastic coefficients
appropriate to each scattering case are given in Table I.

As can be seen from Fig. 2 resonance effects are ob-
served in the scattering intensity for all modes when the
energy of the exciting light approaches the region of the
band gap. The intensity of Brillouin scattering and the
components of the photoelastic tensor, p,,;, are related as

817'2kT (nl%tn.s?v estvyklquIem)z
A (4 DA+ 1) pv?

Iy= I,L, , (18)

where e, and e;, are the vth and uth components of the
polarization vectors €; and €, of light and u; and g; are
the components of the displacement and the wave vectors
of phonons. I is the intensity of the incident light and L,
is the effective scattering length in the crystal. The
methods used to determine L, for different scattering
geometrics are discussed elsewhere.” It is evident from
literature that various optical parameters of ZnSe deter-
mined by different authors differ considerably. Therefore,
the values of L, at different wavelengths were calculated
from the absorption data measured specifically for the
samples used in our scattering experiments.

In Fig. 2 the following relations between the scattering
intensities and the photoelastic coefficients are valid: (a)
Ia < plyy ) Ita «<pis and (© Ipa « (py—pp)
When the experimental data are compared with the
Loudon’s theory [Eq. (6), dashed line] and the present ex-
citonic theory [Eq. (7), solid line] a somewhat better agree-
ment is achieved with the excitonic theory at values of #w;
below resonances with discrete exciton states. The growth
of the calculated intensities when #w; approaches the ab-
sorption edge is due to the first term in Eq. (7). This term
increases resonantly when approaching the lowest exciton
state which is at 2.68 eV in ZnSe at 300 K. At high
values of #iw; a better agreement with the experimental
data can be obtained if the finite lifetime of the excitonic
states is included in Eq. (7) by replacing w by w+i(y /2h).
The best result was achieved by assuming #y =0.01 eV
but there still remains some discrepancy. To further
develop the theory of RBS it would possibly be necessary
to take into account the deviation of the excitonic states
from hydrogenlike states as well as the polariton effects
and the details of the band structure.

The combinations of the photoelastic coefficients ap-
propriate to the used scattering geometries are compiled in
Table I. The dispersion of the coefficients p;;, py2, and
Das are shown in Fig. 3. It is obvious that their absolute
values increase when the energy of the exciting light ap-
proaches the fundamental absorption edge. The disper-
sion curves of py; and p,, are found to cross at E =~2.5 eV
(A=~495.8 nm) and the coefficient p44 changes its sign at
E =~2.53 eV (A=490.0 nm). The positions of these “iso-
tropic points” are in good agreement with the values ob-
tained from piezobirefringence measurements'*'® or from
light scattering data from acousto-electrically amplified
acoustic domains. '3

B. Calculation of the deformation-potential constants

We have used Eqgs. (12)—(16) to determine the values of
the deformation-potential constants @, b, and d from the
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FIG. 2. Dependence of the intensity of Brillouin scattering on the excitation energy in the scattering geometries (a) y (xx)z, (b)
y(xy)z, and (c) y (zy)z. The solid lines represent the dispersion of the intensity calculated with the aid of Eq. (7) and the dashed lines

the intensity calculated from the theory of Loudon (Ref. 3).

Brillouin scattering data for ZnSe. The values of the pho-
toelastic coefficients measured at excitation frequencies
far from the resonance region (%iw; < E, ) were used in this
calculation. The other physical constants involved in the
calculation are given in Table II.

Unfortunately the constants B and D in Eq. (12) are not
known for ZnSe. It is usually assumed that the ratio D /B
is approximately 2 to 4 in crystals with diamond or zinc-

blende structure. If this is also the case in ZnSe, then

1 2
~0.1-0.5

30

D

B

and as an approximation we will neglect this parameter in
our calculations. The results for @, b, and d are given in
Table III. It can be found that the deformation-potential
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FIG. 3. Dispersion of the photoelastic coefficients.

constants do not show a large dispersion. This feature
clearly supports the validity of our method.

In Table IV the final values of the deformation-
potential constants are compared with the results obtained
by other authors. It is likely that the differences between
the present data and the other results quoted arise from
different theoretical approaches used. This suggests that
the contributions from the interband and intraband transi-
tions between the conduction band and all the three
valence bands must be considered in the calculation of the
deformation-potential constants.

Finally, it should be noted that the values of the
deformation-potential constants depend on several experi-
mental factors including the impurity concentration and
the quality of the bulk and the surfaces of the sample
crystals. There is also much difference in the magnitude
and the topology of the strain field applied in different ex-
perimental methods. In the present theory the differences
between the effective masses of the light and heavy holes
are taken into account. In principle further improvement
could be achieved by properly adjusting the value of the
parameter D /B and by allowing the values of the effective
masses to depend on the direction of the wave vector in
the crystal.

TABLE II. Numerical values of the physical constants of
ZnSe used to calculate the values of the deformation-potential
constants (T'=295 K).

E,=2.68 eV m,=(0.16+0.01)my?
A=0.43 eV my;=(0.33+0.06)my*
Ey =Eg=E; mp,=(2.2+0.4)my*

Eg3=Eg+A

“B. Sermage and G. Fishman, Phys. Rev. Lett. 43, 1043 (1979).
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TABLE III. Values of the deformation-potential constants
for ZnSe when (D /B)* << 1. All units are in eV.

fiw; a=a+C b d d/b
2.18 —14.34 —0.70 —4.41 6.3
2.20 —14.43 —0.68 —4.62 6.8
2.25 —14.51 —0.70 —5.03 7.2
2.34 —15.11 —0.77 —5.42 7.0

IV. CONCLUSIONS

We have discussed the theory of resonance Brillouin
scattering for diamond and zinc-blende structured crys-
tals. In the three-band scattering process the intermediate
electronic states have been described with discrete exciton
states and with states belonging to the electron-hole con-
tinuum. By using hydrogenlike exciton states for the con-
duction, valence, and split-off bands we have obtained the
expression for the resonance scattering tensor and com-
pared it with experimental data for ZnSe at T=295 K
when the energy of the exciting light approaches the fun-
damental absorption band edge E,.

At energies fiw; <E, a satisfactory agreement is ob-
tained between the scattering intensities measured for the
LA and TA phonons and values calculated from the ex-
pression for the scattering terms. Around 2.5 eV deep
minima are observed in the scattering intensities from one
of the LA modes and from the TA mode reflecting corre-
sponding variations of the values of the photoelastic con-
stants.

By using the formula of the scattering tensor, explicit
expressions have been derived for the photoelastic coeffi-
cients py;, P12, and py relating them with the
deformation-potential constants a, b, and d. In this calcu-
lation, which is valid at fiw; < Eg, the interband and intra-
band transitions for the conduction and valence bands and
the split-off band are taken into account. Different effec-
tive masses are allowed for the light and heavy holes. The
discrepancies found between the existing values of the
deformation-potential constants and those calculated from
the present experimental data for ZnSe are attributed to
differencies both in theoretical and experimental ap-
proaches used by different authors.

TABLE IV. Defromation-potential constants for ZnSe ob-
tained by different methods (in units of eV).

This work a b c
ad=a+C —14.6 —6.8
b —0.7 —2.6 —2.3 —1.2
d —49 —6.7 —5.2 —3.8

2Reference 13; acousto-optic technique using pulses of longitudi-
nal ultrasonic phonons.

bReference 14; piezobirefringence measurements.

°D. W. Langer, R. N. Euwema, K. Era, and T. Koda, Phys.
Rev. B 2, 4005 (1970); exciton-stress interaction.
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