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The theory of resonance Brillouin scattering has been developed for diamond anil zinc-blende-

type crystals by the consideration of the intermediate electronic states involved in the scattering pro-
cess as discrete exciton and electron-hole continuum states. The intraband and interband transitions

involving the conduction band, the valence band, and the split-off band have been taken into ac-
count in the calculation of the resonance Brillouin scattering tensor. From the scattering tensor the
expressions of the photoelastic coefficients and those of the deformation-potential constants have

been derived. The results are applied to Brillouin scattering data of ZnSe measured at frequencies
beloved the fundamental absorption-band edge. For the deformation-potential constants the values

a = —14.6 eV, b = —O. 7 eV, and d = —4.9 eV are obtained.

I. INTRODUCTION

During the past few years resonant Raman scattering
(RRS) investigations of semiconductors for the determina-
tion of deformation-potential constants have received con-
siderable attention. It has been found that the observed
first- and second-order Raman scattering intensities are in
good agreement with results of pseudopotential calcula-
tions. Accordingly, as discussed in the review article by
Cardona, both thc clcctron —onc-phon on and
electron —two-phonon deformation-potential constants
have been determined for the Eo, Eo+ho, and the other
next-higher-lying absorption edges in a number of dia-
mond and zinc-blcndc structure semiconductors %'1th cl-
ther R d1rcct Gr 1nd1rcct cncI'gy gap.

It has been shown that resonance Brillouin scattering
(RBS) from coupled phonon-exciton energy (fico; p Eo) is a
powerful technique to obtain exciton-polariton spatial
dispersion curves. In this case Brillouin shifts exhibit
strong dependence on excitation frequency. At excitation
energies fico; &Eo the dispersion curve of light inside the
crystal is linear, and the frequencies of acoustic phonons
do not depend on the excitation frequency. When the en-
ergy of the exciting light approaches the band edge, pro-
vided that the absorption of light does not increase too
steeply, a resonance enhancement of the cross section for
Brillouin scattering can be observed. In cases where small
differences in the population of thermal phonons with
k =0 can bc allowed» 1csoIlancc Br111GUln scattcr1ng can be
conveniently investigated by tuning the energy-band edge
of the crystal through the energy of the laser line. This
method was actually used in the first observation of RBS,
which was made by Pine in CdS for LA phonons propa-
gating along the C axis of the crystal.

Thc f1rst theoretical dcscript1on of resonance RRGlan
and BriHQUin scattering was glvcn by I.oudon UndcI' thc
assumption of an interaction between a phonon with a vir-
tual clcctI'on-hole pair clcRtcd by 11ght 1n thc CI'ystal.

Ganguly and Birman" and Zeyher et al. further
developed the theory of RRS by taking into account the
exciton states. To interpret the results of resonance Bril-
louin scattering from acousto-electrically amplified pho-
non domains in certain crystals Adachi et a/. have used a
quasistatic approx1mation.

In this paper we briefly consider the theory of resonant
Brillouin scattering assuming the intermediate states for
thc scattering p1occss Rs cxc1ton states belonging to
discrete exciton zones and continuum spectra. %C give an
expression for the resonant term R„„ofBrillouin scatter-
ing and compare it with our recent experimental data for
ZnSc Rt T=295 K. Thc ITlRln pUfposc of our 1nvcst1ga-
t1on 1s 8 morc adequate thcorct1cal Rnd experimental stUdy
of Brillouin scattering in the nonresonant region which al-
lows the Coulomb interactions between electrons and holes
to be neglected. We derive explicit expressions for the
scattering tensor and photoelastic coefficients, relating
them to the deformation-potential constants. The results
Rrc appl1CRblc to cubic CI'ystals with either diamond QI'

zinc-blende structure. Accordingly, the fourfold-
dcgcncI'atc valcncc band 1 8, which leads to thc cx1stcncc
Qf hcavy and light holes, Rnd thc twofold spin-orbit-split
band I 7 81'e taken 1nto RCCQUnt. Both thc lntcrband Rnd
the intraband transitions for the conduction and the
valcncc bands RIc 1nvolvcd In QUI cxplcsslons.

The single crystals of ZnSe were cut to shapes of paral-
lelepipeds with typical dimensions of 2X3&&4 mm . The
faces of the samples were oriented perpendicular to the
crystallographic directions [100], [011], and [011]. The
(011) and (011) surfaces were as-grown and the (100) sur-
face was carefully optically polished. The measurements
of Rarnan scattering from TO and LO phonons in the
teIl1pcratufc raIlgc from 6 to 600 K show that thcI'c Rrc no
Rddit]tonal contributions to thc scRttcring by I.O-
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phonon —plasmon modes. From this we can conclude that
the concentration of free carriers in our samples was less
than 10' cm and therefore the influence of the free car-
r1crs through thc acousto" clcctflc lntcractlon can bc
neglected in the investigated spectra. Observations of
luminescence spectra in the region of fundamental absorp-
tion edge at T=6 K show that the intensity caused by
exciton-impurity complexes and donor-acceptor pai. rs was
weak, which also indicates the high quality of the sam-
ples.

Brillouin scattering was excited with the aid of single-
mode Kr+ and Ar+ lasers. The spectrum of the scattered
light was analyzed by a piezoscanned Fabry-Perot inter-
ferometer, which could be used either in a triple-pass or in
a five-pass configuration. The detection system consisted
of a cooled photomultiplier followed by a multichannel
analyzer. The free spectral range of the interferometer
was calibrated to an accuracy better than 0.1% by observ-
ing Brillouin scattering from fused quartz or directly by
measuring the separation between the mirrors of the inter-
ferometer. Fused quartz was also used to determine the
absolute values of the photoelastic coefficients of ZnSe by
comparing the intensities of Brillouin scattering from both
matcr1als.

The Brillouin shift b,v of the frequency of light due to
the inelastic scattering between photons and phonons can
be given by the equation

hv= —(n; +n, —2n;n, cosP)'~',

where u is the vdocity of phonons, A, is the wavelength of
the incident light, and n; and n, are the refractive indices
of the incident and scattered lights, which propagate with

f

the mutual angle P. The refractive indices were calculated
from Marple's equation. The velocity of phonons was
determined from measurements of b,v made at 568.2 nm
and using the value n =2.631 in Eq. (1).

III. THEORY OF m.II.I.OUIN SCATTERING
IN SEMICONDUCTORS

In the following we briefly outline the development of
theoretical models for the cross section of Brillouin
scattering. The final goal of this section is to derive for-
mulas needed to obtain the values of photoelastic coeffi-
cients and deformation-potential constants in semicon-
ductors with the diamond or zinc-blende structure.

Classical models for deriving the cross section of Bril-
louin scattering have been described in the book of Fabel-
1nsk11. A dcta11cd quantum"mechanical treatment~ based
on the use of third-order time-dependent perturbation
theory, has been given by Loudon. He obtained the cross
section 5~ for light scattered into a solid angle dQ as

8
5g ——Vo

PROC

4
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)( Ie,„R„„e;„Iz.

Here Vo and p are the volume and the density of the crys-
tal, respectively, n, ;, co, ;, and e, ; are the refractive index,
the frequency, and the unit vector of polarization of the
scattered (s) or incident (i) light, and u is the velocity of
acoustic phonons in the crystal.

The components of the scattering tensor may be given

1R„„=
~0

c,P, k

&o lu, IPk & &Pk
I ~.p«'-„)

I
«& &« ls'. I

o& &o le. IPk & &Pk
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[eau, —Ep(k)][iris'); —E (k)] [iriai;+Ep(k)][iris', +E (k)]

where I0) is the wave function of an electron in the

ground state,
I
ak ) and

I
pk ) are the wave functions of

an electron-hole pair in zones a and p, where the wave

vector of an electron is denoted by k and the wave vector

of a hole by —k. E ( k ) and Ep( k ) are the energy of an
electron in the zones a and p. Further, & lp I ) is a

t

momentum matrix element and H(e . ) is the Hamiltoni-

an of the interaction between electrons and long-
wavelength acoustic phonons of the j branch with the
wave vector q. The deformation caused by phonons is
given as

Q~ BQ~ = g(iqa e' . e'q ." iqa+. e' . e —'q'"),
qJ qJip& qj qjpv

gJ

[eJ„(q)q„+ej(q)q„]

and a . and a . are the annihilation and creation opera-
qJ qj

tors of the acoustic phonons with the unit polarization
vector e (q ). In Eq. (2), as throughout in this paper, it is
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assumed that the wave vector q of phonons is neghgible

in comparison with the wave vector k of electrons.
The frequency dependence of tensor R&, is a particular-

ly interesting feature, especially from the experimental
point of view. It is usually supposed that the frequency
dependence of R&„arises mainly from transitions between
states located near the top of the valence band and the
bottom of the conduction band. We shall call this contri-
bution hR„„. In addition, the higher valence- and
conduction-band states contribute a slowly-frequency-
dependent term called Ro .

For cubic crystals with zinc-blende structure the lower
conduction band is nondegenerate and therefore

(ck iH p(e' )ick).=Cc' .=Cgc' .„„,
where C is the corresponding deformation-potential con-
stant.

A. Excitonic theory of resonant
BriHouin scattering

Under the conditions @co;=Eg the exciting light in-
cident on the crystal may create virtual electron-hole
pairs. The electrons in the conduction band and the holes
in the valence band interact with acoustic phonons

2~
2& ~~

X[(ol p-ol, )' ' —(~ p-ol )'~'],

where»1 is the reduced mass of the electron-hole pair, tv
and co~p are frequencies corresponding to the optical gaps
for the incident and scattered light, respectively.

Gallguly Rnd BI&lian modlfllcd Lolldoll s tfcatIIlcllt by
taking into account discrete and continuum exciton transi-
tions in their theory of resonant Raman scattering (RRS).
Zeyher et al. have further developed this theory and
given an explicit expression for the RRS tensor in the case
of one valence and one continuum exciton state. In the
same manner we have developed the theory of RBS for a
three-band process. By using hydrogenlike exciton states
for the conduction, valence, and the split-off bands the
following expression is obtained for the RBS tensor:

through the deformation-potential mechanism. When the
electron-hole pair is recombined, the emitted light has the
frequency shift corresponding to the energy of the acous-
tic phonons. Neglecting the Coulomb intraction between

electrons and holes the following expression has been de-
rived ' for the resonance part of R&„.

3/2
»polyp «q, ~» o
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where ao —cA' /»I is the exciton Bohr radius and
8 =»Ie "/2' e is the exciton Rydberg constant. The first
term inside the curly brackets represents the contribution
of the discrete excitonic states to light scattering and the
last two terms are due to the continuum states. It should
be noted that this expression differs from that derived by
Adachi and Hamaguchi. ' In the derivation of Eq. (7) we
llavc Rssu111cd tllat ao ls flic saIIlc fol' Rll thc till'cc cxcltolls

'formed from states of the conduction and the three
valence bands. Details of the evaluation of Eq. (7) and re-
sults of contour integration of scattering amplitude in the
complex plane will be given elsewhere. "

B. Photoelastic and deformation-potential constants

II1 cubic crystals wltll diamond of zinc-blcndc stlllc'tul'c

the valence-band edge at k =0 is a sixfold-degenerate mul-
tiplet. The orbital symmetry is I 25 for the diamond and
I 15 for the zinc-blende structure. The degeneracy is re-
moved by the spin-orbit interaction resulting in the forma-

tion of a fourfold pl/2 multiplet with J=—', , mJ ——+ z, +
z

and a twofold multiplet pI&1 with J=—,', mz ——+ —,'. For
the I &5 representation the Hanliltonian of the electron-
phonon interaction in Eq. (4) has been given by Bir and
Picus' ~' in the form

where a, b, and d are the deformation-potential constants.
The angular momentum matrices J& and [J„J„]are
formed by using the functions % (m=+ —,', + —,') and

(m=+ —,') as basis functions. The explicit wave
functions of the fourfold I s state are given by Bir and
Ficus. '""

By using Eqs. (7) and (8) the expression for the
frequency-independent part, bR.„„,of the matrix E„„can
be written as
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In the derivation of this formula all possible interband and intraband transitions of the electrons for conduction, valence,
and split-off bands with emission of acoustical phonons were taken into account.

In Eq. (9) D and 8 are constants of the valence band' "and a =a+ C. The functions f i =f i(coi ) are defined as
1/2

2
' 1/2 —1

—,(Es, +~;)
A'2

' 1/2
2p»

(Esi+ floe; )
fi2

1/2. —1.

vfhcrc E« ls thc energy separation bct&ccn thc condUctlon
band and the three valence bands labeled with n (n = 1 for
the hght-hole band, n=2 for the heavy-hole band, and
n =3 for the spin-orbit split-off band). The reduced mass
p„=m, ms„l(m, +mi, „) is given by the effective masses
of electrons m, and holes mi,„.

Equation (9) and (10) do not take into account the non-
parabolicity of zones and may be not quite correct when
the frequencies of incident and the scattered light ap-
proach the value of the energy gap. In this case the main
contribution to b,R„, will arise from states near the I
point where the terms linear in k become important.

Thc IDomcntUID IQatrlx clclIlcQts arc given as

(12)

z 1 ma Es(ES+6)
P = PPl o —I

2 m, Ex+25/3
(11)

where Es is the energy gap and 6 is the spin-orbit split-
ting of the valence band in the I point.

Tllc PllotoclRs'tlc cocfflclcnts Pis~ij Rnd Ris~ Rl c collllcct
ed by the formula

2 2 2 2
mom; npn„q~

daisy z pisvij ei ( q )
4m

'
q

where II& ls the refractive index corresponding to the p
axis. By using Eqs. (7) and (9) we obtain the expressions
Of tllC pllotoClastlc coCfflclCIltS kpl I, kplz, slid kjI44 Rs
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It can be easily shown that the following relations exist
between the photoelastic coefficients:

e 2p2
~S II ~S lz= , , —,b[ i'0(—fl—l+fzz—2flz)

m oats +

+flz+f Iz+fzi)

Another uscf ill lclRtloll ca11 bc fouIld 111 crystals fol' wlllcll
the masses of light and heavy holes greatly exeed the ef-
fective mass of the electrons (mii, iiiii, &&III, ). In this case
p1 p2 and

~744 I
~pl I

—~Jy Iz

e2~2 3

~PII+2~PIz= —
z z;& g fxx .

~ ~OI'nI' n=1

The experimentally measured values of the photoelastic
cocfflclcIlts P,j Rlc glvcI1 by
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ere J. are the frequency-independent contributions to
the photoelastic coefficients arising from ig ehi her valence
and conduction bands. They can b. determined from
measurements ma e ad t different wavelengths of the excit-

i ht. Thus we have obtained explicit expressions or
the photoelastic coefficients taking into accoun

0

tributions from the interband and the intraband transi-
tions between the conduction and the valence bands.
F the experimentally determined three indepen ent1OIIl e ex
photoelastic coefficients it is possible to obtain the vavalues
of the deformation-potential constants a, b, and d.

Tada et al. ' have used the theory of Higginbotham
et al ' to determine the values of the deformation poten-
tial constants from their experimenta

4 ~ ~

ata for Znse.
However, thIs theory ss based on the assumption

m, m@-2 (see Table II). Consequently, the values of the
deformation-potential constants should be determined us-
ing Eqs. (10)—(13) which allow the proper values o the
effective masses to be taken into account.
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s ectra observed at different excitation wavelengths A, in ZnSe ate at T=29S K. The scatter-FIG. 1. Examples of Brillouin scattering spectra o serve a i
ti honons (T, dashed curves) are observedn L solid curve) and from tlansvcrsc-acous ic p ononing spcectra from longitudinal-acoustic phonons, so

1 Th effect of resonance is seen as c anges oh f the relative intensities of the (I.) andin the geometries y(xx)z and y(xy)z, respective y. e e e
nd a . The level of noise is indicated by horizontal bars.(T) components w en e enerh th gy of the laser line is varied near the band gap. e eve o n

'
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TABLE I. Brillouin scattering data for ZnSe at 295 K. In the notation a(bc)d the first and the last
sYmbols stand for the dilections of the incident and the scattered light and those in paI'entheses their
polarizations, respective1y. Definitions used: x

~
([100],ye ~[011],and z~ )[011]. The data are obtained

at A, =568.2 nrn. The combinations of the elastic constants equal to pu and the photoelastic coeffi-

cients ~ I„.used in this experiment are also given.

y(xx)y

x(yy)x

y (xx)z

y (xy)z

42.61

38.09

2p i2
2

C][+C)a+2C4
PlZ

p&2

p44

2C44

(p 1 1 p12 )

A. Experimental results

2 2 2 2
8ir kT ("ipiisv esvPvpk&kke(p)

IoL, ,
(n;+ I) (n, +1) pu

(18)

where e,„and e;& are the vth and pth components of the
polarlzRtlon vectors c& Rnd c& of 11ght Rnd Qk Rnd gI RI'c

thc coIIlpoIlcnts of the dlsplaccnlcIlt Rnd thc wave vectors
of phonons. Io is the intensity of the incident light and I,
is the effective scattering length in the crystal. The
methods used to determine l., for different scattering
geometries are discussed elsewhere. It is evident from
literature that various optical parameters of ZnSe deter-
mined by different authors differ considerably. Therefore,
the values of 1., at different wavelengths were calculated
from the absorption data measured specifically for the
sRHlp1cs Used ln oUI' scattering cxpcrilIlcnts.

SoIIlc typical BrilloUin scattering spcctI'a contaiQlng
both Stokes and anti-Stokes components for scattering
from longitudinal (L) and transverse (T) acoustic phonons
in ZnSe are shown in Fig. 1. In these spectra the effect of
resonance scattering is qualitatively seen as changes of rel-
ative intensities between the (L) and (T) components when
the energy of the laser line is varied in the vicinity of the
fundamental band gap, Ex=2.68 eV (462.5 nm). The
Brillouin shifts observed in different scattering
geometries, the corresponding values of the velocities of
phonons, and the combinations of the elastic coefficients
appropriate to each scattcrlng case arc glvcn ln Table I.

As can be seen from Fig. 2 resonance effects are ob-
served in the scattering intensity for all modes when the
energy of the exciting light approaches the region of the
band gap. The intensity of Brillouin scattering and the
components of the photoelastic tensor, p„„ki, are related as

In Fig. 2 the following relations between the scattering
intensities and the photoelastic coefficients are vahd: (a)

ILA "»» (» IT~ "P«, and2 2 2

%hen the experimental data are compared with the
Loudon's theory [Eq. (6), dashed line] and the present ex-
citonic theory [Eq. (7), solid line] a somewhat better agree-
ment is achieved with the excitonic theory at values of fico;
below resonances with discrete exciton states. The growth
of the calculated intensities when irido; approaches the ab-
sorption edge is due to the first term in Eq. (7). This term
lncrcascs IcsonantIy whcQ RpproachlQg thc lowest cxclton
state which is at 2.68 CV in ZnSe at 300 K. At high
values of igni; a better agreement with the experimental
data can be obtained if the finite lifetime of the excitonic
states is included in Eq. (7) by replacing co by ni+ i(y/2h ).
The best result was achieved by assuming fiy=O. OII CV

but there still remains some discrepancy. To further
develop thc theory of RBS lt would possiblp bc necessary
to take into account the deviation of the excitonic states
from hydrogenlike states as well as the polariton effects
and the details of the band structure.

The combinations of the photoelastic coefficients ap-
propriate to the Used scattering geometries are compiled in
Table I. The dispersion of the coefficients p», piz, and
p«are shown in Fig 3. It is. obvious that their absolute
values increase when the energy of the exciting light ap-
proaches the fundamental absorption edge. The disper-
sion curves of p» and pzz are found to cross at E =2.5 eV
(A, =495.8 nm) and the coefficient p«changes its sign at
E=2.53 eV (A, =490.0 nm). The positions of these "iso-
tloplc points Rrc ln good RgrccIDcnt wltI1 thc values ob-
tained from piezobirefringence measurements' ' or from
light scattering data from acousto-electrically amplified
RcoUstlc doIDalns.

B. Calculation of the deformation-potential constants

We have used Eqs. (12)—(16) to determine the values of
the deformation-potential constants a, b, and d from the
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A (nm}
500

TABLE III. Values of the deformation-potential constants
for ZnSe a&hen 3o (D/8)2 gg 1. All units are in eV.

2.18
2.20
2.25
2.34

—14.34
—14.43
—14.51
—15.11

—0.70
—0.68
—0.70
—0.77

—4.41
—4.62
—5.03
—5.42

6.3
6.8
7.2
7.0

IV. CONCLUSIONS

-G.3—

-0,4
2.0

I

2,4
E (ev}

FIG. 3. Dispersion of the photoelastic coefficients.

constants do not show a large dispersion. This feature
clearly supports the validity of our method.

In Table IV the final values of the deformation-
potential constants are coIllpared with the results obtained
by other authors. It is likely that the differences between
the present data and the other results quoted arise from
different theoretical approaches used. This suggests that
the contributions from the interband and intraband transi-
tions bctwccn thc conduction band Rnd Rll thc thrcc
valence bands must be considered in the calculation of the
deformation-potential constants.

Finally, it should be noted that the values of the
deformation-potential constants depend on several experi-
mental factors including the impurity concentration and
the quality of the bulk and the surfaces of the sample
crystals. There is also much difference in the magnitude
and the topology of the strain field applied in different ex-
perimental methods. In the present theory the differences
between the effective masses of the light and heavy holes
are taken into account. In principle further improvement
could be achieved by properly adjusting the value of the
parameter D/8 and by allowing the values of the effective
masses to depend on the direction of the wave vector in
thc crgstal.

We have discussed the theory of resonance BriHouin
scattering for diamond and zinc-blende structured crys-
tals. In the three-band scattering process the intermediate
electronic states have been described with discrete exciton
states and with states belonging to the electron-hole con-
tinuum. By using hydrogenlike exciton states for the con-
duction, valence, and split-off bands we have obtained the
expression for the resonance scattering tensor and com-
pared it with experimental data for ZnSe at T=295 K
when the energy of the exciting light approaches the fun-
daHlcntal absorption band cdgc Eg.

At energies %co; &Eg a satisfactory agreement is ob-
tained between the scattering intensities measured for the
LA and TA phonons and values calculated from the ex-
pression for the scattering terms. Around 2.5 eV deep
minima are observed in the scattering intensities from one
of the LA modes and from the TA mode refiecting corre-
sponding variations of the values of the photoelastic con-
stants.

By using the formula of the scattering tensor, explicit
expressions have been derived for the photoelastic coeffi-
cients p & &, p», and @44 relating them with the
deformatlon-potential constants a, b, and d. In thts calcu-
lation, which is valid at fuu; gEg, the interband and intra-
band transitions for the conduction and valence bands and
the split-off band are taken into account. Different effec-
tive masses are allowed for the light and heavy holes. The
discrepancies found between the existing values of the
deformation-potential constants and those calculated from
the present experimental data for ZnSe are attributed to
differencies both in theoretical and experimental ap-
proaches used by different authors.

TABLE IV. Defromation-potential constants for ZnSe ob-
tained by different methods (in units of eV).

This work
TABLE II. Numerical values of the physical constants of

ZnSe used to calculate the values of the deformation-potential
constants (T=295 K).

—14.6
—0.7
—4.9

—6.8
—2.6
—6.7

—1.2
—3.8

m, =(0.16+0.01)mo'
mpI ——(0.33+0.06}mo'

mI, I, ——(2.2+0.4)mo'

E~=2.68 eV
6=0.43 eV

Eg )
——Eg2 ——Eg

Eg3 ——Eg+6
'B. Sermage and G. Fishman, Phys. Rev. Lett. 43, 1043 (1979).

Reference 13; acousto-optic techni. que using pulses of longitudi-
nal ultrasonic phonons.
"Reference 14; piezobirefringence measurements.
'D. W. Langer, R. N. Eumema, K. Era, and T. Koda, Phys.
Rev. 8 2, 4005 (1970);exciton-stress interaction.
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