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We have calculated the static and dynamic susceptibility of mixed-valence impurities in a metallic
host. We use a simple model consisting of two stable multiplets with angular momenta J, and J,,
that correspond to the 4/ *! and 4" configurations, respectively, which are hybridized through the
conduction-electron states. Two methods of calculation have been employed. For the static quanti-
ties we used an equation-of-motion method in connection with the fluctuation-dissipation theorem
and the Brillouin-Wigner approach. The dynamic susceptibility is expressed in terms of a relaxation
function N(z), which is calculated within a mode-mode coupling approach and within the
Brillouin-Wigner method. The results obtained by the different methods are compared and applied

to the cases of Ce, Nd, and Tm impurities.

I. INTRODUCTION

Homogeneous intermediate-valence systems!™3 are
characterized by the quantum-mechanical superposition of
two configurations of the highly correlated f states of the
rare-earth-metal ions. Many of the unusual properties of
these systems are caused by the competing effects of three
types of energies: (a) the strong electron-electron repul-
sion in the f shell, (b) the delocalization of the conduction
electrons, and (c) the hybridization mixing the f and
conduction-band states.

Intermediate-valence impurities are usually described in
terms of Anderson’s model.* We consider only the
Hund’s rule ground multiplets of two ionic configurations,
4f"+! and 4f", and denote with J, and J, their total an-
gular momenta, respectively. The two multiplets are
mixed by a hybridization matrix element V. The hybridi-
zation induces f-charge fluctuations, which are accom-
panied by spin fluctuations. These charge and spin fluc-
tuations determine the dynamics of the f electrons, which,
complemented by the partition function, give a complete

description of the mixed-valence impurity problem.
Several methods have been used to obtain the thermo-

dynamics of a mixed-valence impurity. The possibly most
successful one has been the Brillouin-Wigner approach,’—*
but also the renormalization-group approach leads to
similar results,”!® as well as the equation-of-motion
method!! in combination with the fluctuation-dissipation
theorem. All these perturbation approaches converge and
yield very similar results if |J,—J,| is large and
min(J,,J,) is small. They are based on the fact that the
hybridization is a small energy parameter and that it can
be treated as a perturbation.

The dynamic magnetic susceptibility, i.e., the f-electron
relaxation rate, has been discussed in second order in the
hybridization by several authors.'>~!> These results are
valid only for temperatures much higher than the reso-
nance width. Furthermore the energy shifts of the impur-
ity levels, which stabilize the perturbation series,’~° only
enter in higher order in ¥V than the second. By using a
mode-mode coupling approach within Mori’s technique
we have included the energy shifts and extended the range
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of validity of these results to all temperatures!! (to be re-
ferred to as paper I). This approach has been successfully
applied previously to the Kondo problem.!®!7

At the Valence-Instability Conference in Ziirich®>!® we
presented a different scheme, related to the Brillouin-
Wigner method, to evaluate Mori’s memory kernels. It is
the purpose of this paper to discuss the latter approach in
more detail and to compare the results of the two
methods. We focus our attention especially on Ce, Tm,
and Nd impurities in view of the numerous experimental
results for the statics and the dynamics of these ions. The
time-differential perturbed angular y-ray distribution
method of implanted rare-earth ions, used by Riegel
et al.”’~%! yields, in principle, simultaneously the static
spin susceptibility and the spin-relaxation rate. The neu-
tron scattering spectrum measures the frequency depen-
dence of the dynamic spin susceptibility. For TmSe and
dilute mixed-valence Tm systems®*?* an inelastic reso-
nance has been found in addition to the usual quasielastic
peak. The inelastic peak can be explained either by
crystal-field splitting or by a coherent charge excitation.?*

The rest of the paper is organized as follows. In Sec. II
the model is described and some of its general properties
are discussed. The dynamic susceptibilities are expressed
in terms of relaxation functions by using Mori’s
method.” %" In Sec. III the mode-mode coupling ap-
proach is briefly summarized and extended to our model.
The thermodynamics as given by the equation-of-motion
method is discussed in the Appendix. In Sec. IV we
present the details of the Brillouin-Wigner method to cal-
culate the relaxation kernel of the dynamic susceptibilities.
A comparison of the methods and a brief discussion of
properties of Ce, Tm, and Nd impurities is given in Sec.
V. A summary and the concluding remarks follow in Sec.
VL

II. MODEL AND FORMULAS
A. Model

Owing to the large electron-electron repulsion in the f
shell only two ionic configurations, 4/ +! and 4", are to
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be considered. We employ Hund’s rules to find the
ground multiplets of these configurations and denote with
J1 and J,, respectively, their total angular momenta, and
with E; », and Ej », we denote their energies. All other

states except these multiplets are going to be neglected.
The hybridization V of the f states with the conduction
electrons induces charge fluctuations in the f-electron oc-
cupation and mixes the two configurations. The
conduction-electron states are expanded in partial waves
at the impurity site and only the states with total angular
momentum j=+ and + can contribute to the hybridiza-
tion with f electrons. We are going to consider only one
of these two partial waves and neglect the other one. For
light rare-earth impurities that j=3 partial wave is the
more important one and for heavy rare-earth ions we keep
only the j=~ states. This simplification corresponds to a
particular jj coupling instead of the usual Russell-
Saunders coupling scheme. Instead of 9j symbols the
Hamiltonian now just involves simple Clebsch-Gordan
coefficients. In the case of Ce or Yb it does not represent
an approximation. The Hamiltonian!®2%2° may then be
written H =Hy+ H,, where

T
Ho= 3 hCmCm T EEJIMIBJIM1+ 2EJzMzB-’zMz ’
X M, M,

k,m

H,=V(2J,+ 1)/

>

k,m,M,M,

2.1

t t
X(AManc]?m +c_1€’mAM1M2) :

Here e denotes the annihilation of a conduction elec-
tron with momentum E, angular momentum j, and z com-
ponent m. The Clebsch-Gordan coefficient selects
m=M,—M, (conservation of angular momentum). The
operators Bjy, and AMl M, are number operators and a

charge-transfer operator, respectively, most conveniently
expressed in terms of bras and kets,

ALlez |\ M ){JM, |,

By, = [ M )My |, 2.2)

By, = [JaMy ) (oM, |

This model corresponds to the U— oo limit of an Ander-
son impurity, which excludes states other than the J,
manifold of the 4f"+! and the J, manifold of the 4f™
configuration.

We will use the following shorthand notation for the
Clebsch-Gordan coefficients:

(JzszmlJzilel)E(MzmlMl), (2.3)
and |J\M;)=|M,),|J;M;)=|M,) for the ionic
states.

The ground-state properties of (2.1) for J,=0 or J; =0
have been exactly obtained by means of Bethe’s an-
satz.’%3! In this case the ground state is a singlet. The
case J,=0 and J,=j=3 corresponds to Ce impurities,
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Jy=0and J,=j=7 to Yb impurities; for Tm impurities
we have J,=6 and J,=j=1, and for Nd impurities,
Ji=5,J,=4,and j=73.

B. General formulas

In this section we summarize the essential definitions
and equations we need to calculate the dynamics of the
impurity. We first give the general equations of Mori’s
formalism?>~?’ and specialize them then to the dynamic
susceptibilities.

Consider the space of operators built up by all possible
products of f-electron operators and creation and annihi-
lation operators of conduction electrons. We denote with
(4,B) a scalar product defined onto this space, where A
and B are two arbitrary vectors of the Hilbert space.
Operators on this Hilbert space are denoted by script
letters, e.g., the Liouville operator #°, defined by
#A=(H,A), the resolvent #(z)=(z—5)"", and projec-
tors Z and 2. Let {A,]} be the set of N operators that
are relevant to the properties under discussion. Mori’s
projection technique*®~?’ then yields the following expres-
sion for the resolvent matrix elements between these
operators:

d2)=(1-0—-M(z)"X°, (2.4)
where 1 is the N X N unit matrix,
$apl2)=(A44,R(2)4p) , (2.5)
Xop=(44,4p) , (2.6)
Q=0(X""" wep=(4q,74p), .7

M@ =R @)X, mup(z)=(25A4R 2(2)2HAp) .
(2.8)

Here 2 projects onto the subspace orthogonal to the set
{Ay} and Z5(z) is the resolvent within this subspace
Ry(2)=(z22 — 2 2)~'. Note that #i(z) is just a resol-
vent matrix element on the reduced subspace. Equations
(2.4)—(2.8) can successively by applied and a continued
fraction is generated in this way. ) and the real part of
M(z) play the role of restoring forces, while the imaginary
part of M(z) yields the lifetime. The many-body memory
effects of ¢(z) are contained in M(2).

The success of the approach depends on (i) the ap-
propriate choice of the set {4,]}, (ii) a convenient choice
of the scalar product (which is not unique), and (iii), since
an exact evaluation of the memory functions is usually not
possible, a physically meaningful decoupling of the con-
tinued fraction.

The relevant operator for the charge susceptibility is the
f charge which may be defined as

q=2B11M1=1_2312M2' (29)
M, M,

Note that since the impurity is always either ina |J;M )
state or in a |J,M,) state, the sum of all By, is 1. The
relevant operators for the spin susceptibility are the total
angular momentum operators of the two multiplets,
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S"l= EMIBJIMI’ SJ2= zMszzMz . (2.10)
M, M,

Hence, in the case of the charge susceptibility, Egs.
(2.4)—(2.8) are scalars, while for the spin susceptibility
they are 2 X 2 matrices.
The most appropriate scalar product to calculate
dynamic susceptibilities is the static susceptibility
J

jq=[Hv,q]=V(2Jz+l)l/2 2
T(’,m,MI,M2

Js,=[H,,S; 1=V (2], +1)'”?
K.m,M M,

(Mym | Mi)cts A g, —Afg e

> M (Mym|M, )(C%mAM,m*AL]MZC?m) ,

P. SCHLOTTMANN 29

(4,B)=X 1,(z=0)=i [ "dre®([4'0),B]).  @11)

The dynamic susceptibility can then be expressed in terms
of (2.4)—(2.8) as

) =[z21-0-M )]~ [-Q—M(=2)]X°. 2.12)

We define charge- and spin-current operators as fol-
lows:

) (2.13)

(2.14)

and similarly j;,. From the definition of w,g, (2.7), it is easy to show that the operators g, S, J,» and S, are orthogonal to
their currents, such that Q,g=0 for the charge and spin susceptibilities. In second-order approximation and also in the
leading logarithmic-order diagram resummation the projectors £ can be neglected. In this way we get

my(2)=Lj,, R 2(2)j,]1=—(2J; +1)(2J,+ 1)N(z) , 2.15)
mg s (2)=—3 (2 + 1)(2J, + 11 (J, + DN(2) (2.16a)
my s (2)=—5 (2 +1)(2, + 1), (J, + DN(2) , (2.16b)
my 5, (2)=my g (2)=+(2]; + 1)2]5+ D[, (T + 1D +T, (0 + D=+ DIN(2) , (2.16¢)
where N (z) is a function given by
(21 + D)2+ D)N(2)=—VH2J,+1) 3 (Mym | M)
K,m,M M,
X(«c%mAMle;ALlecT{m Dt «A;’lecT{m;ch?mAMxMz N:)/z .
2.17

Here we neglected terms that are not of leading order.
Herewith we have expressed the dynamic susceptibilities
in terms of the static quantities and the relaxation kernel
N(z). The function N(z) and the static quantities are
evaluated in Sec. III by using a mode-mode coupling ap-
proach!! and in Sec. IV by means of a Brillouin-Wigner
resummation. It is also interesting to note that the resis-
tivity due to the impurity is also given by the function

N(2),

k? .

p=c§—N—é—2‘(2.f1+1)(2J2+1)N (0),

e

(2.18)

where c is the impurity concentration, N, is the number of
electrons, and e is its charge. All relations are derived in
the absence of an external magnetic field. The above rela-
tions have been obtained previously by Kuramoto and
Miiller-Hartmann!® in second order in V for a more gen-
eral model.

III. MODE-MODE COUPLING APPROACH
FOR THE RELAXATION KERNEL

In Ref. 11 we have evaluated the relaxation function
N (z) for J,=0 using the mode-mode coupling approach,

|
and we will just sketch the method and state the results in
the general case.

Within the noninteracting system the imaginary part of
N (z) can be factorized and one obtains

tanh-2- 4 tanh 2—2

I rdo’
N" _ = cw
(@)=—7 J 2 2T 2T

X[Gf (@) +Gf(—0")], (3.1

where '=7mp¥V? and G 'r(2) is the f-electron propagator de-
fined as
Gf(Z)"'—" «AM]1‘42;141.;':[11”2 »z .

We assume that G/(z) can be cast into the following form:

(3.2)

(BJl )+ <BJ2 )

— 2 , (3.3)
Z-—EJ] +E,2—wjl +COJ2—2(Z)

Gf(2)=

where (B, ) are the occupation numbers of the f levels, &,
are the energy shifts, and 2(z) is the f-level self-energy.
Inserting G for ¥—0 into (3.1) we obtain



—Ey,
2T

E;,
, (3.4)

" r —
N (0)=((BJI)+(BJ2>)ECOSh 2

which vanishes exponentially as T—0, unless accidentally
E; =E;. A vanishing N"'(0) leads in general to a vanish-

ing relaxation rate.

Higher-order contributions in ¥ must be considered. A
practicable scheme to include them partially is the mode-
mode coupling approach. A similar approach has been
successfully applied to the Kondo problem.!%17

Equation (3.1) may be interpreted as the bubble diagram
shown in Fig. 1. A B; correlation function decays into an
f mode and a conduction-electron mode. The vertex is the
hybridization V. The conduction-electron propagator is
not substantially modified by the presence of one impuri-
ty. The f electron, on the other hand, has a high probabil-
ity to decay into the conduction band due to the hybridi-
zation. The finite lifetime of the f electron is taken into
account by the self-energy 2 in (3.3). In second order in V
we have

3(z)=—iT/({B;)+{By))), (3.5)

and the energy shifts @, , and @, are evaluated consistent-
ly in leading logarithmic order,*
D

In———
" onT

AE
T

(3.6)
|

_ r 1
&y, =—QL+ D ReY |5+ 2T

r _i AE
27T 2T

r 1
N(Z)=;(<BJl>+<BJZ)) 2 Rey E+

and the occupation numbers are given by

<B~’2)_(B-’1> 2 1, TI*  .AE
m’ =Imy |-+ +1

T 2 27T 2T
The charge susceptibility is obtained by differentiating
(B;) with respect to E; —E;,. The static spin suscepti-
bility is discussed in the Appendix.

This is the generalization of the results of Ref. 11 to the
model (2.1). The equations are valid in the absence of a
magnetic field. Expression (3.10) is an overestimation of
the relaxation rate, since we neglected the vertex correc-
tions which partially compensate the self-energy effects.

. @an

- IV. BRILLOUIN-WIGNER METHOD

In this section we calculate the memory function N (z)
by using a method that is related to the Brillouin-Wigner
resummation technique.” The results of this section have
been presented at the Ziirich Conference.>!® We present
here the details of the calculation.

A Brillouin-Wigner resummation of the perturbation
series can be performed in two ways: (a) diagrammatical-
ly,” or (b) by equations of motion.”® The latter way only
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FIG. 1. Bubble diagram showing the decay of a B; operator
into a f propagator and a conduction electron. Double lines
represent dressed propagators.

where 9 indicates a digamma function, and

A.E'=E‘,[l +611—E',2-_5',2 ’ (3.7)
r
M 3.8
(B, )+(B;) ’ 8
and
(2]2-{-1)5]2:(2]1-}-1)5]’ . (3.9)

We do not consider vertex corrections in view of the
renormalization-group result that " is not renormalized in
the leading logarithmic approximation.’

Within this approximation the memory function N (z)
becomes

I'" . z+AE

_i R il
2T 27T

27T

_l.z—AE
2nT

- |5+

’

1
2
(3.10)

involves traces over operators and two commutators with
the interaction Hamiltonian for each logarithmic order,
i.e., one commutator with H, in leading order, three com-
mutators in next-leading order, etc. We use this latter
way.

The [(2J;+1) + (2J,+1)] f states are mutually exclud-
ing, i.e., only one can be occupied at a time, and do not
obey Fermi statistics. This is the consequence of the high
correlations between the f electrons. It is then convenient
to separate explicitly these states in the trace of the
thermal averages,

<X>=2 <X>J]Ml+2<X>JzM2 , 4.1)
M, M,

where { ), denotes the trace over matrix elements with
the ion in the |JM) f state. The Boltzmann factor
exp(—pBH) is included in the trace. We now define the
operation®® '

(A,B) 3y ={A"B) s =Tr;p(4TB e —PH) 4.2)
which has the following properties: (i) It is conjugate bi-
linear, (ii) (4,4 ) >0, positive definite, (iii) (4,4 ), =0
if and only if 4 =0 or A" has no matrix elements with fi-
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nal state lJM ), and (iv) it is Hermman nonsymmetric,
ie., it is, in general, (4,4);,(A47,4");,. Since the
operation (4.2) is not Hermitian symmetric, it is not an or-
dinary scalar product and our operator space is not a Hil-
bert space.

In Sec. II B we argued that Mori’s formalism is defined

on a Hilbert space. The Hermitian symmetry of the scalar
]

t 41 _[.1 1
<<CT('mAM1M2’AM1MZC¥m »z - <C ?mAMlMZ z-

The thermal averages in (4.3) are separated in partial traces according to (4.1).

leading-order approximation (the other traces vanish),

t 1,1
<c T MM, z_;fAMxMzci’m),zM

iJ i t
AMlecT{m> - <AM1MZCT{m z.}_%c?mAMle) :

{47 i
<AM1Mzc?m Z+gfc?mAM1M2>JIM1 .
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product is, however, not necessary for the validity of
(2.4)—(2.8). One has to distinguish among projectors from
the right and left, which are, in general, not the same. A
more detailed discussion of Mori’s method defined on the
operation (4.2) can be found in Ref. 28.

We evaluate the absorption and emission parts of a
correlation function separately and write

4.3)

Only two terms contribute in the

(4.4)

According to (2.5)—(2.8) the first term of (4.4) can be written as

flex)(By,)
z+ex—Ey +E; to5,+My (2) ’
where
w5, (B )=V(2,+1)'* 3 (Mym'|M; )<ca,

'f)’,m’,M'

Ay M, >-’2Mz

4.5)

(4.6)

and M. (z) is another resolvent matrix element within a reduced subspace of our operator space. In (4.6) we neglected

nonleading higher-order corrections by assuming

¥ t
<C'—' CT{chJ’mAM'le >-'2Mz~f(6")<CT>’MAM'1M2>JZM2 '

4.7

The projectors in M, ,dz(z) do not contribute up to the next-leading logarithmic order and are neglected. Denoting

— 172

hT(»MlMZ—-V(ZJ2+1)
X X OMm MG, . |J2M’2)(J2M2|c%m,c?m— vy [ MOIM e cﬁ, ). (48)

B.m' M{,M}
I
we then have that Mo (2)=—J+1DV?S ACY ,
. 1 kJy 1 = Z+€p—€ —CUJ]+M—> 1( z)
1

Fe)BMy, @bl b ) " -

(4.9)

In leading order, only states within the |J,M,) multiplet
are relevant and we obtain

1—f(e,)

M- (2)=—(2/,+1)V*3, z ,
KJ, - z+ek—ep+wJZ+MT(»pJ2(z)

(4.10)

where again a factorization of the type (4.7) has been used.
M T (z) is again a resolvent matrix element in a reduced
2
space. The procedure can be carried on and a continued
fraction is generated.
Similarly, for the second term of (4.4), we have

[1—fle))(By)

, @.11)
Z+€k —-EJI +EJZ—COJ1 +M—E>Jl (Z)

where w; is given by an expression similar to (4.6) and

etc.
The analytic properties of these continued fractions are

complex. Similar regularization problems were found by
Keiter et al.>* for the f propagator. Their regularization
technique leads to an integral equation, which seems not
yet solved. The solution of the integral equation would
give the exact Green’s function in the next-leading loga-
rithmic approximation. We are going to use a less sophis-
ticated scheme, which is only approximate but leads to
tractable results.!®

We consider the remainder in (4.12), which for T—0
can be approximated by

1—f(e,)
Mo  (2)=—(20,+1)V? .
kpll(z) (27241 §z+ek—ep+eq—AE
r D
~—(2J,+1)—1
(22 + )77' nz+ek—ep——AE
r |AE

=~y —(2J,4+1)—1 13
@y~ 2+ )1r nz+ek—ep—-AE , @13)
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where AE=E; +w; —E; —w;,. The Fermi functions in
(4.11) and (4.12) require that €, >0 and €, <0. Hence the
imaginary part of (4.13) vanishes if w>AE. Let us
analyze the denominator of (4.12) for w > AE. We call
X =w+ €, —€,; then the real part vanishes if

Lo lAE|
X—(ZJz-f-l)ﬂ_ln IX—AE| =0.

This equation is satisfied for X =0 and it has in addition
two solutions that for small T are close to X=AE. They
are approximately given by

(4.14)

TAE

—To% | _AE+S.
(2J,+1)T

(4.15)

X ~AE+AE exp

Consider AE +8>w > AE; then for the solutions X =0

and X _ there is always an integration region such that the

imaginary part of M o (z) is nonzero. The solution
1

X, however, lies outside the continuum of excitations.
The denominator in (4.12) vanishes at X, and gives rise
to a pole, which then contributes to the imaginary part of
M- 5, (z). Hence the imaginary part of M %, (z) no longer

vanishes in the interval § > —AE. Note that § is essen-
tially the Kondo temperature.

The above argument was for the third step of the con-
I

r 1 @@L +10)T AE
N(o)=— - (By,) |2Rey St TiT
1 L+  »—AE

V2t " U ar

This expression is similar to the corresponding one within
the mode-mode coupling approach, Eq. (3.10). The origin
of the I' in the argument of the digamma functions is the
finite linewidth of the f states, which is proportional to
the corresponding degeneracies of the multiplets.

A physical interpretation of the poles is also possible.
The continued fraction is constructed with infinitely lived
f states (V is the perturbation) and at any finite step the
structure of the Fermi functions is such that the continu-
um of excitations vanishes for o > AE for the first term in
(2.17) and for w < —AE for the second term. The finite
lifetime of the f states is then generated by nonanalytic
terms, i.e., the poles, which smear the step behavior at
w=1AE.

The energy shifts wy, are given by the self-consistent
set of equations'®

AEy u

D 1 MM,

1 _— - ] —
n27rT_Re¢ 5y

b

r
a)JlMlz;z

M,
(4.19)
and similarly o J,My» where
Eyv m,=E;m,—Ejm,+05m,—Os,m, -

The partition function and hence the thermodynamics is

—¢
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tinued fraction. A similar pole appears also in the fifth,
the seventh, and, in general, in the (2n +1)th step of the
continued fraction. This sequence of poles smears the step
function (at T=0) at o« =AE. We roughly approximate
M- 5, (z) by

MT('J (Z)=0)12+(2J]+1)Fi , 4.16)
1

which certainly overestimates the imaginary part, but is
the simplest meaningful approximation.

The other continued fractions (4.15) and (4.10) have
similar analytical behavior. Here we find the poles in the
fourth, the sixth, and, in general, in the (2n +2)th step of
the continued fraction. Similarly we approximate (4.10)
by

MT;J (z)=—le+(2Jz+1)I“i ’ (4.17)
2

and the crudeness of this expression is the same as (4.16).
The second correlation function in (2.17) that contri-
butes to N(z) is evaluated in the same way and has the
poles close to w= —AE.
The K integration in (2.17) is now straightforward and
we obtain

1. (27, +1r [@+AE
2 20T 2T
/ o+l . (4.18)
I
obtained from
Z =3 exp[—B(Ejm +osm,)]
M,
+ 3 expl —B(E,u, +0s,m,)] - (4.20)
M,

Equations (4.19) and (4.20) are valid in the presence of a
magnetic field; all other equations hold for zero-field only.
Equation (4.19) is a simplified version of the next-leading
Brillouin-Wigner approximation.’~7 In the leading-order
approximation AEM1 M, in (4.19) is to be replaced by
E; m,+@jm,—Ey,u,- The exact next-leading-order ener-
gy shifts are considerably more complicated.>” The ap-
proximation is consistent within the logarithmic hierar-
chy, since (4.19) includes all the InD dependences up to
that order. Equations (4.19) and (4.20) form precisely the
renormalization-group result within the leading logarith-
mic approximation.’ The matrix susceptibility is obtained
by differentiating (4.20) two times with respect to the Zee-
man energies of the multiplets.

V. RESULTS

In this section we compare the mode-mode coupling re-
sults with those of the Brillouin-Wigner resummation and
apply them to the case of Ce, Tm, and Nd impurities.
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A. Valence and static spin susceptibility

We first compare the static quantities as given by Eqgs.
(4.19) and (4.20) (simplified Brillouin-Wigner resumma-
tion) with those within the equation-of-motion method
summarized in the Appendix. We refer specifically to the
case of Ce, for which J, =j=—;—, J,=0, and g,xz% We
choose D=1007T" and denote E=E; —E,,. The static

spin susceptibility and the occupation of one J; level are
shown for E=0 and E =4I as a function of temperature
in Figs. 2 and 3. The dashed-dotted line in Fig. 3 denotes
the high-temperature asymptotics of <fo)' The solid

lines are the results within the Brillouin-Wigner approach
and the dashed curves correspond to the equation-of-
motion method.

The results within both approaches are very similar and
differ by at most 20%. This is the consequence of the
good convergence of the perturbation series for large
|J;—J,| as pointed out by Ramakrishnan.® With in-
creasing |J;—J,| the energy difference AE grows and
I' /AE becomes a small parameter. The nonleading terms,
which are picked up differently by the two approaches,
are then not very relevant, such that any meaningful
decoupling would give a reasonable result. Note that for
E =A4T the energy difference AE is almost 2 times larger
than for E=0.

The ground state is a singlet with a van Vleck admix-
ture of the J; multiplet. The T=0 susceptibility is then
finite. When the temperature is raised the occupation of
the J; multiplet grows by thermal population. Hence the
susceptibility also increases and approaches at high T the

3 6 9 12
T/Ir
FIG. 2. Static spin susceptibility for Ce. The dashed lines are
the results within the equation-of-motion method, Egs.
(A3)—(A6) of the Appendix, and the solid lines correspond to
the Brillouin-Wigner method, Eqgs. (4.19) and (4.20). The pa-
rameters are J, =j=—§-, J,=0, g;l=%, D=100I"'wr, and

E::EJl —Ejz.
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FIG. 3. f-level occupation for Ce. The valence corresponds
to 4—6(B 7, ). Parameters and notation as in Fig. 2.

expected Curie law. At high T all levels are equally popu-
lated. The valence of a Ce impurity is given by
v=4—(2./1+1)(311).

B. Validity of the approximation

The exact ground-state properties of the model for
J, =0 and arbitrary j=J; have been obtained by means of
Bethe’s ansatz.> The spin susceptibility consists of two
terms: a Kondo contribution and a mixed-valence contri-
bution. The Kondo effect is not included in the approxi-
mations discussed in the present paper. The approxima-
tions are then valid if the Kondo part is much smaller
than the mixed-valence contribution. This is the case for
ng<03 or E>0 for Jy=3. The range of validity is
therefore considerably smaller than postulated by Ramak-

rishnan.® :
C. Relaxation function

The imaginary part of the relaxation function N(z) as
given by the crudely approximated Brillouin-Wigner ap-
proach (solid line) and the mode-mode coupling method
(dashed line) are shown for T=0 as a function of frequen-
cy in Fig. 4. Part (a) shows the case of Ce and part (b)
shows the case of Tm. Once more the difference between
the two methods is very small due to the good conver-
gence of the perturbation theory, since |J;—J,| =7 for
both cases.

The approaches always yield a finite N"(w) for zero
temperature and zero frequency. If AE is large enough,
i.e., larger than the width of the levels E 7, and E;, given
by (2J,+1)I' and (2J;+1)T, respectively, a bump
develops at |w| >AE. Its physical origin is that the
external energy o (provided by neutrons or photons) in-
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FIG. 4. Imaginary part of the memory function as a functlon
of external frequency at zero temperature: (a) J,=j=7% 2 »J 2—
AE=5T, and (BJl y=0.04, and () for J;=6, Jo=j=~,
AE=10T, and (B A »=0.02. The solid curves correspond to the
crudely approximated Brillouin-Wigner method and the dashed

lines correspond to the mode-mode coupling approach.
D=100xT.

duces transitions from the J, states to the J; levels (bond-
ing and antibonding states). In the absence of an external
energy the transition intensity is just given by the overlap
of the Lorentzians associated with the J; and J, levels. If
AE is large only the tails overlap and N''(0) is small. The
bump is the on-resonance condition for the transition.
The bump disappears at higher temperatures since the
thermal bath provides the energy for the transition.

The bump for Ce is considerably more pronounced than
the one of Tm. This is the consequence of the larger de-
generacies of the Tm levels. The levels are then rather
broad and the Lorentzians strongly overlap already for
zero frequency.

D. Dynamics of a mixed-valence Ce impurity

The main feature of the dynamic susceptibility of a Ce
impurity is the quasielastic peak. It is caused by the
spin-flip transitions within the J, multiplet, which are
quasielastic in the absence of a magnetic field. The
halfwidth of the quasielastic peak is the spin-relaxation
rate shown in Fig. 5 as a function of temperature for
E =4T. The solid line is the result within the simplified
Brillouin-Wigner approach and the dashed line shows the
mode-mode coupling result with the static quantities ob-
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FIG. 5. Halfwidth of the quasielastic peak of the dynamic
spin susceptibility (relaxation rate) for Ce impurities. The solid
line is the simplified result within the Brillouin-Wigner ap-
proach and the dashed line is the simplified result within the
mode-mode coupling method. The parameters are J,= j=%,

J,=0, E=4T,g; =7, and D=100T.

tained within the equation-of-motion method.

Once more both methods yield similar results as a
consequence of the good convergence of the perturbation
expansion.® The relaxation rate is only weakly temperature
dependent. It is enhanced for T~AE since the J; multi-
plet becomes thermally populated. In other words, the
thermal bath provides the energy for the transitions to the
J| multiplet and accelerates the spin decay.

The dynamic susceptibility is drawn as a function of
frequency in Fig. 6. Note that the area under the curves is
normalized to 1. At high temperatures the shape is
Lorentzian. At low T we have, in addition to the quasi-
elastic peak, a bump for |w| >AE. This bump is the
consequence of the inelastic peak in N"(w) Its impor-
tance grows with increasing E. Note that the inelastic
peak becomes a very large bump in a plot of X;'(w) instead
of X;'/w (see Fig. 3 of Ref. 18).

E. Susceptibility of a mixed-valence Tm impurity

Both configurations of a mixed-valence Tm impurity
are magnetic. In order to be cons1stent w1th Refs. 18, 28
and 29 we choose J; =6, J,=j=~ 7 81,= 6, and g;, =
This corresponds to work with holes instead of electrons,
but is otherwise equivalent to the Tm problem.

Since both configurations are magnetic, we define a sus-
ceptibility matrix X(z) according to (2.12) and obtain the
actual susceptibility by multiplying with the correspond-
ing Landé factors
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FIG. 6. Dynamic susceptibility of a Ce impurity as a func-
tion of frequency for two temperatures. At low T an inelastic
peak develops at |w|>AE. Note that the area under the
curves is normalized to 1. The parameters are J;=J =%,
J,=0, g,l=%, D=100#T, and ij=E12. X is the static spin
susceptibility (Brillouin-Wigner approach).

R 8,
Xs(2)=(g;, &5,Xs(2) g 5.1

2

The static susceptibility essentially follows a Curie law.
The Curie constant as obtained from the Brillouin-Wigner
approximation is shown as a function of temperature in
Fig. 7 for E=10I". The dashed line denotes the high-
temperature asymptotics. The temperature dependence of
the Curie constant is weak, and only at low T does it devi-
ate considerably from the free-ion value.

Although the difference in angular momenta,
|Jy—J, |, is & as for Ce impurities, the convergence of
the perturbation series is less good for Tm than for Ce. A
careful analysis of w; and w;, and their field derivatives
shows that the Ramakrishnan argument® is valid only if
|J1—J, | is large and if min(J,,J,) is small. The range
of validity of the theory for Tm is roughly E > 4TI, while
for Ce it is E > O (see Sec. V B).

The dynamic susceptibility of Tm impurities shows a
quasielastic peak. Its halfwidth is the spin-relaxation rate.
Owing to the Curie law it follows a Korringa-type
behavior at low 7. The relaxation rate saturates at high
temperatures since

P. SCHLOTTMANN E24
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FIG. 7. Curie constant for a mixed-valence Tm impurity as a
function of temperature (Brillouin-Wigner approach). The pa-
rameters are J; =6, J,=j= %, &= 'Z‘, 81,= -3—, D=100#T, and
E=10T". The dashed line is the high-temperature asymptotics.

N"(O)~-;— at high T, (52)
as can be seen from the second-order perturbation, and
N'"(0) compensates for the Curie law. (See Fig. 8.) This
behavior of 1/T, Korringa at low 7T and constant at
high 7, has been observed? for the compound TmSe and
recently also for diluted Tm alloys.?

The neutron scattering experiments**?* also revealed
the existence of an inelastic peak, similar to the one dis-
cussed in Sec. VD. Our theory yields the inelastic peak
for X;'(w) only for large AE, i.e.,, AE > (2J,+2J,+2)T, as
we explained in Sec. VC. The theory requires improve-
ments in order to explain the inelastic peak in Tm as sug-
gested by Mazzaferro et al.>* This point is discussed with
more detail in Sec. VI.

20}
;
T13 rt
Tm
10k
os}
10 20 30 20

T/r
FIG. 8. Spin-relaxation rate (halfwidth of the quasielastic
peak of the dynamic spin susceptibility for a Tm impurity as a
function of temperature. The parameters are those of Fig. 7.
At low T the linewidth follows a Korringa rate which saturates
at high T.
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F. Mixed-valence Nd impurities

The case of Nd ions is similar to Tm impurities in the
sense that also here both configurations are expected to be
magnetic: Nd** (4f3) has J,=+ and ng=1481, and the
ground state of Nd** (4f?) is J,=4 and g,2=%. The

theory for our model then yields similar results as for the
Tm susceptibility as we show in Fig. 9. It is necessary
here to choose a large E since |J;—J, | is only 0.5.

The high-temperature static susceptibility of Nd impur-
ities does not give information about the valence, since the
ionic Curie constants of Nd3* and Nd** are essentially
the same. Our model yields a Curie law also for mixed-
valence impurities even down to very low temperatures.
Large deviations from such a behavior or even a satura-
tion of the susceptibility at low T would be an indication
that either of the crystal fields is important, i.e., larger
than the f-level width, or that a more realistic model
should be used (including fractional parentages). Per-
turbed angular y-ray distribution measurements of the
static impurity susceptibility of Nd ions in several hosts
are presently carried out by Riegel et al.!

G. Resistivity and reduction of superconductor T,

The resistivity and magnetoresistivity of mixed-valence
Ce and Tm ions has been calculated by Foglio et al.?

5.—
XT [
3_
(a) Nd
1+
20F (b)
1
T
10}
Nd
0.5}
10 20 30 20
T/r

FIG. 9. (a) Curie constant and (b) spin-relaxation rate for a
mixed-valence Nd impurity as a function of temperature
(Brillouin-Wigner approach). The parameters are J, = ;—, Jy,=4,
j=% 8,=1r> 8,=08, D=1007T, and E=10T. The Curie
constant is essentially constant over the whole temperature
range. The relaxation follows a Korringa law at low T and satu-
rates at high T.
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through Kubo’s formula by making use of the procedure
developed by Gotze and Wolfle.** The zero-field resistivi-
ty is essentially given by (2.18). The method of calcula-
tion and the approximations involved are similar to the
ones used in the present paper.

The reduction of T, and other properties of a supercon-
ductor due to mixed-valence impurities can be found in
Refs. 35 and 36. The method and the approximations are
again the same ones employed here.

VI. CONCLUSIONS

We have calculated the static and dynamic susceptibili-
ties of mixed-valence impurities in a metallic host using a
simple model that consists of two stable multiplets of de-
generacy 2J,+1 and 2J, + 1, corresponding to the 4f n+1
and 4f™" configurations, respectively, which are hybridized
through the conduction-electron states. The model is pos-
sibly the simplest impurity model that includes the orbital
degeneracy of the f electrons. Two methods of calcula-
tion have been employed. For the static quantities we
used an equation-of-motion method in connection with
the fluctuation-dissipation theorem and a modified ver-
sion of the Brillouin-Wigner resummation. The dynamic
susceptibility has been expressed in terms of a relaxation
kernel N(z). This memory function has been calculated
(a) by using a mode-mode coupling approach, and (b)
within a continued-fraction resummation of the
Brillouin-Wigner type.

We compared the results within the two methods for
the static and dynamic quantities and we found that they
differ only by the order of 10% within the range of validi-
ty of the approximations. This is the consequence of the
good convergence of the perturbation expansion for large
|J1—J, | as pointed out by Ramakrishnan.® We found
that the convergence does not only depend on |J;—J) |
but also on min(J;,J,). The convergence gets worse with
growing min(J,J,), i.e., the range of validity of the
theory is reduced. Note that the range of validity is small-
er than estimated by Ramakrishnan.

We would like to remark that previous theories by Bal-
seiro and Lépez,'? Foglio,'® and Kuramoto and Miiller-
Hartmann,'*"® in which relaxation functions or self-
energies were calculated up to second order in V, are
recovered when we expand our results in powers of V.

Note that the results of Ref. 12—15 are only valid for high
temperatures.

We applied our results to the cases of mixed-valence Ce,
Tm, and Nd ions. The model yields a singlet ground state
if either J, or J, are zero. Otherwise the ground state is
magnetic and we obtain a Curie-type susceptibility. The
static susceptibility for “singlet ions,” e.g., Ce and Yb, is
finite at low T, grows then when the temperature is raised,
and approaches a Curie law at high T.

The dynamic susceptibility has two main features: a
quasielastic peak at =0 and inelastic peaks at
|w| >AE. The width of the quasielastic peak is only
weakly temperature dependent for the singlet ions, in
agreement with experimental neutron scattering results for
Ce compounds.?? The spin-relaxation rate for “magnetic
ions,” e.g., Tm and Nd, is of the Korringa-type at low T’
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and saturates to a constant value at high temperatures.
This behavior has been found for TmSe (Ref. 22) and di-
lute Tm compounds.?

An inelastic peak was observed by neutron scattering in
TmSe (Ref. 22) and in dilute Tm compounds.?® Its origin
can be either crystal-field splitting or the local charge ex-
citation from the bonding to the antibonding mixed-
valence state?® with energy AE. The present approxima-
tions yield such an inelastic peak only if AE is very large.
For small AE the effect is smeared by the linewidth of the
f levels. Hence our model yields a more pronounced in-
elastic bump for Ce than for Tm.

The linewidth of the f levels is overestimated in both of
our calculation methods. In the mode-mode coupling ap-
proach we neglected the vertex corrections which are ex-
pected to partially cancel the effect of the f-level self-
energy, (3.5). In the Brillouin-Wigner approach we finally
approximated the imaginary part of My, (z) with
(2J14+1)T, (4.16), which is expected to be frequency
dependent and smaller than this value. N (z) for large fre-
quencies is not considerably affected by the above approx-
imations, but N"(@) for |w| <AE will be reduced and
the inelastic peak is enhanced in this way.

The inelastic peak or strong deviations from a Lorentzi-
an tail have not been observed for Ce. Such a peak should
be present with an energy AE <100 meV for Ce in the
valence range 3.5 <v <3.8. The nonexistence of the peak
could be another indication that the valence of Ce is less
than 3.5. In this case a Kondo-type singlet builds up, as
can be seen from the Bethe ansatz solution of the impurity
model,>*3! and Ce compounds should be regarded as Kon-
do lattices.”’

Note added in proof. An inelastic structure in the neu-

tron scattering of dilute Ce in (La,Th) alloys has been re-
|

s (@) 1 (2J,+1)I'
MMy O = 2 <B11M1>+<BJZM2>

x| 3 (Mym|M,)?

M5,m

2 D 1
+(<BJ2M2>—-(B12M’2 )= [ln 27T -9 ['5_1

+ 3 (Mym | M)
Mj,m

i(<BJIM1>+<BJ1M; ))

2
+( By, ) = (B N2

Owing to the magnetic field, =,, ,M,(@) is no longer a con-
stant, but has an explicit frequency dependence. This
modifies the sum over Matsubara poles that lead to (3.6)
and (3.11). For 2y, m,=const, the sum just yields a di-
gamma function, while for H5£0 it is summed over di-
gamma functions. The expressions are complicated and
the procedure is almost unpracticable.

i(<BJZM2>+(BJ2M12 M)
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ported by T. M. Holden, W.Y.L. Buyers, P. Martel, M. B.
Maple, and M. Tovar, in Valence Instabilities, Ref. 3, p.
325. The origin of the rather broad structure, which
disappears with temperature could be the bonding-
antibonding transition.
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APPENDIX

Within the equation-of-motion method!! we- obtained
the occupation numbers and the charge susceptibility via
(3.11). The static spin susceptibility is not as straightfor-
ward since the self-energy 2(z) has to be evaluated in a
small magnetic field. We write

(B )=(Byy )y —o+a;MH, op=0f="+y;MH ,
(A1)

and expand the expressions corresponding to (3.6) and
(3.11) in an external field linearly in the field. Each equa-
tion has a linear term in MH and one in M,H, which
lead to four equations to determine a; Ay, Vrpandyy.

The self-energy 2(z) in a magnetic field depends on the
operator Ay, »r,. We obtain in second order in ¥,

T

-

In order to be consistent with the leading-order approxi-
mation the (Bj),) in (A2) should be the free-ion occupa-
tion numbers. Then the field-dependent terms of Z(w) are
proportional to H /T, what gives rise to the Curie law at
low T if the ground state is magnetic.

In the case of mixed-valence Ce the ground state is a
singlet and the frequency dependence of 3(w) only gives

D 1
[ln-é;f—lll [——-l
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minor corrections'! at low T and at high 7. It is then jus-
tified to neglect the frequency dependence and use the fol-
lowing equations to determine X°:

<BO>'—<BJ1MI)

m=%lm¢ 3+Eﬁ+12—ﬂ-f— (A3)

with

T, =T/((By ) +(Bo)), (A4)
(AS)

AEy =E;m +@5m —Eo—w0,
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and

o= Ew-llM] .
Ml

Equations (A3)—(A6) are used in Sec. V. The static sus-
ceptibility is obtained by numerical differentiation.
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