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Effects of impurities on charge-density waves: A mean-field calculation

G. Gomez-Santos and Felix Yndurain
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The effect of substitutional impurities on systems that present a charge-density-wave (CD%)
ground state induced by a Peierls distortion is studied within a mean-field approximation. The cal-
culations have been performed for both one-dimensional and two-dimensional models. The results
of the calculations indicate the following. (i) The presence of impurities weakens the CD% and
eventually destroys it. (ii) A distinction is made between the two effects of doping that perturb the
CD%', namely, the disorder and the shift of the band filling. (iii) In the case of disorder, the results
are interpreted in terms of lack of coherence of the electronic states and the coherence length of ihe
instability. (iv) The variations at T=0 of the CDW order parameter with the impurity concentra-
tion follows a square-root law. (v) The CD% transition temperature is reduced by the presence of
impurities showing a critical behavior. (vi) Substitutional impurities in commensurate CD% sys-

tems have a similar effect as magnetic impurities in superconducting materials and normal impuri-
ties in the excitonic insulator.

I. INTRODUCTION

It is well known that impurities have important effects
on charge-density waves (CDW's) in both chainlike' and
layered compounds. The problem of impurities in com-
plex systems such as the quas1-one-d1menslonal tetra-
thiafulvalene-tetracyanoquinodimethane or the quasi-two-
dimensional layered compound 1T-TaS2 is extremely com-
plicated and can be considered under different points of
view. s One is therefore forced to choose a particular as-

pect of the problem and focus attention on it, ignoring for
thc time bc1ng any other.

One of the more important consequences of the incor-
poration of certain impurities in some materials that
present CDW instabilities is the weakening of the CDW
amphtude as deduced from the decrease of the CDW tran-
sition temperature. '

In this work, we study the decrease of the CDW order
parameter at T =0 with the addition of substitutional im-

purities as well as the reduction of the transition tempera-
ture. We model the problem by considering a Hamiltoni-
an which includes electronic, vibrational, and electron-
phonon (only a single phonon is considered) contributions.
The effect of disorder is included via an electronic self-

energy obtained by two different mean-field approxima-
tions, such as the coherent-potential approximation'
(CPA) and the cluster-Bethe-lattice" modd. The Hamil-
tonian is solved for both a one- and a two-dimensional
model. It is shown that t4e mai. n results obtained nurneri-

cally with these ingredients are essentially reproduced by
an oversimplified model described by a constant density of
states and an energy-independent Lor'cntzian broadening
of the electronic states. These results stress the general
validity of our model calculation, at least for commensu-

rate and fixed q-vector CDW instabilities.
This paper is organized as follows. In Sec. II we dis-

cuss t4c model HaID11ton1an and show how to solve It to
get the order parameter and the transition temperature.

In Sec. III we present the results for both one- and two-
dimensional systems. The results of this section are inter-
preted in terms of simple physical concepts in Sec. IV. Fi-
nally, in Sec. V the conclusions of our work are presented.

II. MODEL

In this section we discuss the model Hamiltonian for
the pure material, and in Secs. IIA and II8 we discuss its
ground state. The effect of impurities in the Hamiltonian,
and therefore in the ground state, is discussed in Sec. IIC.

A. Model Hamiltonian

We consider a model of electrons in Bloch states in the
presence of a static lattice distortion. The Hamiltonian
therefore contains three terms

H =H, +Hph+H, ph . (2.1)

The one-electron term H, describes a collection of
noninieracting electrons moving in the periodic potential
of the undistorted lattice

H, = QE(k)C„C„, (2.2)

where E(k) is the band dispersion relation and the opera-
tor C- (C ) creates (destroys) an electron of crystalline

k k

momentum k. The sum in (2.2) is extended to the first
Brillouin zone and includes spin index.

The phonon (elastic) part of the Hamiltonian H~h is the
elastic energy due to the restoring force acting on the ions
in the distorted lattice. This part can therefore be written

1

Hph ———,yu

where u is the amplitude of the periodic distortion and y
is a constant which accounts for the rigidity of the lattice.
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The electron-phonon coupling term of the Hamiltonian
H, ~h is intended to describe the perturbation of the one-
electron states induced by the periodic lattice distortion of
amplitude u and wave vector q. This term can be written
as

H, ph
———au g C- C- .k+q k

k

(2.4)

S. Ground state

The stable solution of the coupled electron-phonon sys-
tem is found by minimizing the total energy [expectation
value of (2.1)] with respect to the lattice deformation pa-
rameter u

(H(u)) =0.
BQ

(2.5)

This stationary condition leads to the following equation:

—a g (C'„C„)+qu =0 .
k

(2.6)

The angular brackets in the above equations indicate the
expectation value in the ground state.

The condition (2.6) is equivalent to solving the follow-

ing Hartree-Fock (HF) self-consistent Hamiltonian 5

HHF QE(k)C C —A,gQ——C C-+ —,
'

A,g, (2.7)

k k

where

g=-(y c'„c,)
k

(2.8a)

A, —:a/y. (2.8b)

The constant a describes the intensity of the deformation
of the crystalline potential.

The appearance of a Peierls distortion' (PD) and, con-
sequently, a CDW, depends critically on H, ~h.

' If the
reduction of electronic energy due to the electron-phonon
coupling is large enough to overcome the elastic term H~h,
the system is unstable against the periodic distortion and
the ground state presents a CD%.

The following remarks concerning the Hamiltonian
(2.1) are in order.

(i) The H, ph term is restricted to a chosen distortion
with periodicity given by cos(q r). In our calculations
the wave vector q has been taken to be commensurate

with the undistorted lattice and equal to 2kF.
(ii) The coupling between electron states mediated by

the lattice is taken linearly in the amplitude of the ion dis-
placement u, the structure factor being a constant in-

dependent of k.
(iii) The Coulomb electron-electron interaction is not

taken into account. We therefore do not discuss possible
magnetic ordering of the system. '

ground state presents a lattice distortion of amplitude
u =(a/y)g and the electronic spectrum displays a gap of
halfwidth b =—A,g.

To get an idea of the relationship between g and I, and
to characterize the condensed state one can assume a rec-
tangular density of states p of bandwidth 2W. If perfect
nesting at half-band filling [i.e., E(k)= E(—k+ q)] is as-
sumed, it can easily be shown (see Appendix for details)
that

(2.9)

where W is the half-bandwidth.
Therefore, we obtain a BCS-type equation' for the

band gap,

6=28'e (2.10)

Also the transition temperature behaves as in the BCS
theory. ' It is important to indicate that for more realistic
electronic structures the functional relation (2.10) between
5 and A, remains valid. ' '

C. Effect of substitutional impurities

To study the effect on the CDW transition of substitu-
tional impurities, we assume that only the electronic part
of the Hamiltonian (2.1) is affected by the presence of im-
purities. Accordingly, the Hamiltonian H, (2.2) takes the
following form:

H,' = g e, C,'C, + V g C,'C, + H.c. ,
i (i',j)

(2.11)

where C; (C;) creates (destroys) and electron at site i The.
second sum in H,' is restricted to nearest-neighbor atoms.
The diagonal term e; is a random quantity whose proba-
bility distribution is

P(e; )=x5(e —e's ) + ( I —x )6(e.—eq ), (2.12)

x being the concentration of impurities. eq and ez stand
for the atomic energy levels of the host material (A com-
ponent) and the impurities (8 component), respectively. It
is assumed that in absence of impurities the pure A com-
ponent has perfect nesting of the Fermi surface at half-
filled band.

The presence of impurities destroys the periodicity of
the system and the elementary excitations are no longer
Bloch-type waves. Therefore, the E(k ) dispersion relation
is not well defined. It is clear that under these cir-
cumstances for a given concentration of impurities, the
Peierls condition may not be satisfied, and therefore the
CD& ground state is destroyed.

In order to handle the Hamiltonian (2.11) we replace the
exact H,' by an effective one in which the effect of disor-
der has been included in an average way,

H,' =H,' (X) . (2.13)

The average g plays the role of the order parameter of This Hamiltonian is formally identical to the periodic one
the system. If the solution of (2.7) gives (=0, the system (2.2), but it is characterized by an energy-dependent self-
is stable in the undistorted phase. However, if /&0 the energy X which in some way takes account of the effect of
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the disorder. The effective Hamiltonian is intended to
reproduce the configurational-average electronic proper-
ties of the alloy.

In our calculations, and to characterize the effective
Hamiltonian (2.13), we have used the CPA (Ref. 10) self-
energy in the one-dimensional calculations. In- the two-
dimensional calculations we have used the self-energy ob-

tained by means of a modified version" of a method'7's
based on the cluster-Bethe-lattice model.

Once the electron Hamiltoman has been replaced by the
effective one, the problem is formally identical to the per-
fect periodic one described above. The energy minimiza-
tion equation is the same, but in this case the scif-
consistent equation for the order parameter is

{~(zc-„c„j=——Im f deaf(e)z
[c—X(k,c)][c—X(k+ q, c))—(iLg)2

(2.14)

wtl{'I'{: X( k, e) Is the coIIlplcx dispel'sloil lclat1011 of 'thc ef-
fective electron Hamiltonian H'II{X) describing the alloy.
The function f(E) is indeed the Fermi-Dirac distribution
function. The sum in (2.14) is extended to the first Bril-
louin zone.

Since Eq. {2.14) is the core of this work, several remarks
conccrn1ng thc ploccduI'c for obtain1ng 1t 81c 1Il oldcI at
this po1nt.

(i) The disorder is only included in the electronic part of
the Hamiltonian although it also perturbs the phonon and
thc clcctI'on-phonon terms. This ls 8 good approximation,
since we are mainly interested in the effect of the lack of
the electron coherence on the CD%' state.

(ii) Since we are using a mean-field approximation, sta-
tlstlcR1 fluctllRtlolls Rrc lgllorcd. Spatial varlatlons of tllc
order parameter (phase or amplitude) are not included in
the calculation.

(iii) The electron Hamiltonian has been replaced by an
effective one before applying the electron-phonon inecha-
nism. This implies a performing of the configurational
avcI'agc ovcI' clcctlons moving ln thc und1stortcd latt1cc
potential. In terms of the Green's-function formalism this
is equivalent to the following decoupling procedure:

n =(1—x )ng +xnII, (3.1)

with n„= 1 (half-occupation) and ns ——2 (full occupation).
%e now discuss the two cases separately.

A. One-dimensional case

eg —eg ——68', (3.2)

where 2W=4V is the pure material's bandwidth.
We have performed the following calculations.
(i) Phase diagram A, (x)(T=O). To obtain the phase

diagram we find the minimum value of k (A, ) which
gives a nontrivial solution of (2.14) for each impurity con-
centration. The results of the calculation are shown in
F1g. I. It 1s important to note thc well-chalactcflzcd loga-
rithmic behavior near x =0,

With the above-indicated prescriptions the only param-
eter left to characterize the system is the energy difference
between the atomic levels of the host and impurity atoms,
respectively. In this section we illustrate the results for
well-scpalatcd bands, 1.c.,

«& =«0)+«.~..„G)=—(6,)+(6.&a,.„(G},
(2.15)

where 6=—(z —H) ' and Go=(z —H, ) '. The angular
brackets in (2.15) indicate configurational average.

~l/( lnx
~

as x~0 . (3.3)

III. RESULTS

In this section we present the results on the effect of
substitutional impurities in the PD in the following dif-
ferent situations. (a) In the case of the one-dimensional
1Rttlcc tllc cffcct of 11llpurltlcs ls collsldcrcd wlthlll tllc
CPA. (b) In the case of the two-dimensional square lattice
thc alloy ls tl'catcd llslllg R rcclpl'ocal-spRcc vcl'sloll of
the cluster-Bethe-lattice approximation.

In both (a) and (b) the electronic Hamiltonian is approx-
1IIlatcd by 8 tight-binding onc which IcpI'cscIlts onc
orthogonal orbital per site with interactions between
nearest-neighbor sites only. Also, in both cases wc assume
that the host atoms carry one electron per site (half-
occupation). This band filling gives, for the pure material,
8 2 g I supcI'lattlcc 1Q thc onc-dim cQslonal case Rnd 8
C(2y, 2) in the two-dimensional case. In the case of the
alloy the Fermi level has been adjusted in order to accom-
modate the following number of electrons n per site:

O O~ 02 X

FIG. l. Phase diagram for the one-dimensional system. The
variation with impurity concentratioI1 of the minimum value of
A, (k ) required to the appearance of the instability is shown.
Dots indicate the results of the calculations. The continuous
line represents the logarithmic fit of the results in the limit x —+0
[see Eq. (3.3)].
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FIG. 2. Order parameter (6 =—A,g) vs impurity concentration

for five different values of A, /W (1.25, 1.40, 1.50, 1.65, and 1.75)
in the one-dimensional system. Dots indicate the results of the
calculations. The solid line is the square-root fit [Eq. (3.4)].

0
X/yc

FIG. 4. Reduced values of the order parameter (6/60} (solid

line) and the transition temperature (T!T,) (dashed line) vs re-

duced impurity concentration (x /x, ) in the one-dimensional sys-

tem.

(ii) Eualution of the order parameter at zero temperature.
The numerical solution of Eq. (2.14) gives the order pa-
rameter g(x) (or equivalently 6=—A,g) as a function of the
impurity concentration x. Results of the calculations for
different values of A, are shown in Fig. 2. A critical
square-root behavior is clearly obtained. The numerical
results can be fitted by the expression

b.(x) ~ (1— /x x)'i,
where x, is the critical impurity concentration at which
the order parameter vanishes, i.e., the condensed ground
state is not stable.

(iii) Transition temperature T', (x). The self-consistent
solution of the model Hamiltonian can also be obtained at
finite temperatures. In the case of the dirty material as in
the pure one there is a critical temperature T, (x) at which
the CDW order parameter vanishes. Results of the calcu-
lations are shown in Fig. 3 for different values of the pa-
rameter A, . We also obtain a critical behavior for T,(x)

0.5

0.4

0 O.l 0.2 X 6.3
FIG. 3. Transition temperature T, vs impurity concentration

for five different values of X/8' (as in Fig. 2) in the one-
dimensional system. Dots indicate results of the calculations.
The solid line is a guide for the eye.

which, indeed, is not of the square-root type such as h(x),
indicating the different mechanism involved in the de-
struction of the CDW.

In Fig. 4 we have plotted results of the calculations for
a given A, of the reduced order parameter and transition
temperature in terms of the respective reduced concentra-
tion x/x, . It is important to note that the BCS value for
the ratio' b, /T, does not hold for impurity concentra-
tions other than x=0. This behavior is similar to that
found in the problem of magnetic impurities in supercon-
ductors

In order to illustrate how the presence of impurities per-
turbs the electronic spectrum in the condensed phase we
have calculated the density of electronic states for dif-
ferent values of x &x, for a given A, . Results of the calcu-
lation are shown in Fig. 5. In the case of pure material,
(x =0), the lattice distortion is reflected in the existence
of an energy gap whose magnitude 2b, plays the role of
the order parameter. In the concentration range 0 gx g x,
the disorder has the effect of filling the gap with electron-
ic states. However, as a result of the lattice distortion a
dip in the energy spectrum is present. This depletion of
states vanishes at the critical concentration. These results
show that a lattice distortion can take place even if no ab-

solute gap is present in the energy spectrum.

B. Two-dimensional case

With the specifications indicated at the beginning of
this section we have calculated the effect of substitutional
lmpur1t1cs on thc pcr1od1c-d1stortcd-lattice state 1Q thc
two-d1Hlcnslonal square lattlcc. IQ th1s case and IQ order
to study how the results depend on the approximation in-
volved in treating H,', we present results in which the
self-energy X(k,e) is calculated in an approximation other
than the CPA based on the cluster-Bethe-lattice approach.
Details of this method and its relation with the single-site
CPA can be found elsewhere. " '

We have performed the same calculation as in the one-
dimensional case. In this case wc have taken
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X 025

X=O 1

Q
0.1 0.2

X
FIG. 6. Phase diagram for the two-dimensional system. The

variation with impurity concentration of the minimum value of
A, (A, ) required to the appearance of the instability is shown.
Dots indicate the results of the calculations, The continuous
line represents the logarithmic fit of the results in the limit x —+0
[see Eq. (3.3)].

-1 0 1

E —E'A

FIG. 5. Majority-band density of states for the one-
dlmcnsional system. The results alc for five diffcrcnt values of
the impurity concentration. In all cases a fixed value of
A, (X=1.25$') is taken.

ez —ez ———,
'

W, where W=4V is the pure material's half-
bandwidth. The results of the calculations are similar to
those obtained in the one-dimensional case. In Figs. 6 and
7 we have plotted the phase diagram and variation of the
order parameter with concentration, respectively. In these
figures, we note that the logarithmic critical behavior of

(x) and the square-root behavior of the order parame-
ter b, (x) found in the one-dimensional case are also
present in the two-dimensional calculation. This clearly
means that, within the mean-field approximation, the
main features involved in the disappearance of the PD
when impurities are present are independent of the dimen-
sionality of the problem so long as the pure material
presents a CD% ground state.

IV. DISCUSSION

level coupled by the instability [see Eq. (2.4)]. The lack of
coherence is reflected in the fact that the electronic states
are no longer eigenstates of the Hamiltonian, producing,
therefore, an incertitude in energy 5E which is somehow
proportional to the amount of disorder. It is then reason-
able to think that an instability involving the opening of
an energy gap at the Fermi level is destroyed if 5E is of
the order of magnitude of the energy gap. If the gap
behaves as exp( —1/pA, ) [see Eq. (2.10)] we expect the pa-
rameter A, to behave as

(4.1)

This is what we have found in our calculations [see Eq.
(2.3)], since, for low concentrations, 5E is proportional to
the impurity concentration x.

To understand the problem more clearly, we have
solved an oversimplified model in the Appendix which in-
volved a constant density of states po ———,W where the dis-

order is simulated by adding a constant imaginary part I

Q.I

04

In this section we interpret the results obtained in Sec.
III in terms of simple physical ideas. It should be indicat-
ed that the most salient results reported above are valid
for both the one- and two-dimensional calculations. We
therefore address ourselves to generic systems that present
CDW instabilities irrespective of the dimensionality of the
problem. When the specific results have only been tested
in the one-dimensional case, it will be indicated.

The effect of impurities (or any other kind of disorder)
on the CDW ground state is that of destroying the coher-
ence of the original Bloch electronic states near the Fermi

0.1 0-2
X

FIG. 7. Ordcl paralnctcr (5:—A,g) vs llllpurlty concentration
for three values of A, /W (0.83, I.04, and I.25) in the two-
dimensional system. The dots indicate the results of the calcula-
tions. The solid. line is the square-root fit [Eq. (3.4)].
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to the energy. The new electronic states are, therefore,
I.orentzians characterized by a halfwidth at half max-
imum of 1. We obtain for A,~ a critical logarithmic
behavior [see Eq. (All)], and for the gap we obtain a
square-root variation with I of the form

It can therefore be written in the form

(4.5)

If we take 2I =5E and make use of (A12), we end up with

b/ho=(1 —21 /bo)i~i g =IIIUp/Ao, (4.6)

which is analogous with what is found in superconductivi-
ty .Therefore, the CDW disappears when the mean free
path of the Fermi electrons is shorter than the coherence
length.

So far we have only discussed the effect of the disorder
in the CDW state. Impurities have another important ef-
fect on the CDW state that also weakens its magnitude,
namely, they may change the position of the Fermi level.
So far wc llavc stlldlcd thc case 111 whlcll thc llost Rlld III1-

purity bands are well separated and the Fermi level meets
the nesting condition in the majority (host) band. If, in
the other extreme case, we assume that the only effect of
the impurities is to change the total number of electrons in
the system, the Fermi level is shifted and the nesting con-
dition is not satisfied any longer, weakening (and eventual-

ly destroying) the CDW. By using the model of the Ap-
pendix it can be seen that in this case, the minimum
A, (A~ ) required to produce a CDW of a given q vector is
given by

where 50 is the energy gap in absence of impurities. The
squRrc loo-t varlRtloll of 6 Is wllat wc Obtaliicd 111 oui Ilu-
merical calculations in the preceding section, since, in the
limit of low impurity concentration, I is proportional to
X.

It is important to note that the relation (4.1) allows us
to obtain a relation between I and b,o of the form (see Ap-
pendix)

This relation is closely satisfied in the one-dimensional
calculations in the limit of small energy gap, i.e., ho &~ 8
(see Fig. 8). Although we have not performed this calcu-
lation for the two-dimensional model, we believe it is still
valid since in the way (A12) is derived the details of the
density of states are unimportant. We are going to use
Eq. (A12) to define, properly, the coherence length of the
electrons in the condensed phase. As mentioned before,
the reduction in the coherence of the electronic states
gives rise to a finite lifetime I, which is related to the en-

ergy incertitude by

(4.3)

We can then define the electronic mean free path I in the

I =U~I', (4.4)

where Uz is the Fermi velocity.
The coherence length g is defined as the shortest mean

free path required to allow the condensation to take place.

0.2

&(EF)
PIG. 8. Order parameter in absence of impurities (bo} vs the

imaginary part of the self-energy at the Fermi level (see text).
Solid line: straight line corresponding to Eq. (A12). Dashed
line: results of the calculation in the one-dimensional system.

I

poln
i

W/E~
i

(4.7)

where EF is the shift of the Fermi level with respect to the
perfect nesting condition. In (4.7) we see that the shift in
the Fermi level has a similar effect on the CDW to that of
the disorder [compare with Eq. (Al 1)].

To study the interplay between these two mechanisms
of weakening of the CDW ground state, we have analyzed,
in the one-dimensional model, the variation of A, with
the separation in energy of the host and impurity atomic
orbitals. We characterize this separation by the parameter

5=(eg —CII )/8",
and the calculations have been performed at a fixed con-
centration (x =0.125). We have considered two different
forms of filling of the energy levels.

(i) Homopolar ease. In this case both components have
the same valence and pmvide the same number of elec-
trons per atom to the material. We have taken the half-
filled-band case.

(ii) Heteropolar case. In this case the two kinds of
atoms have different valence and for our particular exam-
ple we have assumed that the host and impurity atoms
carry one and two electrons, respectively.

We have calculated for each value of the parameter 5
the two different values of A,~ corresponding to cases (i)
and (ii). Since we are interested in distinguishing between
the two CDW-weakening mechanisms discussed above, we
have plotted, in Fig. 9, the two values of b,o corresponding
to the calculated A, . In the same figure we also show the
imaginary part of the self-energy at the Fermi level 1 (E~)
which is essentially the same in both cases. It should be
noted that the quadratic behavior of I near 5=0 corre-
sponds to the Born approximation. Figure 9 allows us to
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Q.4

Q.2

I [ i I I i i I I I I 1 I I I Q
2 4 6 g 8

FIG. 9. Relationship between the imaginary part of the self-
energy at the Fermi level and the order parameter in absence of
impurities (50) for the one-dimensional system. The results for
two different kinds of band filling are plotted vs the separation
of atomic levels (see text). Dotted line: imaginary part of the
self-energy at the Fermi level. Bashed line: 60 for the hetero-
polar case. Solid line: ho for the homopolar case. The scales of

and I are shifted to satisfy the calculated condition
60—-2. 18I (see Fig. 8).

Q

separate the two effects under discussion since, if only the
disorder were important, the relation (A12) would be satis-
fied. Looking at Fig. 9 we conclude that the relation
(A12) is satisfied, and therefore the disorder is the dom-
inant mechanism in the CDW weakening in the following
cases.

(a) Heteropolar case and very different species, i.e., 5
very large (this is the case studied in this work).

(b) Homopolar case and very similar species, i.e., 5—+0.

Away from these two limits the disorder and the filling of
the bands cooperate to perturb the CD&.

Around 5=0 the interpretation is specially simple. In
the homopolar case the disordex results produce the dorn-
inant effect, whereas in the heteropolar case in the limit of
no disorder 5=0, the only way to weaken the CDW is by
shifting the Fermi level and destroying the Ferini-surface
nesting condition.

The main conclusion that can be drawn from the model
developed in this work is that the presence of substitution-
al impurities weakens the CD% and eventually destroys it.
The I'eduction of the CD% order parameter at T=o is
such that it varies with the concentration of impurities
following a square-root law. The CDW transition tem-
perature is reduced by the presence of impurities in agree-
mcnt with previous theories. In our theory we can distin-
guish between the two processes that destI'oy the CDW
when impurities are incorporated. Firstly, the lack of
coherence of the electrons which is interpreted in terms of
thc energy-time 1nccft1tudc principle, and, secondly, thc

shift of the Fermi level that does not meet the original
perfect nesting condition.

Vfc believe that the model we have presented incorpo-
rates the main physical ingredient of the pxoblem treated,
i.e., the effect of impurities in the Peierls instability.
However, in order to make it feasible we have introduced
some approximations which limit the validity of the re-
sults. Among the limitations we can include the follow-
ing.

(i) The problem is treated within the mean-field approx-
imation. We therefore ignore spatial fluctuations of the
order parameter. These fluctuations are related to the im-
purity configurationa fluctuations that are ignored in
single-site calculations. The main effect of the fluctua-
tions in the alloy density of states is to introduce small ex-
ponential tails, we therefore believe that its effect in the
CDW is to smooth the critical behavior of the order pa-
rarneter around the critical concentrati. on.

(ii) The effect of impurities is included only in the elec-
tronic part of the Hamiltonian. This approximation does
not seem to be very restrictive since the destruction of the
CDW is caused by the lack of coherence of the electronic
states. A more sophisticated treatment would change the
square-foot behavior but not thc ovcI'all plctuI'c.

(iii) We assume that only one phonon of a well-defined

q vector is involved in the electron-phonon coupling. Vfe
are also limited to dealing with a CDW with a commensu-
rate wave vector. This constrains us to consider only one
specific kind of CDW instability. The variation of the
CDW q vector with the filling of the band may have im-
portant consequences. Our model is intended to study
mainly the effect of the disorder with a constant filling of
the host band.

(iv) We llave assuined that tlie inlplii'ities do not destioy
the symmetry of the problem. This implies that the
dispersionless constant energy contour related to the nest-
ing of the Fermi surface is not destroyed. This is not a
major effect, although in a realistic calculation it should
be incorporated.

(v) We have not included the Coulomb electron-electron
interaction. If it is included via a Hubbard-type Hamil-
ton1an, complex gxound states with magnetic order can
take place, ' making the analysis very complicated. How-
ever, if the electron-electron repulsion does not destroy the
pure CDW ground state, its main effect is to reduce the
amplitude of the CDW, and therefore, Eq. (2.9) is no
longer valid.

(vi) In the calculation of T, we have neglected the con-
tribution of the phonon entropy. The calculated critical
temperature can therefore be considered only as a lower
bound.

In spite of the above shortcomings of the work we can
conclude that impurities in systems which present a
phonon-induced CDW have similar effects as charged im-
purities in excitonic insulators or magnetic impurities in
superconductors. ' These similarities arise from the fact
that impurities in these systems have a pair-breaking ef-
fect due to the finite lifetime of the coupled electronic
states. %'ork to improve this model is in progress, The
microscopic study of impurities seems to be the right
direction for the future.
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APPENDIX

In this appendix we obtain analytical solutions of the
CDW order-parameter equation (2.14) after making soine
simplifying assumptions. The following analysis, in spite
of its conceptual simplicity, retains most of the physical
ingredients of the problem treated in this work.

We assume a single band of Bloch electrons with a
dispersion relation satisfying the nesting condition

E(k) = E—(k+ q) W. e also assume a constant density of
states p normaHzed to 1 as

pa=1/(2W), iE i ( W

0, /E f
&8'. (Al)

The effect of the disorder is simply introduced by means
of an energy-independent imaginary contribution I to the
energy. If G(e) is the Green's function for Bloch states,
for its diagonal matrix elements when disorder is present

. )

(k
~
G(e)

~
k) =[@ E—(k)+ir] (A2)

g(e,E,r,h)—= n-
[o —E —I' —dF] +4I e

(A4)

and 5:—A,g.
In the absence of disorder, I =0+, and the solution of

(A3) at T=O gives the usual BCS-type gap equation

611——2We (A5)

In order to obtain the phase diagrams we have to solve
(A3) for 5=0. If we define

F(e, l ) = f dEg(e, E,r, 5=0)p(E), (A6)

obtaining the following expression for F(e,I') is straight-
forward:2

Within these simplifications Eq. (2.14) can be written as
follows:

'= f de f(e) f dEg(e, E,r,h)p(E), (A3)

where

p( r) p11 1 2r ( W+6) +r 4E' W —t —I'
ir 4(e +r )' 2 (e +r )' 2 (8'—e)2+r2 (E +r2)' ' 2r8' 2

(A7)

In the limit I"&(8; we can neglect the first term of the
right-hand side. We can also make the following approxi-
mation:

I

For T=0 we obta1n

0 1f g(e, E,r, h)dc=
2 2,(E2+g2) 1/2

8'2 —P—I'2 ir/2,
~
e

~

(8'
2I 8' —m/2, i

e
i & 8'.

Equation (A3) now reads as follows:

For T=O we obtain

(AS)
E2++2 p2

arctan +2r(E2+ g2)1/2

Therefore, Eq. (A13) can be expressed as

1 ~ dE
p.& -~ 2~(E2+a2)'/2

(A14)

1 ~ e Po 8' +I
~m ' &+r'=po dp = ln (A10)

In the limit I « 8; A, finally has the following form:

1=
pyn(W/r)

' (A 1 1)

By using Eq. (A5) this equation can be expressed in a
clearer form,

2r =to
This equation provides us with the amount of disorder
(2I') needed to destroy a CDW instability characterized
by a gap parameter ho in absence of disorder.

In order to solve Eq. (A3) for b,&0, we change the or-
der of integration,

'= f p(E)dE f f(e)g(e, E,r, b, )de . (A13)

= lnI W/6+ [1+(W/h)2]'/2j
Po

2I
~(g2 r2)1/2 (g2 r2)1/2

arctan (A17)

which ln thc cons1dclcd liIQit can bc approxi01atcd bp

E2++2 p2
aI'ctan +-

2r(E2+ g2) 1/2

In the limit I'«b, &(8', Eq. (A15) can be solved per-
forming the change of variable U =E +b, and using the
approx1IIlatlon

arctan
O2 —I-' m 2I U

(A16)2I U 2 U2

Equation (A15) now reads
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1 28'
-=ln —I /b, .

Po

Using (AS) we obtain

(A18)

(A19)

Solving (A19) for b, to first order in I /ho we obtain

~'=~o —2~ol . (A20)
It is worth mentioning that although Eq. (A20) has been
obtained in the limit I «b « 8', numerical solutions of
(A14) have approximately the same behavior as (A20) for
a much wider range of I . In fact the solution of (A20)
for b, =0 gives us the same condition for the disappear-
ance of the instability as in Eq. (A12).
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