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The development of orientational order in an anisotropic planar rotor model has been studied by
Monte Carlo methods. The order develops following an instantaneous quench from a high-
temperature, disordered phase to an unstable low-temperature state in which a threefold-degenerate
herringbone phase is the equilibrium state. The model describes the orientational properties of N,
molecules physisorbed on graphite. Both the dynamical structure factor and average domain size
have been determined. The structure factor is shown to satisfy dynamical scaling. The growth laws
for three different measures of a “domain size” are all shown to obey the Allen-Cahn law. This is
in disagreement with the interpretation of an earlier Monte Carlo study of the same model.

INTRODUCTION

Recently, considerable theoretical and experimental at-
tention has been given to the dynamics of order-disorder
transitions in physisorbed and chemisorbed overlayer sys-
tems.? Indeed, very recently the dynamics of ordering
in the oxygen on tungsten [O/W(112)] system was studied
experimentally by means of low-energy electron diffrac-
tion (LEED).2 This is the first study of submonolayer
systems which confirms the theoretical prediction of the
Allen-Cahn domain growth law.> Many other phy-
sisorbed and chemisorbed systems are excellent candidates
for the study of domain growth kinetics. Often a reason-
ably realistic model Hamiltonian for such systems can be
constructed using the results of spectroscopic studies such
as LEED. Such Hamiltonians can then be used in Monte
Carlo simulations to study the kinetics of domain growth.
The actual experiments are done with heterogeneous sub-
strates, so that the typical system sizes are less than about
500 lattice constants. Thus the computer simulations can
be adjusted to actual system sizes. It should also be men-
tioned that the model simulations give information about
the “pure” system, whereas impurities are often present in
experimental systems. Such impurities could affect the
dynamics of the order-disorder transition.

In this paper we have studied the dynamics of the
order-disorder transition of an anisotropic-planar-rotor
Hamiltonian*> with nearest-neighbor interactions on a tri-
angular lattice
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Here ¢; is the polar angle of the ith rotor and 6j; is the
directional angle of the line joining the centers of rotors
on sites / and j. This Hamiltonian has been shown to
model reasonably well N, molecules physisorbed on the
hexagonal graphite surface. It has been proposed that this
Hamiltonian in a generalized form could also model cer-
tain smectic phases in liquid crystals.*® At low tempera-
tures the registered (V'3 X V3)R 30° commensurate phase
of N, molecules orders orientationally in a (2 1) herring-
bone structure.* There are three equivalent orientations in
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which this (2X 1) structure can be placed on the graphite
lattice at angles 120° apart. Thus the order parameter has
three components. The Hamiltonian is predicted to lie in
the universality class of the three-component Heisenberg
model with face-type cubic anisotropy.* It has been
shown recently that the anisotropic planar rotor model
Eq. (1) undergoes a fluctuation-induced first-order phase
transition. The ground state of this Hamiltonian is six-
fold degenerate and the herringbone structure has three
equivalent orientations. Thus the order parameter has
three degenerate components
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where M is the number of sites, ¢; describes the orienta-
tion of the rotor i, and 6,=0, 0,=7/3, and 0;=27/3.
The wave vectors Q, which describe the three states are
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Very recently the kinetics of these herringbone phases
has been studied by Mouritsen,” who concentrated on
determining the growth law governing the average domain
size. We have repeated this study and in addition studied
the dynamical structure factor of the order parameter and
its scaling with one characteristic length scale. The scal-
ing property of the structure factor can give valuable in-
formation about the average morphology of the domain
growth. Indeed, if scaling holds the domain growth
proceeds via self-similar pattern formation. The structure
factor is a quantity which also can be measured by spec-
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troscopic methods. The study of the structure factor
avoids the possible ambiguities involved in determining
the domain walls and corresponding interface areas in a
lattice model with a continuous single site variable. Any
rule which is used to define a domain wall will lead to a
wall of finite width, in contrast to the Ising model, for ex-
ample. That is, the domain wall is “soft” in this herring-
bone model. In the earlier study of Mouritsen the growth
was observed to be very slow. Also Mouritsen interpreted
the results of a domain size R(¢) in terms of two distinct
algebraic regions. Namely, an early-time region with
R(t)~t°* and a late-time region with R(z)~2%?. These
results differ from the Allen-Cahn t!/? prediction® and
from the logt behavior predicted by Lifshitz’ and Safran®
for systems in which the degeneracy p of the ground state
of the Hamiltonian satisfies p >d +1, where d is the
dimensionality of the system. In addition, the exponent n
which characterizes the behavior is significantly smaller
than that found for the g-state Potts model on a triangular
lattice’ (e.g., n=0.41 for ¢ >30). The late-time exponent
for the herringbone model was attributed to the softness
of the domain walls caused by the continuous nature of
the rotor. The softness of the domain wall was claimed to
screen the interaction between different domains and thus
to decrease the driving force for the domain growth. In
early times, it was claimed that the higher frequency of
the coalescence process would decrease the screening and
therefore enhance the driving force for growth. We be-
lieve, however, that this phenomenon is not what is usual-
ly meant by diffusion-driven coalescence, but rather is a
“random” curvature-driven effect. As we will discuss
below, our results for the average domain size are con-
sistent with those obtained by Mouritsen,” but our inter-
pretation for the growth law does not agree with his.
Indeed, we find that our results are more consistent with
the Allen-Cahn prediction, R ~¢!/2. In addition, we find
that the structure factor satisfies dynamical scaling, with
a scaling function very similar to that seen in other order-
disorder transitions.

RESULTS AND CONCLUSIONS

We have studied the time evolution of the model in Eq.
(1) following an instantaneous quench from a random
configuration of rotors (kzT/J =) to a temperature
kpT/J=0.02, at which the herringbone phase is the
equilibrium state. We have chosen an M=60X60 tri-
angular lattice with periodic boundary conditions. As in
the earlier study, we have used Glauber spin-flip dynamics
where the rotor was allowed to change its orientation by
any angle up to a maximum value of (a) 7 or (b) 7/5. Al-
though the latter rule clearly gives rise to a faster evolu-
tion of domain sizes, the results for both cases are qualita-
tively the same, as also noted in Ref. 5. As mentioned
above, one can study three equivalent order parameters.
Similarly, one can study three equivalent circularly aver-
aged!? structure factors,

a=1,23. (3)
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For simplicity we will often drop the subscript a in what
follows.

In order to obtain good statistics we have performed 25
runs and averaged the structure factor data for the com-
ponent which shows consistent evolution in the time re-
gion [0—5000 Monte Carlo steps (MCS)/spin] studied in
this paper. We have stopped following the time evolution
at 4500 MCS/spin to avoid finite-size effects. Namely, in
a few runs after ¢ > 4500 MCS/spin some of the domains
became of the order of the size of the system (i.e., we ob-
served “percolation” phenomena). In Fig. 1 we show a
series of snapshots of domain evolution in a typical

1000 MCS/spin (a)

3000 MCS/spin )

FIG. 1. A typical series of snapshots showing the growth of
herringbone domains. Only sharp domain walls, which are the
central portion of the soft domain interfaces, are shown. Within
the domains the rotors are arranged in three equivalent herring-
bone structures (with only very small angular deviations). Her-
ringbone domains are indicated by a=1,2,3. We do not distin-
guish between herringbone structures which differ only by a
translation.
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FIG. 2. The scaling function F(x) of the dynamical structure
factor. A similar scaling can be done using other choices for the
length scale.
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quench. The domain interfaces are drawn as sharp lines,
rather than as soft domain walls. These sharp interfaces
can be visualized as being the center portion of the soft
domain interfaces. We have chosen this representation for
simplicity. As well, there is no unique definition of a
domain wall for the anisotropic rotor model.

We have also calculated the magnitudes of the mth
(m=1,2) moments of the average structure factor!’ de-
fined as

S |k | ™S (k1)

k()= 4)
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to analyze the scaling of the structure factor and the
growth law of the average domain size. We have carried
out the scaling with the second moment, i.e.,

F(x)=k,(t)S(k,t), x=k/[k,(2)]'"*
or alternatively with the first moment, ’
F(X)=k3(1)S(k,t), T=k/k,(t). 6)

In Fig. 2 we show the scaling function for Eq. (5). As can
be seen, scaling holds so that the growth is governed by a
single time-dependent length scale. We have also per-
formed the scaling using the first moment Eq. (6), and the
results exhibit slightly greater scatter, but are otherwise
very similar to those shown in Fig. 2. A third possible
form of scaling would involve using the average domain
size R(t) as a characteristic time-dependent length. Al-
though we have calculated the average domain area
[~R*1)], we have not tested this form of scaling.
Nevertheless, we expect that scaling with R(t) would yield
similar results to those shown in Fig. 2, since the behavior
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FIG. 3. The growth rate of the average domain area (A (z)), k5 '(¢), and S(0,2). The results are shown for two different rules, as

discussed in the text. (Note the difference in scales in this figure.)
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of R¥t) is quite similar to k3 '(z), as will be discussed
below. Finally, we note that the scaling function is ex-
tremely similar to that found in studies of the antifer-
romagnet!! and clock models."?

In order to study the growth rate of average domain
size, we have used three different definitions of a length
scale. The first is the inverse second moment k' (¢) [Eq.
(4)], which to a good first approximation is related to the
average domain area. The second length scale has been
proposed by Sadiq and Binder,!* namely from the sum
rule

S0,6)=M 3, (i) . )

For the equivalent domains it is natural to define a length
scale by

L()=[M~'S(0,0)]'2/(T) , (8)

where ¥(T) denotes the equilibrium value of the order pa-
rameter. Thus at low temperatures [where ¥(T)~1],
S(0,t)/M corresponds to a measure of the average domain
area. The third quantity we have used is the average
domain area {A4(¢)) as calculated from the number of
domains appearing on the lattice at any given time. In
contrast to averaging over 25 runs as we have done for
k3 '(¢) and §(0,7), we have obtained data for {4 (r)) by
averaging over only 10 runs, due to the difficulties in-
volved in this procedure. The determination of (A4(¢))
may give rise to some error because the definition of the
domain interface is not unique, as explained above. We
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have chosen to use “sharp” walls, as shown in Fig. 1, to
determine the domains. In Fig. 3 we have shown our data
for all these choices of length scale. The growth in all
cases seems to be very slow as already noted by Mour-
itsen.’ After an initial period less than 1000 MCS the
behavior is linear until the point at which “percolation”
becomes imminent (~ 5000 MCS). Our analysis and con-
clusions are based on performing a least-squares analysis
for three different types of power-law behavior: (a)
y =At + B, where B takes into account the initial transient
region, (b) y =At?", which does not allow any kind of ini-
tial transient, and (c) y =At*"+B, which takes into ac-
count a transient period. One would usually expect a
transient region during which the domains are being
formed. After this transient time the domains then grow
or shrink in size. In the herringbone phase the determina-
tion of domains is not unique. Therefore, the determina-
tion of the time when the domains have formed is diffi-
cult, if not impossible. Apart from neglecting the tran-
sient effect the fit given by (b) weights too heavily the
early-time region. This is clearly demonstrated in Fig. 4,
where the least-squares fit (b) for the quantity S(0,t)/M
gives an effective exponent 2n=0.567. The fit (a) assumes
the validity of the Allen-Cahn growth law. Judging from
the usual tests of the goodness of the fit (the X? test and
the correlation factor), this fit is very good for our data
for all choices of length scale [k; (2), S(0,t)/M, and
(4 (2))] in the time region 1000—4500 MCS/spin. The fit
(c) also supports the Allen-Cahn picture. In order to
avoid making a three-parameter fit, we have discarded
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FIG. 4. Two different least-squares analyses of the Monte Carlo results for S(0,2)/M: (a) y =At +B; (b) y =At*" (the Allen-Cahn
reduction). (a) Assuming that the early-time behavior is a “transient regime” clearly fits the data points much better than (b).
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FIG. 5. A comparison of our results with those obtained in Ref. 5. Apart from the last data point at 5000 MCS/spin (for which
our data is affected by finite-size effects), the agreement between the two studies is excellent.

data points in the transient region by moving the origin to
different data points. Thus, the fit given by (c) is rewrit-
ten in the form

y'=y —B=At'""=A(t —t;)*" .

In the time region from 640—4500 MCS/spin we obtain
an exponent 2n =1.010.05. Therefore, we conclude that
Allen-Cahn curvature-driven growth is likely to describe
the growth of domains when the system is quenched from
a disordered equilibrium state to the herringbone phase re-
gion. This conclusion is consistent with all three quanti-
ties chosen to determine the growth rate. Two of these
quantities, k5 Y(¢) and S(0,)/M, can actually be mea-
sured by spectroscopic methods in a herringbone struc-
ture. These quantities have the additional advantage of
avoiding the difficulty involved in defining a domain wall.
However, since the behavior of (4 (z)) is quite similar to
k5 '(t) and S(0,¢)/M, the definition of the domain inter-
face and its “softness” does not seem to play a role in the
growth law exponent. The softness does seem to affect
the nonuniversal features of the growth rate, making the
evolution of domains very slow. We should also mention
that the exponents obtained here are at best describing
dominant time behaviors. One could expect the growth

laws also to have correction terms somewhat similar to
the corrections to scaling near the critical point (due to ir-
relevant eigenvalues). In the light of this possibility one
could be obtaining “effective” exponents by analyzing the
data in terms of a simple power-law behavior.

Finally, we compare our results for the average domain
size with those obtained by Mouritsen® for the same quan-
tity. As is seen from Fig. 5, our results are almost identi-
cal with Mouritsen’s in the region 500—4500 MCS/spin.
(In the log-log plot our data points are virtually indistin-
guishable from those obtained by Mouritsen). Therefore
we believe that his results are correct but that his interpre-
tation of the growth law is incorrect. This is a system
which clearly warrants theoretical study to determine
which interpretation of the data is correct. In our
opinion, however, the most consistent interpretation of the
available data is that the domain growth satisfies an
Allen-Cahn ¢'/? law.

ACKNOWLEDGMENTS

We are grateful to Dr. Martin Grant for many useful
discussions and suggestions during this work. This work
was supported by a grant from the National Science Foun-
dation DMR-80 13700.

*Present address: Physics Department, Tampere University of
Technology, P.O. Box 527, Tampere 10, Finland.

Present address: Department of Mechanical Engineering, State
University of New York at Stony Brook, Stony Brook, NY
11794,

IP. S. Sahni and J. D. Gunton, Phys. Rev. Lett. 47, 1754 (1981).

2G.-C. Wang and T.-M. Lu, Phys. Rev. Lett. 50, 2014 (1983).

3S. M. Allen and J. W. Cahn, Acta Metall. 217, 1085 (1979); K.
Kawasaki, M. C. Yalabik, and J. D. Gunton, Phys. Rev. A

17, 455 (1978).

40. G. Mouritsen and A. J. Berlinsky, Phys. Rev. Lett. 48, 181
(1982); R. D. Diehl, M. F. Toney, and S. C. Fain, ibid. 48,
177 (1982).

50. G. Mouritsen, Phys. Rev. B 28, 3150 (1983). This author
studied a 152 X 152 lattice.

R. Pindak, D. E. Moncton, S. C. Davey, and J. W. Goody,
Phys. Rev. Lett. 46, 1135 (1981).

7I. M. Lifshitz, Zh. Eksp. Teor. Fiz. 42, 1354 (1962) [Sov.



29 KINETICS OF THE ORDER-DISORDER HERRINGBONE . . . 4425

Phys.—JETP 15, 939 (1962)]. Rev. B 28, 5263 (1983).
8S. A. Safran, Phys. Rev. Lett. 46, 1581 (1981). 12K. Kaski and J. D. Gunton, Phys. Rev. B 28, 5371 (1983).
9P. S. Sahni, D. J. Srolovitz, G. S. Grest, M. P. Anderson, and Note that in Fig. 2 and Eqgs. (4)—(6) we have used the total

S. A. Safran, Phys. Rev. B 28, 2705 (1983). S(k,t), which by symmetry is 3X.S,(k,t), for any particular
103, Marro, A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, Phys. a.

Rev. B 12, 2000 (1975). 13A. Sadiq and K. Binder, Phys. Rev. Lett. 51, 674 (1983).

11K, Kaski, M. C. Yalabik, J. D. Gunton, and P. S. Sahni, Phys.



