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We study the dynamical response of metal surfaces to external electric fields which vary slowly in
space and time. It is shown that a linear response function g(g)),®) determines the influence of a
metal surface on all dynamical processes occurring outside of it. We evaluate g (q|;,») approximate-
ly within the jellium model and compare the result with electron-energy-loss measurements on
Cu(100) and Ni(100). Good agreement between theory and experiment is obtained, particularly for
Cu(100). Finally, we give illustrative applications to the frictional force on a charged particle and

the damping of excitations at surfaces.

I. INTRODUCTION

Dynamical processes at surfaces is a subject of great im-
portance. For example, the entire field of heterogeneous
catalysis, as well as many aspects of photochemistry and
electrochemistry at metal surfaces, are direct manifesta-
tions of the interaction between external molecules and a
surface. However, surface processes are also interesting in
their own right and have a high intrinsic value to basic
knowledge in physics.

Dynamical processes involving chemisorbed molecules,
such as dissociation reactions' or vibrational damping,?
are interesting but complicated. When a chemisorption
bond is formed, some of the electrons in the system are
shared between the molecule and the metal, generally lead-
ing to a nonzero charge transfer.> If the molecule is in-
volved in a dynamical process (e.g., sticking or vibrational
damping), time-dependent charge rearrangements will take
place, which, owing to the continuum of levels at the Fer-
mi surface of a metal, often are accompanied by strongly
nonadiabatic processes.

Another class of dynamical processes involves mole-
cules not in direct contact with the substrate surface or at
least where the overlap can be neglected, as, perhaps, is
the case in most physisorption systems. These processes
are, of course, much simpler, because such molecules can
interact with the metal only through the electromagnetic
field. Interesting examples of this type include the van
der Waals interaction between a molecule and a metal,*>
-and the flourence decay of an excited molecule studied as
a function of the distance to the surface.®

In this work we will consider problems of the latter type
It will be shown that a linear response function g(q,o)
exists, which completely determines the interaction be-
tween a metal surface and an external molecule, atom or
charged particle. In general, all the elementary excitations
of the metal such as electron-hole pairs and phonons will
contribute to the structure of g(g)|,®). In Sec. II we con-
sider the electron-hole pairs and present a simple analyti-
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cal formula for Img which is valid for small ¢ and ©
(i.e., g <<kr and w <<wp, where kr and wr is the Fermi
wave number and frequency, respectively). Also in Sec. II
we show that Img can be measured directly using inelastic
electron scattering, and that such measurements per-
formed on Cu(100) and Ni(100) compare favorably with
theory for w > wy where g is the highest phonon frequen-
cy of the metal. For w <, phonons will also contribute
to Img, but this will not be discussed in the present work.

In Sec. III several illustrative applications of the
response function g(g,®) are given. We first discuss the
inelastic scattering of electrons from surfaces and make a
few comments on the friction force on a charged particle
at a surface. Next we discuss the quenching of excited
states above surfaces. Section IV contains a summary of
the most important results obtained in this work.

II. EXCITATION OF ELECTRON-HOLE PAIRS

A. Definition of g(g,®)

Let a metal occupy the half-space z > 0 and consider an
arbitrary electric current density located in the half-space
z < —d( <0) as chematically shown in Fig. 1. Assume for
simplicity that retardation effects can be neglected. Thus
the electric field from the external current density can be
written as Eq= — Vey. Since Ve, =0 for z > —d, ¢oy
can, in this region of space, be written as a superposition
of evanescent plane waves,

e Xt)= [ d°4)d0 GG pp0e’ TN TN
I I

This external potential induces a current density in the
metal which gives rise to an induced potential ¢;,4(X¢).
Assume that ¢, is so weak that the metal responds
linearly to ¢y. For z <0, where V2¢;,4=0, we can then
write
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CURRENT
DENSITY

FIG. 1. Schematic representation of a current distribution
above a metal surface.

$ind X)= [ d?qdo] —g(q),0)[Pex(T)pp)

Xei?]'”'?”+q”z—iml ) 1)
It is implicitly understood that the metal can be treated as
being translationally invariant parallel to the surface.
Equation (1) shows that the response of the metal to an
external probe is entirely contained in g(q,») as long as
we are only interested in the induced potential outside the
metal.

In the standard textbook treatment of the dielectric
response of a metal surface, one assumes that the solid is
characterized by a local dielectric function €(w) which
jumps discontinuously at the surface, ie., e=e(w) for
z>0 and e=1 for z <0. From the continuity of ed¢/dz
and ¢ at the solid-vaccum interface, one obtains the stan-
dard textbook result,

ew)—1
g(q”,co)— (@)1 .

A real metal does not have a steplike surface profile,
but rather a profile which varies smoothly on a micro-
scopic scale. In addition, the bulk dielectric function de-
pends on the wave vector . Thus Eq. (2) is, in general,
not correct, although one can prove that it is exact for
g,=0. In what follows we will show that it is possible to
derive a simple but still quite accurate expression for
Img(g)|,@) which is valid for small ¢|; and w.

)

B. Qualitative discussion

In the following two sections we will present a deriva-
tion of Img(q,®) which is valid for small g and .
Here we would like to make a few comments on the basic
approach. We assume that the metal can be treated
within the jellium model, i.e., the metal conduction elec-
trons are assumed to move in a semi-infinite positive
background obtained by smearing-out the positive metal-
ion cores (see Fig. 2). Let us consider the response of this
jellium metal to an external time-varying potential of the
form

JUERGN .
iq X, —qz—iot
¢ext=¢Oe == +c.c. .

This external potential induces a charge density in the
metal which gives rise to the induced potential ¢y,q. The
‘time-varying potential ¢ = ¢y, + dings

d(Xt)=¢(X)e "' fc.c., 3)
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FIG. 2. Schematic representation of the density distributions.

z

will excite electron-hole pairs in the metal at a rate which
is given by the golden-rule formula,

w=—2hifd3kd3k'nk(1—nk,)|(E'|e¢<z>|1?)[2

X &€y —e€x —tiw) 4)
where
1if k <kp,
=1 .
0if k> kp,
where kr is the Fermi wave number and where

oy iE,R . ]
(X|K)y~e “I'" 4y (2) are the single-particle wave func-
tions for electrons moving in an effective one-particle po-
tential Vg(z). Now, let us decompose ¢ into a surface
component ¢g,s plus a bulk component ¢y, i.€.,

¢ =¢surf+ ¢bulk .

Figure 3 illustrates the decomposition: ¢=¢pux for z >,
and ¢ =¢gs for z <8 where z=8~ a few A, a point just
inside the jellium edge. The matrix element (k’|¢|K)
occurring in Eq. (1) can now be written as

(E'I‘blE>=<Ell¢surf|E>+<Ell¢bulk‘E> .

FIG. 3. Schematic representation of the electric potential ¢
(equal to external plus induced potential) in the surface region of
a metal due to an external current distribution. ¢ =g, forz <8
and ¢ =y for z > 8.
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We have performed this decomposition for two reasons.
First, the bulk term {K'|dpux|K) is (for o <<wp) very
insensitive to the exact shape of the electron wave func-
tions in the surface region of the metal. Thus it can be ac-
curately evaluated using, e.g., wave functions obtained
from the infinite-barrier model. This will be discussed
further in subsection D. The surface term (k' |dgs| K ),
on the other hand, depends, of course, on the detailed
form of the wave functions in the surface region of the
metal. This term is nevertheless rather easy to evaluate,
since it involves a very small region in z.
It will be shown later that

W = Wyef -+ Whulk »

where wg,s+ (Wpuk) is obtained by replacing ¢ in Eq. (4)
with ¢gs (Ppun)- Thus there is negligible interference be-
tween “‘surface excitation” and “bulk excitation” of
electron-hole palrs The basic reason for this is that the
matrix element (k | Pt | k) is sharply peaked at k, =k,
while the matrix element (K | $yux| k) is a much more
smoothly varying function of k,.

We close this section by mentioning that Img can be ob-
tained directly from w via

Img =mfw /(| ¢y | *Aq)|)

where A is the metal surface area. This formula is easily
proven by integrating the normal component of the point-
ing vector over the metal surface and equating this with
the power absorption 7iwow.

C. Surface contribution to Img

We will now calculate the surface contribution to
Img(q)|,0) for g <<kp and ® <<wp. The metal will be
treated within the jellium approximation (see Fig. 2) (see
also Refs. 7 and 8).

The rate wg,,+ at which the potential

¢Sul‘f(i”t)=¢surf(_x>)e —iwt‘,‘ C.C.

excites electron-hole pairs in the metal is given by the
golden-rule formula,

wsu,f=27” [ d%%d* m(1—n) | (K" | epouet ) | k) |2

X (e —ep —Fiw) . (5)

The potential ¢, can for small @ and g)| be calculated as
follows: If the metal is treated classically, then

V2¢surf= _‘4770(XH )8(2) , (6)

where o(X))) is the surface charge density. For an external
potential o the form

iq X —qz—io
Dext =o€ [ | +c.c.,

one obtains
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23 1 ew)-1 iq)x)
TR = = 5 )1 N19° ’
and, for w <<,
Uﬁu)z_51774||¢oeiq""‘"+c.c. : )

For w <<w, the metal conduction electrons can almost
respond adiabatically to the slowly varying external field,
and thus almost adjust themselves to the instantaneous
static configuration. Thus, to a good approximation, the
potential ¢, is obtained from a static calculation. We
therefore replace Eq. (6) with

V2 out= —-4170'(7(’“)f(z) .
where
[° azf=1.

Since the variation of f(z) with z is much more rapid than
the variation of o(X||) with X|| (the ratio is ~¢q|/kp << 1),
we obtain

¢suﬁz0(fl|)A(Z) , (8)
where

d4

E{z—&ﬂf(Z) . 9)

Thus the potential ¢, is obtained from Eq. (8) with
a(X))) given by Eq. (7) and 4(z) calculated from Eq. (9).
We can write the electronic wave functions as

172

(X|K)=-- [% e M1 ¥y, (2), (10

where

¢kz(z)—+cos(k,z +¢r) asz— w0 .

From Egs. (8) and (10) we obtain

K+ = K -3

=, 9% 4
<k l¢surflk>“ 2r (2 )3 fd

X l/J:z, (2)A4 (z)t/rkz(z)
9% > _ -,
=__;'.208(k”+qll_kll)<’/’kz’ |4 ¥,

Substituting this into Eq. (5) and making use of the for-
mula

|8(k)) | 2=—=58(k)),

where A is the surface area, gives
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2m | aye00 || 4
wsurf=~—1T— —-”——2—0 - f dk d3k'nk(1—nk')8(k”+§’“—k “)8(6‘]c + i — €}, ) l <¢k' IA I Yy ) I 2
#i T (2m) z z
qedo |” 4 1
[1€%0 m
= ——77-_2— Z—Tr—ﬁ—-'h—zfd3knk(l~nkv);—,‘l<¢kzp'A|¢kz)|2. (11)
t4
r
Performing the integration over k and accounting for the kr ) 5
electron spin (which introduces an extra factor of 2) gives Putlk;) = k_z ’ <1/’k, | Ak | ¢k,) |
2
2 |me 2,2 k 2
Wt~ | 25 | 4 1ol *gjje =k—‘: [ dz | |24kE | (15)
kF 1 F. . g .
1 2 igure 5 shows Pg,(k,), the relative probability for exci-
X f 0 dk; k, | (g, 14] l/}kz) = (12) tation of an electron on the Fermi surface with a given k;.
g

Since

Img=mw /(| do | *4q)) ,

we have
9|
(Img ) gy~ 2———6(r) , (13)
kp wp
where
1 o k 2 kg 1
_ 1 7p TF 1 2 2
)= g ar [T | Jo dhep | S, [ARE 1)1,

(14)

where k1 is the Thomas-Fermi screening length. In the
jellium model, & depends only on the electron-gas density
parameter r; £(r;) has been calculated in Refs. 5 and 7.

The calculation presented above is simple and it is easy
to extract some interesting physics from it.” Note first
that only electrons within a thin shell ey —#Q <€e<e€r
near the Fermi surface can be excited without violating
energy conservation. This does not mean that electrons in
deeper-lying levels are unimportant since they will give a
contribution to the screening of the external potential. Of
the electrons in the vicinity of the Fermi surface, only
those which propagate normal or almost normal to the
metal surface will couple to the screened dipole field. The
reason is that ¢, vanishes very rapidly inside the metal.
Thus for a metal electroon to “feel” this potential, its
wave function must penetrate far enough into the vacuum,
and only electrons with a large velocity normal to the met-
al surface can do so. This is illustrated in Figs. 4 and 5.
Figure 4 shows the potential ¢, as a function of z. Also
shown are two conduction-electron wave functions, one
corresponding to an electron propagating almost parallel
to the surface (k,=0.1ky), and the other normal to the
surface (k,=kp), both with e=€p. The latter wave func-
tion penetrates much further into the vacuum and will
therefore couple much more strongly to ¢g,s than the
former. The coupling strength is given by the dimension-
less quantity [Eq. (12)]

Obviously, those electrons which propagate normal or al-
most normal to the surface have the largest probability of
being excited.

D. Bulk contribution to Img at zero temperatures

We will now calculate the bulk contribution to
Img(q,@) for q|) <<kr and w <<wp. We assume again
that the metal can be treated in the jellium approximation
(see Fig. 2) and also that the temperature is zero so that
there is no contribution from scattering of conduction
electrons against phonons.

The rate wyy; at which the potential

¢bulk( i’,t):qbbulk(i’)e ""‘"+c. C. (16)

excites electron-hole pairs in the metal is obtained from
the golden-rule formula,

FIG. 4. Potential ¢, (equal to external plus induced poten-
tial) and two electron wave functions 1/11‘:(2) (k;=0.1kr and kp),

both with e=¢f, are shown as a function of kpz. Electron densi-
ty parameter r;=3.
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I ] W= [ &k e m(1—mg) | (K |eguun(®)| ) |2

B X 8(ey —ex —fiw) . (17)
§ i We assume now that the potenﬁal dou for z> 8 is well
+ 100 — approximated with
2
a.‘" B

- 2¢0  ig, % —

R) e —0 X e
| ¢bu1k(x) 1+elw) e . (18)
B | The metal wave functions for z > § are given by
0 1 1 I 1 A N 3 .
0.0 0.5 (%] k)=(21r)—3/2(e*(k11+¢k)+e ez +4e))
kz/kF T
ik X
. - o xe 7, (19)
FIG. 5. Relative probability Pq,s(k,) for excitation of an elec-
tron on the Fermi surface (e=¢f) as a function of k,. Thus
2¢, +3 =K% ® —qnz, i(k,z+¢p) i(k)z4+¢p)
II It =1 Il 22 TPk z &
(K'| pou | K )= T4e 2n )3 f fa dze (e +c.c.)e +c.c.)
20 1 - R ei(¢k ~¢1)+(k, —k, )8] ei[(¢k +¢3)+(k, +k] 18] s
= —8(k; +q—ki) [— - + — - +c.c |le N7, 20)
1+4€ 27 I I I i(k,—k;)—q) itk;+k;)—q)

Now, since 8~1/ky and q|| <<kp, we have exp(—g)8)=~1. Furthermore, energy and momentum (parallel to the sur-

face) conservation 1mp11es that k~K’ when w<<wy and g <<kp. Thus expli(¢y—¢i)l=~1 and
[q“—}—(k -k~ I>>[q”—{~(k +k,)?]~!. Equation (20) can therefore be written as

91l

2 ————————————
af +(k, =k, )

=, = $o o . =,
(k| Gou | k) = — = 77780k +) — k7))
Substituting this into Eq. (17) and making use of the formula

‘S(RH)IZ ) S(k”)

gives
=24 | 220 Zfd3kd3k’n (1—nge)8(K) + ) — K [)8(ex +Fio — ) 7
bulk 3ﬁ 1+€ k k I Il Il k k [q]2|+(kz_kz, )2]2
edo ¢1|2|
= d’k ni(1—ny )—- ; (21)
1+e | # f k Tk, [af +(k, —k; )*T?
l
where |
’ 2| me
k =[k2+2me /fi— (K +d))2] 2 ke ko= 17 k)
g A me
~k 1+_'222___1_(qu_” " cosf | fikg) SIHGCOS¢]
z ik k2
R = C(q)'s' ) (n—sin6 cosg) , (22)
We now introduce spherical coordinates in k space, with
the k, axis in the q) direction, where
ky=k cos¢sind, k,=k cosf . mo mo 1 wkp

We obtain kg, = fikpq) 2 opq)
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Here, the second equality follows from the fact that for
® <<oF, only k ~kp contributes in the integral (21). Sub-
stituting (22) into Eq. (21), performing the k integral, and
accounting for the electron spin, gives

2 2
edo W
—G(n),
1+€ q|2| K

24
372

m

h2

Whylk = (23)

where

sinf cos’0
[cos?0+ (1 —sin6 cosp)*]?

6 w/2 2
Gq=— [, "d6 ["d¢

3 1 2T X
- d d ’
7 Joaxfy e (x+[n—(1—x)"cosp I’}

(24)

where the last equality follows after the substitution
cos’0=x. Since Img=rmiw/(|$o|>A4q)), we finally obtain

|

(k,/kp)’
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(Img o= (0/,)1*G(n) , (25)

where we have replaced
14 e=2—(0,/0) ~—(0,/0)

for w <<w,. The function G(7) can be calculated analyti-
cally,

8 formp<l1

G = g1 (14291 —n=2"2] forg>1.
Figure 6 shows G(7). Note that G(1)~3/9* as 71— .
As for the surface contribution, only electrons within a
thin shell er —#iw < € < € near the Fermi surface can be
excited without violating energy conservation. The rela-
tive probability Py (k,,7) that an electron in the vicinity
of the Fermi surface is excited by ¢y, is given by the di-
mensionless quantity [see Eq. (24) with cos@=k,/kr]

6 27
Pouilke) =" [ d#

Figure 7 shows this function for a few different
n=wkgp/(2wpq|)). For 7<0.5, Py, is almost a constant,
while for 0.5 <7 < 1 it is mainly electrons with small velo-
city normal to the metal surface that are excited. At n=1
there is a steplike change in Py, (k,=0) from a finite
value just below =1 to zero for > 1. The relative prob-
ability (for 9 < 1) for excitation of an electron at the Fermi
surface is thus either almost a constant or else it is peaked
at small k,; this is in sharp contrast to the behavior of
Pg.¢(k;), which is practically zero except in the vicinity of
k,=kp. It is this very different k, dependence which
makes the surface and volume excitation processes almost
additive, i.e., Wiy = Weyrr + Wruik, as pointed out in Sec. II.

E. Comparison with experiments

It is possible to measure Img(q,w) directly using
electron-energy-loss spectroscopy (EELS). In this section
it will be shown that there is good quantitative agreement
between such measurements and the theory presented in
subsections B—D.

I
o] | 2
n
FIG. 6. Function G(7) as defined in the text.

(kg /kp VP +{n—[1—(k, /kp)*]"%cosp}?

l

We will concentrate our discussion on electron-energy-
loss measurements for the clean Cu(100) surface, but we
will also present some results for Ni(100). At the low ex-
citation energies investigated, 0.1—0.3 eV, copper can be
considered as a reasonably simple metal, e.g., the thresh-
old for the excitation of 3d-band electrons into the con-
duction band is at about 2 eV. Below this energy, copper
essentially behaves as a free-electron metal. The situation
is quite different for nickel where transitions involving 3d
electrons occur in the low-energy range 0.1—0.3 eV.1011,
Following standard procedures, the specimens were
cleaned initially by argon-ion bombardment and

20

n=1.5
o L T Y I Y B
0.0 0.5 _ 1.0
ky/ke

FIG. 7. Relative probability Py (k,,n) for excitation of an
electron on the Fermi surface (e=¢€f) as a function of k, for
several different n=wkr/(20rq))).
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annealing—and between successive measurements by a
brief heating to 950 K [Cu(100)] and 1100 K [Ni(100)]—
and then cooled to measurement temperature at an am-
bient pressure in the 10~!! Torr range. The surface struc-
ture was monitored by low-energy electron diffraction.
The EELS measurements reported in this work were ob-
tained with use of a high-resolution spectrometer of
cylindrical-mirror construction that has been described
elsewhere.'? Analyzer and specimen can be rotated so that
the polar angles of incidence and detection can be varied
independently. The scattering plane containing the in-
cident and collected electron beams is defined by the
specimen surface normal and the [100] direction in the
surface plane. The work-function difference between the
spectrometer and the speciment was compensated to
within 0.05 eV, and the electron energies quoted refer to
the vacuum level. Except for the angular measurements
shown in Fig. 8 all spectra were measured in the specular
direction. A typical clean Cu(100) spectrum shows, in the
energy-loss range 0.1—0.3 eV, a smoothly decreasing in-
tensity (see Fig. 9), and the ratio of loss intensity to elastic
intensity is of the order of 107°—1075. The spectrum was
measured at discrete energy-loss values in order to mini-
mize the measurement time between successive cleanings.
A narrow energy window of +25 meV around a specific
loss energy was recorded and inspected for contributions
from any discrete vibrational excitation.

The experimental results discussed below show that the
long-range dipole interaction is the predominant mecha-
nism contributing to the inelastic-electron-scattering pro-
cess. Hence, consider an electron with a few eV energy in-
cident upon a clean metal surface. The electron can be
scattered inelastically by the metal while exciting an
electron-hole pair in the metal. Let k and k ’ denote the
wave vector of an incident and an inelastically scattered
electron, respectively. Thus #d);, where E]’”=E”—Ej] is
the momentum transfer (parallel to the surface) to the ex-
citation in the metal, and %o =#%(K 2— Kk '3/2m is the en-
ergy transfer. Let P( E,E’)dﬂk'dﬁw be the probability
that an incident electron is scattered into the range of en-
ergy losses between #iw and #i(w+dw) and into the solid
angle d . around the direction of k . From standard di-

pole scattering theory, one has

2 o
P=—-————— | T(k,k') | Img(q),0), (26
(caqm)? cosa k g | T( | “Img(g)),e (26)

where a is the angle of incidence, a, is the Bohr radii, and

T e —mT+T)/2 27 2ik,
T TU—inT(1—i7') 1—exp(—277') k>
2imw i ‘o
® +1 E+iT
X dw-2 § . 27
J-. sinh’w tg—l ] (£2—1)7?
Here I' is the gamma function and
k
T=(4k,a0)~", 7'=(4k}ao)!, E=——cothw—iL |
k, k,

This formula accounts for the force on the incident elec-
tron from its own image in the metal. If this force is
neglected, one obtains the simpler result!*
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9 9
T= — , (28)
(k,—k; P+qfy  (ky+k; ) *+qf]
which, however, is too crude for our purposes.
As discussed earlier, there are three different contribu-
tions to Img which can be distinguished by the source of
the momentum required for the excitation:

(a) From the bulk: the momentum needed can come
from phonons or impurities (i.e., intraband transitions), or
from the bulk crystal potential (i.e., interband transitions);

(b) from the surface potential;

(c) from the spatial variation of the potential from the
incident electron.

The contribution from (a) is given by the standard text-
book result [see Eq. (1)],

___6(60)—1 [4.60_F }_L_(‘L (29)

I =I =~ ’
(Img)q me(w)+1 ©, | kpl o,

where the last equality is valid if e(w) is well approximat-
ed with a Drude dielectric function, e~ 1 —a)ﬁ/w(a)—l—i/'r),
and if 1/7, @ <<w,. [ is the mean free path for an elec-
tron on the Fermi surface, i.e., /=vp7. The contributions
from processes (b) and (c) have been calculated in subsec-
tions C and D and are, respectively,

9| o

(Img )b =2§(}‘s k—F‘ _(:): s (30)

(Img), =773G(17)(w/wp )2

(31

’

where n=wkr/(20rq)), and

8 form<l, )
8[1—(1+ 39~ )(1—5~)'2) forp>1.

The parameter £(r;) depends on the electron-gas—density
parameter r; as shown in Refs. 5 and 7.

Intuitively, one should expect processes (a) and (c) to in-
terfere (i.e., they are not just additive), but we will mainly
focus on the zero-temperature limit where the Drude con-
tribution to Img vanishes. We have already shown that
there is negligible interference between process (b) and ei-
ther of processes (a) and (c). Neglecting the interference
between (a) and (c) gives

G(n)=

S P { R PR 2 2N
Img ., +bkF +7 G(n)wp o, ’ (33)
where a =4op/w, and b=2§. Treating copper as a free-
electron metal with r;=2.67 corresponding to one free
electron per Cu atom gives £(r,=2.67)~0.56, and a=2.6
and b=1.13.

The inelastically scattered electrons, as described by (26)
and (33), form a narrow lobe centered close to the specular
direction. A typical momentum loss of an inelastically
scattered electron is q|| ~k#w/(2E,) where Ej is the ener-
gy of the incident electrons. Thus

7}=60k1;'/(2(0}:‘q” )~Eokp/(EFk)=k/kp .

In most EELS experiments, Eq<Ey, and thus 7<]1.
Consequently, from Eq. (1), G()=8. The relative magni-
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tude of the three terms in Eq. (7) is therefore
a/kpl:bk#ion/(2kpEq):8(k /kp)w/w,. With E,=3 eV,
#iw=0.2 eV, r;=2.67, and kr/=100, we obtain 2:3:4, i.e.,
processes (b) and (c) already dominate at room tempera-
ture. At lower temperatures the difference is even larger
because /— o as T—0 K. By studying the intensity of
the inelastically scattered electrons as a function of tem-
perature, it is possible to separate the Drude contribution
(Img), from the other contributions, as will be seen below.
The experimentally measured inelastic scattering probabil-
ity AP relates simply to P( Kk integrated over the solid
angle of detection AQ,

AP= [, P(KK"dQ, .

In the present case AQ consists of a circular aperture of
half angle 0.45°. The angular distributions for elastically
and inelastically (0.1 and 0.3 eV energy loss) scattered
electrons from Cu(100) are shown in Fig. 8. A narrow en-
ergy window of +25 meV around the specific loss energy
was recorded and inspected for any contribution from
discrete vibrational excitations related to surface contam-
ination. The specimen temperature is 293 K and the ener-
gy of the incident electrons is 2.3 eV. The elastic intensity
distribution (solid curve) is symmetrical around the specu-
lar direction =0, and has a full width at half maximum
of 0.90°. The two inelastic intensity distributions show
broader peaks with maxima centered close to the specular
direction, and the widths relate approximately as the cor-
responding loss energies. These are characteristic features
for dipole-excited transitions and the inelastic scattering
apparently takes place via the long-range dipole interac-
tion. Figure 9 shows how the inelastic scattering probabil-
ity AP for Cu(100) depends on the loss energy #iw. The in-
set shows the measured data for AP at fiw=0.1, 0.15, 0.2,
and 0.3 eV, and for several temperatures. The data were
obtained at discrete loss energies in the way described
above. We note that AP varies linearly with temperature,
which is also expected from optical data for copper.'®
This is also the prediction, from standard theory, of the
phonon resistivity'® for T > 0.2T), (where T is the Debye
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FIG. 8. Experimental elastic and inelastic (iw=0.1 and 0.3
eV) intensity vs collection angle 6 (0=0° specular and 6> 0° to-
wards surface normal) scattered from Cu(100) at 293 K. Energy
of incident-electron beam, 2.3 eV; angle of incidence, 54°.
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FIG. 9. Inelastic scattering probability AP vs loss energy #iw
and temperature T (see inset) for 2.3-eV electrons; specular con-
dition. The open and solid circles represent the extrapolated ex-
perimental AP(T=0 K) and AP(T=293 K)—AP(T=0 K) data
respectively. The solid curves are the theoretically predicted re-
sults for process (a), and (b) + (c), respectively (see text).

temperature). The open circles in Fig. 9 correspond to the
AP values obtained by extrapolating the data in the inset
to T=0 K. The solid circles show the Drude contribu-
tion to AP at room temperature as given by AP(7'=293
K)—AP(T=0 K). The solid curves are theoretically
predicted results for the AP for processes (b) + (c) [Egs.
(30) and (31)] and (a) [Eq. (29)] using /=147 A. We note
that there is an almost perfect agreement between theory
and experiment with respect to the dependence of AP on
the loss energy #io. The mean free path compares favor-
ably with the value of 125 A deduced from optical data
for Cu.

The absolute value of AP deviates by only 35% from
the theoretical result, and on the average by less than 20%
over a range of impact energies, as can be seen in Fig. 10.
The open and solid circles correspond to experimental

Cu (100) (a)+(b)+(c)
30 293K (=147 A
hew=01eV
(b)+(c)
(b)
T T T T

o

2 3 A
ELECTRON ENERGY (eV)

FIG. 10. Inelastic scattering probability AP vs incident-
electron energy. The open and solid circles denote the experi-
mental AP values at =293 and 80 K, respectively, for 0.1-eV
loss energy and specular condition. The solid curves are the cal-
culated results for processes (b), (b) 4 (c), and (a) + (b) + (c),
respectively (see text).
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data for #iw=0.1 eV obtained at 293- and 80-K substrate
temperature, respectively. The solid curves correspond to
the calculated contributions from processes (a) + (b) + (c),
(b) + (c), and (b), respectively. The Drude contribution (a)
at T=293 K was calculated for /=147 A, as found above.
The agreement between experiment and theory [the
T'=293 K experimental data should be compared with
processes (a) + (b) + (c)] is very good, in terms of what
concerns the dependence of AP on the incident electron
energy, the absolute value of AP, and the relative magni-
tude of the Drude contribution. The importance of the (c)
contribution is obvious from Fig. 10. The agreement be-
tween the experimental data for a copper surface and the
predicted result for a jellium surface is in fact surprisingly
good. Copper is not a perfect free-electron metal; for ex-
ample, both the work function [which affects process (b)]
and the effective electron mass [which affects processes (b)
and (c)] differ from the prediction of the jellium model,
and this must be accounted for in a more accurate model.

Figure 11 shows AP as a function of the loss energy #w
for Ni(100). The open and solid circles show the experi-
mental data at 7=293 and 80 K, respectively. The solid
angle of detection AQ consists of a circular aperture of
half-angle 0.65°. The solid lines show the theoretically
predicted results for processes (a) and (b) + (c), respective-
ly. In the calculation of curve (a) we have used the mea-
sured dielectric function (at T=293 K), and in calculating
curves (b) and (c) we have used the jellium model with one
free electron per Ni atom. Ni is, of course, less well
represented by a jellium model compared with Cu. Ni has
a partially unfilled 3d band which is manifested in the ex-
perimental data and in curve (a) by an interband transi-
tion!®!! at #w~0.2 eV. It is plausible to assume, howev-
er, that process (b) is reasonably well described by the jelli-
um result, while process (c) certainly should be described
by a more appropriate e(w). We notice, however, that the
absolute magnitude of the experimental AP agrees quite
well with the sum of (a) and (b) + (c).

0 0.1 0.2 0.3 0.4
ENERGY LOSS (eV)

FIG. 11. Inelastic scattering probability AP for Ni(100) vs
loss energy #iw for 2.3-eV electrons; specular condition. The
open and solid circles are the experimental data at T=293 and
80 K, respectively. The solid curves are the theoretically
predicted results for process (a) and (b) + (c), respectively (see
text).
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F. Some comments

The basic assumption behind the derivation of (Img),
in subsection D was that the total potential ¢(Xt) for z >
is well approximated by the “classical” result (18). This
assumption is certainly correct if, for a fixed frequency w,
g)| is small enough (q)| <<krw/wp). Here one utilizes the
fact that the bulk dielectric function e(k,w)—e(w) as
k—0. Stated another way, for sufficiently long wave-
lengths, all the oscillator strength is carried by the
plasmon. However, for q| >kpw/oFp, excitation of
electron-hole pairs will give a contribution to the screen-
ing of the external potential which is not accounted for
when using the long-wavelength limit ¢(w) of the bulk
dielectric function. Thus it is not obvious from a theoreti-
cal point of view how accurate formula (25) is. The
strongest support for (25), being at least a reasonable first
approximation, comes instead from the analysis of the ex-
perimental data in the preceding subsection. In particular,
the good agreement between theory and experiment for
the Drude contribution (Img), indicates that the electric
potential inside the metal must be quite similar to the
classical result (18). If, for example, electron-hole—pair
excitations would give such a large contribution to the
screening that the potential vanished inside the metal as
exp(—az) where a ~kr instead of a ~q|, then the Drude
contribution to (Img), would be much smaller, and, more
importantly, it would have a different dependence on the
loss energy #iw [it would depend on #w in the same way as
the surface contribution (Img),]. However, the agreement
between theory and experiment for (Img),, with respect to
the dependence on #iw, is almost perfect.

Finally, let us comment on the magnitude of the mean
free path /. In subsection E we deduced that [ ~147 A,
and similar values can be deduced from infrared-light-
reflection  measurements. However, from d.c.-
conductivity measurements, / ~400 A, almost a factor of
3 longer mean free path. Thus the Drude relaxation time
for small frequencies is, in general, different from the
Drude relaxation time occurring in the static conductivi-

ty.17

III. APPLICATION

A. Total cross section for inelastic scattering
of charged particles from metal surfaces

The energy transfer between a beam of charged parti-
cles and a metal is a subject with many important applica-
tions in the areas of sputtering!® and ion-beam etching!®
of semiconductors. Here we will briefly discuss the ener-
gy transfer between low-energy electrons and a metal.
This is, of course, exactly the same problem as that dis-
cussed in Sec. ITE, but in that subsection we presented no
results for the total inelastic scattering cross section,
which we will do now.

Consider a beam of monoenergetic electrons incident
upon a clean metal surface. Let a be the angle of in-
cidence and let E, denote the kinetic energy of an electron
when it is far away from the surface (it will speed up as it
comes closer owing to the electron-image—electron in-



teraction). In classical (Newtonian) mechanics, the proba-
bility than an incident electron scatters elastically from
the surface is exactly zero. On the contrary, in quantum
mechanics there is always a finite probability for elastic
scattering. Thus if 4 denotes this probability, we can
write the relative probability P(#iw) that an electron loses
the energy #iw to an excitation in the metal as

P(#iw)=A8(#iw)+ B(#iw) .
The function B(#w) is obtained as

B(#iw)= sz, Lo dUP(EKY, (34)
where P(K,k ') is the relative probability for an electron to
be inelastically scattered from k-—k ' (see Sec. IIE). The
integral is over the solid angle of the whole upper half-
space.

In Figure 12 we show P(#iw) for Eyj=1.5 and 3 eV with
a=45°. The metal is, as before, treated within the jellium
model (r;=2.67). The solid curves give B(#w) as obtained
from Eq. (34) with P(K,k’) given by Eq. (26), and the
weight A of the elastic peak was obtained from the conser-
vation of probability

1= [ d#iw P(#iw)=A + [ dfiw BFiw) .

The results presented here must be taken with some reser-
vation because the expression for Img(g),») that we have
used is only valid for small ¢, and w (q) <<kr and
o <<oF), and since, e.g., fiwp=7 eV for r;=2.67, the in-
equality #iw <<fiwy is not very well satisfied with %o ~3
eV. The dashed curves denoted (c) in the figure are, as
usual, the contribution from the electric field in the bulk.
The solid curve is the result obtained by adding the sur-
face contribution to Img. We note here that at these low
energies of the incident electrons, it is important to ac-
count for the image force on the incident electron.
Neglecting this image increases B(#w) by typically a fac-
tor of 2.

In the presented calculation of 4 we have neglected pro-
cesses where the incident electron is scattered inelastically
into a bound state in the image potential. The cross sec-
tion for these processes is actually contained in formula
(26) if one performs an analytical continuation of the “T
matrix” given by Eq. (27) to complex k, values. The
bond states will then occur at poles of the T matrix.
Indeed, from Eq. (27) we note that T(k,k’) has poles
when I'(7')[1 —exp(—277)]/7' =0, i.e., 7' =in,n=12,.. ..
But since k, =1/(4a,7') we obtain

E,=#k|?/2m +#k,* /2m =12k |} /2m — 17 /(32maln?) ,

i.e., the expected Rydberg series.
Figure 12 shows that the inelastic scattering probability

[ dtio B(fiw)=1—4

is a small fraction of unity. That is almost all the elec-
trons in the incident beam are elastically scattered. It is a
consequence of this that lowest-order perturbation theory
[on which formula (27) is based] is a good approximation
in the present case.
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FIG. 12. Relative loss probability P(#w) as a function of the
loss energy #iw. The incident electrons have the kinetic energy
E;=1.5 eV (top) and 3 eV (bottom), and the angle of incidence
a=45". Electron-gas density parameter r, =2.67.

Imagine now that it would be possible to continuously
increase the electron mass m —M >m. Assume also that
E, is so large that it is possible to neglect the force on the
incident electron from its own image in the metal. It is
then easy to see from Egs. (26), (28), and (33) that the in-
elastic scattering probability for a fixed E, increases as
(M /m)!/? for process (a), as M /m for process (b), and de-
creases as (M /m)~3%/? for process (c). Thus, when M be-
comes large enough, the inelastic scattering probability
will formally become larger than unit which, of course,
implies that Eq. (27) breaks down. Mathematically this
means that it is not enough to use first-order perturbation
theory but one has to include further terms in the pertur-
bation expansion. Physically it means that for large
enough M /m, an incident electron will, in general, under-
go multiple scattering, i.e., it will excite several electron-
hole pairs in the metal. Actually, in the limit M — o (for
fixed E;) an infinite number of low-energy electron-hole
pairs will be excited in the substrate, as is schematically
shown in Fig. 13. The interaction with the metal is now
so frequent that we have entered into the Brownian-
motion regime. Here one treats the particle as a classical

point particle acted upon by a frictional force f,
f= —M.V) —77||V|| ’

caused by the interaction with the metal. In principle, not
only electron-hole pairs, but also phonons, should give a
contribution to the friction parameters 7, and 7 for
orthogonal and parallel motion. It is easy to show that*
N|=n./2. It is possible?! to derive an expression for 7,
by simply considering the energy loss due to friction (the
work done against f) of a particle of charge +Q and mass
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FIG. 13. A low-energy electron (E, of approximately a few
eV) has a negligible probability to excite more than one electron
in the metal. A very heavy particle (e.g., a proton) with the
same kinetic energy will on the average excite many electron-
hole pairs in the metal.

M executing infinitesimal oscillations against a stationary
particle of charge —Q,

My, 1
=1lim

Q2 w—0 SCl)d 3
The integral in this expression is identical to that in the
expression for the damping of a vibrating point dipole,
Eq. (36), and in the next section it will be shown that

My, 1 1 B
Q2 8wd’ kpd °’

where we have neglected the Drude contribution, which
gives a negligible contribution in most cases. Note also
that there is no contribution from (Img). since
©~(Img),—0 as @—O0.

As an illustration, let us consider a proton with the
kinetic energy E,=10> eV moving normally to the metal.
The energy transfer from the proton to the metal during
the trip from z= — « to —d is easily obtained as

—d QZ 1 v,
Jootde="r g 3wpd

ifd~1A4A (actually, the present theory is only valid for
q >>kg, i.e., kpd >>1 and the value given here for d ~ 1
A is probably an overestimate of the real energy transfer).
Thus the total energy transfer is almost 0.1% or so of the
original kinetic energy of the proton. Of course, when the
proton penetrates into the substrate much more compli-
cated processes will occur involving much larger energy
transfer.

[, dcge4mg(¢/2d,0) .

1ev,

B. Electron-hole—pair quenching of excited states
near a metal

In recent years there has been a growing interest in
understanding the nature and decay mechanisms of elec-
tronic and vibrational excitations of adsorbates. Such in-
formation is important in a variety of research areas such
as photon and electron-stimulated desorption,”> photo-
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luminescence?® and photochemistry® of adsorbates, reso-
nance photoemission,”> and the surface-enhanced Raman
effect.?6

Consider a vibrationally or electronically excited mole-
cule located a distance d above a metal surface. The excit-
ed molecule can decay (with a lifetime 7*) to its ground
state either by spontaneous emission of a photon (fluores-
cence) or by nonradiative transfer of the excitation energy
to the metal. The latter process is known to be the dom-
inating channel if d <c¢/Q, where #() is the excitation en-
ergy of the molecule. In what follows we will only consid-
er nonradiative decay processes.

Assume that we can treat an excited molecule as a vi-
brating point dipole. The electric field from the vibrating
dipole penetrates into the metal where it can excite
electron-hole pairs. It has been shown elsewhere that the
damping rate for a dipole vibrating normal to the surface

is given by?®

~ 2
L_[BIRA]|” 3ﬁA> FQ,d), (35)

T 4d
where
F= ["d¢ge4Img(§/2d,0) (36)

where (B|fi|A) is the matrix element of the dipole-
moment operator between the ground state |4 ) and the
excited state |B). The Drude contribution to the damp-
ing rate is obtained by substituting

elw)—1 1 w
I =Im>% - @
(Img), me( ) 1~4(wf/w")kpl .
into Eq. (36),

elw)—1 1 w
F,=2ImS% = o -2
; me(w) N 8(wF/wp)kpl o, (37)

The resulting formula for the damping rate, obtained by
combining Egs. (35) and (37), is well known?’ and will
probably give the correct damping rate for large d (but
d <c/Q). The surface contribution to the damping rate is
obtained by substituting

(Img), =2(q)| /kp)@/wp)E
into Eq. (36). We have

EDYRCINNS SN )9~ S S P N W 38
F,,_zgwp Terd fo dtte gwp d (38)

This formula is valid for large d (i.e., small ¢||) and small
o. Finally, the damping due to process (c) at zero tem-
perature (kpl/= ) is for @ <<w, obtained by substituting
(Img), =(w/w,)*n*G(n) into Eq. (36),
F.=(0/w,)f(okpd /oF) , (39)

where

1
f(x)=8x3fod,u‘ui[l-—(1+%ﬂ2)(1—u2)’/2]e"”"

+8x3 flw d,uﬂie el
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is obtained after introducing the new integration variable
p=_/x. Figure 14 shows f(x). It is easy to show that

f~18/x asx—w, f~—8x’Inx asx—0.

Thus as krd — oo for a fixed @ we obtain

which depends on w and krd in the same way as F,. For
krd — 0 we can therefore write

F,+F, =Z)“’:7$E(K,, +K.), (40)

where «, =6§ and k. =18wp/w,. Figure 15 shows k, and
k. as a function of the electron-gas—density parameter 7.

It is interesting to compare the classical Drude contri-
bution to the damping rate, as given by Eq. (37), with the
contribution from process (b) and (c) as given by Eq. (40).
Obviously, both are linear, in @ (for small ) but they
have a different distance dependence; 1/75 ~1/d*® while
1/7} 4 ~1/d* For a more detailed discussion of the rel-
ative importance of F, as compared with F,, we refer the
reader to Ref. 7 [note, however, that Ref. 7 does not ac-
count for process (c)]. In Ref. 7 it was suggested?® that
one should measure the lifetime of an excited molecule lo-
cated at various distances above a metal surface and deter-
mine whether the lifetime varies as d> or d*. In the case
of a silver and with an excitation energy below the onset
of transitions from the d band, i.e., fio <3 eV, the mean
free path / is very long, / ~300 A. Thus F,+F, should
dominate even for large d because from Eqgs. (37) and (40)
F, . ~3d /Il for ry=3. Experiments to test these theoreti-
cal predictions are now under progress.?’

IV. SUMMARY

We have presented a simple model calculation of the
response of a jellium metal surface to an external electric
field varying slowly in space and time. The discussion
focused on g(q),w), which is the reflection factor for an
evanescent p-polarized plane wave. This linear-response
function determines the influence of a metal surface on all
dynamical processes occurring outside of it. We illustrat-

FIG. 14. Function f(x) is defined in the text.
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FIG 15. «, and k. as functions of the electron-gas—density
parameter 7;.

ed this in Sec. III by applications to the friction force on a
charged particle and the damping of vibrations at sur-
faces. The review article by Feibelman® contains many
other applications to, e.g., the surface photoelectric effect,
the surface power absorption, and the dynamical image-
plane position.

The quantity Img(q),w) is proportional to the power
absorption in the metal caused by an external potential of

the form gq~e' I X177 [y Secs. IC—IID Img
was calculated within the jellium model and for g <<kp
and o <<w,. The result can be summarized as f‘ollows:
In the excitation of an electron-hole pair in the metal,
both energy and momentum must be conserved. The ener-
gy from the external potential but the momentum can
come from various sources, namely the following:

(a) From the bulk: the momentum needed can come
from phonons or impurities (i.e., intraband transitions), or
from the bulk crystal potential (i.e., interband transitions);

(b) From the surface potential;

(c) From the spatial variation of the external potential.

The results presented in Sec. II showed that the contribu-
tions from processes (b) and (c) often dominates over the
classical contribution (a), particularly at low temperatures.
Thus the standard textbook treatment of optics of metals,
which only accounts for process (a), will fail for frequen-
cies in the infrared region, even for quite small g (for in-
stance, q|| ~ 10~2 A~)). For higher frequencies the contri-
bution from process (a) might dominate, particularly for
transition metal where interband transitions occur.

In Sec. IIF the theoretical results for Img were com-
pared favorably with inelastic-electron-scattering measure-
ments on Cu(100) and Ni(100).

We emphasize that the theoretical discussion presented
in Sec. II is based on a few plausible assumptions which,
however, should be tested by more accurate calculations
along the lines of Feibelman.® In particular, the assump-
tion behind the treatments of processes (a) and (c), namely
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that the electric potential well inside the metal takes the
classical bulk form [Eq. (19)], and also that any interfer-
ence between processes (a) and (c) can be neglected,
deserves a more detailed study.
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Noted added in proof. We have studied the interference
term between processes (b) and (c) and found that this
contribution, in general, is non-negligible [E. Zaremba and
B. N. J. Persson, (unpublished)].
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