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Molecular dynamics study of lattice kink diffusion
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Single-kink diffusion is simulated in a P lattice by the method of molecular dynamics. The tem-

perature dependence of the single-kink diffusion constant Dq is obtained from the kink mean-

square displacement and velocity autocorrelation function. When system parameters are chosen
such that discrete lattice effects are significant, kink diffusion is found to be a random-walk process
that requires thermal activation of the kink over its Peierls barrier. Short-time behavior of the kink

velocity autocorrelation function reveals trapped oscillations and damped propagation of the kink.

I. INTRODUCTION
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/8, separated by an
energy barrier Eo ——A /48. Note that (1.1) is simply a
linear chain of atoms with near-neighbor coupling subject
to the double-well potential Vz.

The quartic term in Vz gives rise to a cubic nonlineari-
ty in the equations of motion which makes analysis ex-
tremely difficult. The method of molecular dynamics has
been used, therefore, to obtain solutions of (1.1). At tem-
peratures T &Eo /ktt, where ktt is Boltzmann's constant,
atoms execute small-amplitude thermal motions about the
minima of VR. Neighboring atoms tend to align, but the
desire of the system to maximize entropy causes atoms to
occupy opposite wells. This results in large amplitude
kinks in the atomic displacement profile which connect
neighboring domains of atoms aligned in opposite wells.
Calculations of S(q, w) from these solutions reveal an in-
tense quasielastic central peak which is not present in the
absence of these kinks. ' These calculations encouraged
development of a theoretical understanding of (1.1), its

A great deal of theoretical effort has been expended in
the last teri years in order to understand the nature of the
density correlation spectrum S(q, w) observed in neutron
inelastic scattering from ferroelectrics near their structural
phase transitions. S(q, w) exhibits an anomalously intense
and narrow central peak in addition to soft modes and the
normal phonon spectrum. It has been hypothesized'
that the central peak phenomenon is due to the motion of
localized density fluctuations commonly referred to as
kinks or domain walls.

One of the simplest model systems that supports kinks
is a one-dimensional bistable lattice traditionally known as
the P lattice. It is the model most commonly studied in
connection with ferroelectrics. Its Hamiltonian is given
by

~ 2
u( (+g (ul+1 ut) + QVR(ut), (1.1)
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where uI is the displacement of the lth particle away from
its mean position x~ ——lb, C is a Hooke s law interatomic
coupling constant, and VR is the single-particle P poten-
tial

kink solutions, and the nature of their interactions with
fluctuations.

Progress has been made in the development of a well-
defined kink mechanics. Typically the continuum approx-
imation is invoked to reduce the N body H-amiltonian (1.1)
to a wave equation called the P field equation. Kinks ex-
ist as particular solutions of the P field equation which
are stable to small fluctuations. The continuum theory
has been used to show that both free and diffusive ' kink
motions lead to a central peak in S(q, w).

The continuum theory, however, suffers from an in-
herent weakness. The continuum approximation is valid
only for C&&1, where

(1.3)

is the nondimensional interatomic coupling parameter.
There is evidence ' that kinks in some ferroelectric ma-
terials are not appropriately described by the continuum
theory; i.e., C & 1. It has been shown that for C & 1 sig-
nificant effects of lattice discreteness appear in the kink
motion, and that many interesting and important kink
phenomena are manifest only when the fully discrete
problem is analyzed. Strong kink-fluctuation coupling
due to discreteness gives rise to such phenomena as strong
kink damping and lattice trapping of kinks. These ef-
fects increase as C is decreased. They essentially dominate
kink motion for C&1. Thus, it is not clear that the re-
sults of continuum theory are entirely appropriate in a dis-
cussion of ferroelectric phase transformations.

Since exact solutions of the lattice theory are not avail-
able, and since the continuum theory itself is not appli-
cable in many cases of interest, we follow a numerical ap-
proach in which atomic trajectories of the P lattice are
generated by molecular dynamics simulation. In this way
the full effects of discreteness upon kink motion are re-
tained. The model system contains only a single kink.
This condition is maintained by imposing an antiperiodic
boundary condition on a finite-size chain, and restricting
the simulation to sufficiently low temperatures that kink
nucleation does not occur. The kink coordinate is extract-
ed by analyzing the system configuration in terms of a
kink structure plus fluctuations. ' Statistical properties
of the kink are then examined through time-correlation
functions constructed from the kink coordinates.
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Calculations of the kink velocity autocorrelation func-
tion, its spectrum, and the kink mean-square displacement
function reveal that kink motion is diffusive at C&1.
Discrete lattice effects dominate kink motions in this re-
gime. The kink exhibits behavior dominated by trapped
oscillations at low T, and dissipative propagation at high
T. Lattice "friction" is always significant in the low C re-
gime, so that the kink never approaches free motion, even
as T~O. The statistical dynamics of kinks at C &0.5 can
be characterized as activated Brownian motion. The re-
sulting diffusion constant is approximately linear in tem-
perature (the typical Brownian particle result) weighted by
an Arrhenius factor.

The value of the kink diffusion constant calculated
from our model at C values characteristic of lead ger-
manate and antimony sulfiodide is extremely small. This
yields extremely small values for the width of a diffusive
central peak in S(q, to), smaller than obtainable by present
neutron spectrometer resolution. It is asserted, therefore,
that intrinsic effects of lattice discreteness are sufficient to
account for the anomalously narrow and intense character
of the central peak phenomenon observed in S(q, tU) near
ferroelectric phase transformations.

The kink position X(t) is determined from the atomic
displacements by first separating the total amplitude ut
into a single kink plus fluctuations,

ut(t) =uk(X(t))+P((t), (2.3)

confusion.
Applying the standard molecular dynamics techniques,

the equations of motion are integrated numerically using a
central difference scheme. A time step size of ht =0.05 is
chosen. This is sufficient to ensure that the atomic trajec-
tories are reproducible to within O. l%%uo over an interval of
t =500. This interval is more than 10 times longer than a
typical time required for equilibration.

The simulation begins with the particles arranged such
that a single kink exists in the system. To ensure that ad-
ditional kinks are not created T is kept to low values. It is
found that for T &0.1, for the system size chosen (see
below), kink formation does not occur. Because the con-
ventional periodic boundary condition would always pro-
duce an even number of kinks, an "antiperiodic" boundary
condition is imposed,

(2.2)

II. SIMULATION OF THERMAL KINK MOTION

The equations of motion to be studied are obtained
from (1.1), and in dimensionless forms are

a'u, (t )

t
—c [ ut+)( t )+ut )( t ) —2ut( t )]

—ut( t )+u t( t )=0, (2.1)

where

r=V'm/A

We also define the following nondimensional quantities:

X=bX, T= T,
kgB

21— QoK= —K, M=m M,
b2 7

1 — b 2

Dec =
7 7

bE, = E„co———co .Q B 0&

X(t) is the time-dependent kink position, K is its inverse
width (or wave number), I is the phenomenological fric-
tion constant, E, is the energy barrier to kink motion (the
Peierls barrier), M is the kink mass, Dz is the single-kink
diffusion coefficient, and co is the sound speed. The ori-
gins of I and E, have been studied previously by the au-
thors. Note that E, is different from the kink formation
energy Eo ——Mco. All frequencies will be nondimensional-
ized by 1/v. . Henceforth, the tildes will be suppressed ex-
cept in the case of C where it will be retained to avoid

where uk(X) = tanh[K(xt —X)] and K= 1/(2 C )'

characterizes the kink wave form, and P~(t) are the fluc-
tuations. The quantity X is allowed to become a dynamic
variable. Given ut(t) for l = I, . . . ,X, we have X equations
(2.1) in X + 1 unknowns Pt(t) and X(t). To determine the
solution uniquely we invoke the additional constraint, '

(2.4)

which has the effect of minimizing Pt(t) in the domain-
wall region (where du~ /dx peaks). Thus, given the posi-
tions ut(t) from numerical integration, X can be varied us-

ing (2.3) until (2.4) is satisfied within an acceptable error
by finding the root of (2.4) numerically. The X(t) is ob-
tained and stored for use later in calculating the mean-
square displacement and the velocity autocorrelation func-
tion.

To minimize statistical fluctuations time-correlation-
function results are averaged over a number of time ori-
gins, typically 500. For a given C and T, up to 100 dif-
ferent trajectories were generated, each corresponding to a
different microstate of the system. The different trajec-
tories then allow an estimate of the statistical uncertainty
in the various dynamical quantities computed.

All the simulation results presented here are obtained
with N =200. This chain length is considered reasonable
from the standpoint of computational cost and of mini-
mizing the distortion from a fully relaxed kink configura-
tion. For %=200 the time it takes a fluctuation to
traverse the system is 200/co. It turns out that
co ——( C )' . With C=0.5, co ——0.707, so that the traver-
sal time is 270; this time is generally greater than the time
interval of t -200 over which we will be examining most
of the time correlation functions.

In choosing the values of C and T for simulation we are
guided by the fact that the larger the C value the less
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resistance there is for the kink to move through the lat-
tice. It has been found that with C & 1 a moving kink will
slow down and become trapped by the lattice within a
reasonable computational time. Since our interest is in the
diffusive motion of a localized kink, we have chosen to
work mostly with C=0.5; however, additional runs are
also made at C=0.2 and C=0.7.

The choice of T is partly dictated by the condition of no
kink creation. But also the system behaves differently de-

pending on whether or not T g E, . For C=0.5, the zero-
temperature value of E, is 0.022. The range of T investi-
gated is, therefore, chosen to be about this energy value,
from T=0,005 to 0.087.

E, =0.25exp( —4.84C ) . (3.7c)

—4. 84C

Dt, ——0.2009+C T exp —7.5C— (3.8)

These will be called the "zero-temperature" values of the
kink inass, lattice friction constant, and Peierls barrier,

respectively. At C =0.5 we find that M = 1.33, I =0. 124,
and E, =0.022. When these values are inserted into (3.6)
the solid curve in Fig. 2 results. One might recall that the
diffusion constant for the Brownian motion of a particle
of mass M is just ( V ) /I . The form of (3.6) includes an
additional activation factor.

The explicit C and T dependence of D obtained from
the insertion of (3.7) in (3.6) is

III. TIME CORRELATION FUNCTIONS
AND KINK DIFFUSION

The mean-square displacement function,

W(t) = ( [(X(t)—X(0)))'), (3.1)

is a fundamental quantity in the discussion of self-
diffusion. Its slope at long times gives the self-diffusion
coefficient,

DI, ——lim
W(t)

t~ oo 2t
(3.2)

g(co) =2 f Ct cosset( V(t) V(0)) .

Then the diffusion constant is just

g(0)
k 2

(3.4)

(3.5)

The simulation results for W(2)/2t are plotted in Fig.
1, and the long-time limit (3.2) is obtained graphically. It
can be seen that asymptotic behavior has not been reached
in the case of T=0.005, but for all higher temperatures
the ratio W(t)/2t has reached a constant in the time of
observation.

The single-kink diffusion constants obtained in Fig. 1

are plotted as a function of temperature in Fig. 2. Errors
are estimated from the difference of results obtained from
(3.3) and (3.5) (see Fig. 4) increased by the errors in graph-
ical determination. The solid curve is calculated from the
function

Dt, ——(T/MI ) exp( E, /T) . — (3.6)

The zero-temperature C dependence of these parameters
are determined to be

3&C
I =5.28 exp( —7.5C),

(3.7a)

(3.7b)

W(t) is directly related to the velocity autocorrelation
function ( V(t) V(0) ) whose time integral is the diffusion
constant,

Dt, ——f Ct (V(t)V(0)) . (3.3)

One may also determine the diffusion constant from the
Fourier transform

When the value of Dtr is obtained for C =0.2 and
T=0.02 the prediction of (3.8) is 0.00007 and the ob-
served value is 0.00014 0.00007, which is within the sta-
tistical error; but for C=0.7 and T=0.097, (3.8) yields
2.84, and the observed value is 1.5+0.7, which is outside
the range of error. The latter discrepancy could be due

purely to poor statistics. It is expected, however, that as C
increases memory effects in the kink motion will become
significant. Thus, the simple model of memoryless dissi-
pation which yields the diffusion law (3.6) would become
less and less applicable as the continuum (high-C ) limit is
approached. This would result in deviations from (3.6) as
C is increased. Since (3.6) is good for C&0.5, and the
discrepancy occurs at C=0.7, we believe that we are see-

ing effects of the transition from low-C to high-C
behavior.

The normalized velocity autocorrelation function P(t)
may be defined as

(3.9)
( v(t) v(o) )

( V')
Since this quantity is well defined whether or not the kink
is undergoing diffusive motion, an examination of the
short-time behavior of f(t) can reveal a good deal about
the local kink dynamics.

The only continuum theory that yields predictions of
(3.9) [and (3.4)) is that of Sahni and Mazenko. " Their
kink velocity autocorrelation exhibits significant memory
effects, a long time tail, and an oscillation due to kink-
phonon coupling. This yields a g(co) with central and side
peaks. The side peak occurs at a frequency of &2 regard-
less of the T or C of the system. The central peak is dif-
fusive in nature, although distinctly different from a sim-
ple Lorentzian which characterizes Brownian motion. It
is of interest to compare their continuum prediction to the
observed behavior of kinks in the low C regime.

The simulation data for (3.9) are shown in Fig. 3 at
various temperatures. It is apparent that there are two
distinct regions of characteristic behavior: a low-
temperature region (T &E, ) where distinct oscillations in
8(t) correspond to vibrational motions in a trapped con-
figuration, and a high-temperature region ( T ~ E, ) where
smooth monotonic decay of P(t) indicates a continuous
kink motion away from its initial position.

This behavior is even more striking when itj(co) is plot-
ted (Fig. 4). The points result from a Fourier transform
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FIG. 1. W(t)/2t for C=0.5 at various temperatures. Solid lines represent the graphical estimate of the long-time limit. Error

bars denote the standard error.

of the raw data. This reveals the diffusive (central peak)
and oscillatory (side peak) aspects of the motion.

The position coo of the oscillatory peak depends upon C
(Ref. 7)

2m. E~
o

—— (3.10)

For C=0.5, coo is 0.57. There is a peak splitting, presum-
ably due to nonlinear kink-phonon coupling. The oscilla-
tory peak rapidly disappears above T=E,. A comparison
of f(co) for different C values in Fig. 5 shows that the os-
cillatory peak position is well predicted by (3.10). Thus,
the presence of trapped oscillations of the kink due to
discrete lattice effects is confirmed. The oscillatory peak
predicted by Sahni and Mazenko is of a wholly different
character than the one just discussed. Some evidence for
"continuum" peak does exist in these simulations. In Fig.
5(a), the 1((co) for C=0.7 is carried out to co=1.5, and re-
veals a small bump in the data. Although one might nor-
mally consider this noise, the same bump (about 5% above
the background) occurred at co=@2 in nearly all simula-
tions for T & E„and disappeared for T & E, . This is pre-
cisely the behavior one would expect for this phenomena,
which only occurs when the kink is in the propagating re-
gime (treated by the continuum theory). In any case, the
oscillatory peak of the continuum theory is a rather minor

p(r) =fH(&)PH+QL, (&)(1 Prr ) . — (3.11)

PH is probability for occupation of the propagation re-
gime, and we set

—E /T
PII ——e (3.12)

We will allow E, to vary from its zero-temperature value
(3.7c). The H regime is just a Brownian diffusion regime,
and the I. regime is just a dissipative oscillatory regime, '

thus, we may write"

effect at these low C values.
The diffusion constant can be obtained from the height

g(0) of the central peak [cf. (3.5)], and one can see that
these values compare well with those plotted in Fig. 1.
The value of I' is just the width of the central peak.
These results clearly point to the concept that kink dif-
fusion is an activated process, requiring a fiuctuation en-

ergy comparable to the barrier height E,.
The curves in Figs. 3—5 are calculated from a two-

parameter fit to a simple two-state model which contains
the features of trapped oscillation and dissipative propaga-
tion. '" The velocity autocorrelation function in this
model is determined from limiting behavior in the propa-
gating "H" (high-velocity) and oscillatory "l." (low-
velocity) regimes
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0 5-

0.4-

values; however, the Dk values calculated from the
temperature-dependent values do not significantly differ
from those plotted in Fig. 2.

The low-T regime apparently has a great deal more
structure than predicted in our simple model. There exist
very-low-frequency peaks significantly above the back-
ground, which appear real. This also may suggest
memory effects in kink dissipation.

IV. KINK DIFFUSION IN OTHER MODELS
AND TWO FERROELECTRIC MATERIALS

0.3-

0.2-

Dk

There have been a number of previous attempts to
predict the single-kink diffusion constant of the P lattice,
all of which use the continuum approximation. The pre-
dictions of Sahni and Mazenko, Wada and Schreiffer,
and Collins et al. are presented as follows:

k7/2Ti/2 C 5/4 (4.1)
3

0.1- 0.516v 2
k 4

(I")
A,M

(4.2)

(4.3)

4 I

0.05 0.1

Ea

FIG. 2. Single kink diffusion constant D~ for C=0.5 at vari-
ous temperatures. Circles are molecular-dynamics data. Curve
is Eq. (3.6) evaluated at the zero-temperature values (3.7).

ftt(t) =e (3.13)

Pt (t) =e ' cos(toit) — sin(toit)
2co )

(3.14)

where

2 2
~& =o+

4
(3.15)

The value of I will also be allowed to vary from its zero-
temperature value (3.7b). The diffusion constant Dk de-
duced from this model is just

( p'i) E./r-
Dk —— er (3.16)

which is identical to (3.6) when ( V ) =T!M. The g(co)
that results from the Fourier transform of (3.13) and
(3.14) are Lorentzian peaks, centered about zero and co&,

respectively.
The high-temperature regime ( T & E, ) reveals nearly

exponential decay of P(t) in Fig. 3 and Lorentzian
behavior of the central peak of P(to) in Fig. 4. This sug-
gests that the diffusive peak in this regime is basically due
to memoryless dissipative mechanisms of a simple
Brownian type. The high-T regime is also characterized
by I"s and E, 's which deviate from their zero-temperature

If A, is set equal to I then (3.16) and (4.3) coincide in the
continuum limit since E, goes rapidly to zero [cf. (3.7c)].
If we were to plot (4.1) and (4.2) on Fig. 2, the curves
would be indistinguishable from the vertical and horizon-
tal axes, respectively. Strictly speaking, A, is zero in the P
lattice (it is extrinsic rather than intrinsic in origin), so
that (4.3) diverges. Thus, the continuum-theory results
for diffusion certainly do not apply for C &0.5, and prob-
ably not for C & 1.

If it can be assumed that the numbers obtained for one-
dimensional kink models are applicable to real ferroelec-
tric systems, then it turns out that low C values are impor-
tant when comparison with experimental results is made.
In the work of Currie et al. results of experimental stud-
ies of ferroelectrics lead germanate and antimony sul-
phiodide, which exhibit structural phase transitions and
the central peak effect, were compiled and related to P
lat tice parameters. Using their compilations for the
values of molecular mass I, sound speed co, lattice con-
stant b, and force constant A, and noting that mco =Cb,
where C is now taken to be dimensional as in (1.1), C for
the two ferroelectrics are 0.336 and 0.081, respectively.
These are extremely low C values where discreteness ef-
fects such as kink localization and thermally activated dif-
fusion are expected to dominate. The temperatures of
structural phase transition are 0.0023 and 0.0030, respec-
tively, both of which are in the localization regime.
Domain walls of higher dimension tend to be even more
localized, since lines or surfaces define domain walls and
the random tensions generated by thermal motions on the
wall will tend to cancel, thereby restricting net domain-
wall motion. Thus, we assert that the intrinsic mecha-
nisms which tend to localize domain walls in a lattice
should be quite sufficient to produce the extremely narrow
central peaks observed near ferroelectric phase transfor-
m ations.
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Markovian, and is there memory in the dissipation. }. The
thermal lattice can be generalized to incorporate external
forces. This can also yield information about the cou-
pling of kinks to constant and time-dependent external
fields. Since kink motion is dissipative, its coupling to
external fields can yield information on internal friction
and plasticity in solids. Multiple kink phenomena have
been avoided here, but extension of simulation and theory
to include effects of many interacting kinks must be

made, since kink-kink interactions may have significant
equilibrium and nonequilibrium effects.
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