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15 APRIL 1984

Michiel Sprik, Roger W. Impey, and Michael L. Klein
Chemistry Diuision, National Research Council of Canada, Ottawa, Canada KIA OR6

(Received 29 November 1983)

The elastic constants of a classical nearest-neighbor Lennard-Jones solid are evaluated with the
use of molecular-dynamics calculations in order to make comparisons with similar quantities de-

rived from Monte Carlo calculations. Following Parrinello and Rahman, we use both strain fluc-
tuations in the (p, H, Ã) ensemble and uniaxial loading to obtain the adiabatic elastic compliances
and hence the elastic constants. While there is broad agreement between the three methods, Monte
Carlo evaluation seems to be the most efficient procedure. The relationship between the elastic con-
stants of the fcc and hcp solids is also discussed.

I. INTRODUCTION

Elastic constants are important not only because they
provide a link between the mechanical and dynamic
behavior of crystals but also because they are a means of
probing the interatomic forces. ' This latter property has
been widely exploited, particularly in the case of the solid
rare gases. There, for example, the intercomparison of
Monte Carlo calculations based upon realistic two-body
potentials with experimental data has revealed the im-
portance of three-body forces. For such comparison to be
meaningful it is necessary not only to have accurate exper-
iment data, but also to have a reliable inethod of calculat-
ing the elastic constants for a given interatomic potential.
At high temperatures, where anharmonic effects are im-
portant and quantum effects are small, classical Monte
Carlo calculations are generally considered to be the best
way to evaluate the elastic constants. ' Recent advances
in computer-simulation techniques have indicated how, in
principle, molecular-dynamics calculations can also be
used to obtain the elastic constants. The new method
depends upon the evaluation of strain fluctuations in the
(Js,H, N) ensemble, which determine the adiabatic compli-
ances, and these in turn yield the elastic constants. More-
over, the new method appears to be equally applicable to
both ordered (crystalline) and disordered (amorphous) ma-
terials. However, to date, no intercomparison has been
inade of the relative merits of the canonical ensemble
Monte Carlo method and the (p,II,X) ensemble inolecu-
lar dynamics (NMD) approach. Such intercomparisons
are best initially carried out for simple (idealized) model
systems, and this is the purpose of the present paper. In
particular, we present NMD results on the elastic con-
stants of both the face-centered cubic (fcc) and hexago-
nally close-packed (hcp) solids' whose constituent atoms
interact with a nearest-neighbor Lennard-Jones interatom-
ic potential. In effect, we are dealing with an idealized
model of the rare-gas solids. " The relevant theory is
presented in the next section and the results of our NMD
calculations are given in Sec. III. In addition to exploiting
the strain fluctuations, we also present results based upon
uniaxial loading of the sample. While these two
methods agree with each other, comparison with Monte

Carlo results for the same model indicates that the NMD
method appears to require larger amounts of computer
time in order to obtain reliable values of the elastic con-
stants. The paper ends with a discussion.

II. OUTLINE OF THEORY

where r =h s, 6 =h'h, and a prime indicates a transpose.
8' is the mass associated with the coordinates h~z. V is
the potential energy determining the interaction between
the particles. Periodic boundary conditions are applied
with respect to the moving MD cell boundaries defined by
h. V,i denotes the elastic energy of the system, which de-
pends on the applied stress S and the strain e. In the
present study we consider only systems under zero hydro-
static pressure. Under these conditions V,&

is written as

Vei =QoTr(Se),

where Qo ——
~ ~ho~ ~

is the unstrained volume. The deriva-
tion of a closed set of dynamical equations for the 3%+9
coordinates Ir, h I from the Lagrangian (1) requires the
strain tensor e to be expressed in terms of these coordi-
nates. Noting the intimate connection between the metric
tensor 6 and the notion of strain, Parrinello and Rah-
man identified the strain as

e(t) = -'[h() 'G(t)ho ' —I] . (3)

Here G(t) is the instantaneous value of the metric tensor
in the strained state, and ho is the average of the matrix
determining the MD cell in the reference state. The strain
tensor (3) describes therefore a homogeneous deformation

In order to simulate the behavior of a system of parti-
cles under conditions of constant external stress, the time

dependence of three basic vectors a(t), b(t), c (t) specifying
the edges of the MD cell are followed. ' For convenience,
these vectors are arranged in a 3&&3 matrix h. The time
evolution of the 3N particle coordinates Ir(t)J and the
matrix h is obtained from the Parrinello-Rahman La-
grangian '

I.= —,
' g m; s,'6 s; —V+ ,' WTr—(h'h)+V,i, .
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fluctuating in time. It can be shown that the dynamics
generated by the Lagrangian (1) with (2) conserves the
enthalpy H. Time averages over a sufficiently long MD
trajectory therefore correspond to expectation values with
respect to the constant (S,H, N) ensemble. The equilibri-
um fluctuations of strain in this ensemble are related to
the adiabatic compliances I',JkI according to '

AT
ij ~~kl )S,H, N ~ijkl

Qo
(4)

The relations (4) enable us to determine the elastic compli-
ances from the time-averaged fluctuations of the strain (3)
in the reference state. A second and independent method
for the evaluation of the I',jkl is to apply stress to the sam-
ple and measure the resulting average strain. Provided the
deformation, starting fram the reference state, is per-
formed quasistatically and reversibly, the I"jkl follow im-
rnediately from the linear elastic relations

(~ij ) g ~ijklSkl ~

k, l
(5)

Clearly the values obtained through the relations (4) and
(5) should be identical and a comparison of the two sets of
estimates from a MD calculation is a powerful tool to in-
vestigate the accuracy of the constant stress simulation
method. A further test for this approach is a comparison
with the results of constant temperature, constant volume
(strain) Monte Carlo calculations. The strain in the
(V, T,N) ensemble is defined in terms of the fixed lattice
basis vectors. Since the lattice basis vectors and the MD
cell vectors are proportional for a given system, the strain
as defined in Ref. 8 can be equally written in terms of the
matrix h. The result is an expression identical to Eq. (3),
except that the metric matrix G is time independent in the
(e, T,N) ensemble and imposed on the system by the con-
straints of the MD cell in the deformed state. The strain
in the (e, T,N) ensemble should therefore be compared to
the expectation value of the strain in the corresponding
(S,H, N) ensemble. However, because of the correlations
in the motion of the matrix h we have

result with increasing system size is rather slow. The sys-
tem size dependence will affect the estimates for the com-
pliances through the fluctuation relation even more seri-
ously because the left-hand side of Eq. (4) involves a
fourth moment of h. For the purpose of a consistent com-
parison of the compliances obtained from fluctuations and
the linear elastic relatians (5), we have therefore included
the correction term for the reference state in the definition
of strain. We therefore write

e= —,'ho (G —Go)ho (9)

III. RESULTS FOR THE ELASTIC CONSTANTS

where Go denotes the expectation value of the metric ten-
sor in the reference state. The modified form (9) has the
advantage that the average strain vanishes in the reference
state of a finite sample.

The two methods discussed in this section both give the
compliances I',Jk~ rather than the elastic constants Cjk~.
On the other hand, the (e, T,N) Monte Carlo approach
yields directly estimates of the elastic constants. ' We
will, therefore, end this section with a brief comment on
the way the C'jkl are derived from the I ',jkl. Because of
the permutation symmetry for the Cartesian indices the
9 &(9 matrix I';JkI is singular. Hence, in order to invert the
linear relations (5) the matrix I';jkl must be reduced to a
nonsingular 6)&6 matrix I'z . Using the familiar Voigt
convention' to relate the indices p and i,j we have

I ;',ki, k =l (o &3)
S

2I ',jkl, k~l (cr) 3)
'

Note that the matrix I
&

is no longer symmetric. The in-
verse of I z again is a nonsymmetric 6)&6 matrix. The
symmetric 9X9 matrix of elastic constants CjkI in the
Cartesian representation is then obtained from the inverse
of I z~ by the inverse transformation (1). As an applica-
tion we note that the shear elastic constant C44 in a cubic
system is found to be one-fourth the reciprocal of the cor-
responding compliance.

(~) =-,' (h, -'(h ) (h )h —I)

+ —,
'

(h o
' ( b,h 'Ah )h o

'
) . (6)

h' '(hh'Ah)ho ' ——O(N '
) (8)

The relation (8) implies that the convergence of the MD

The first term in (6) corresponds to the strain in the
(e, T,N) ensemble (apart from possible ensemble correc-
tions for the expectation value of h ). The second term is
in general finite in a small sample. As a consequence of
this correction term the expectation value of the strain
remains finite in the reference state. However, the correc-
tion term vanishes in the thermodynamic limit as may be
justified by the following scaling argument. The matrix h

behaves like the dimension of the system in one direction.
Hence we may write

(h)=O(N''), (b,h'b, h)=O(N' '),
from which it follows that

A. Strain fluctuations

As an application of the methods outlined in the
preceding section, we present the result of constant pres-
sure MD simulations on a system of argon atoms interact-
ing with a Lennard-Jones nearest-neighbor interaction
(eo ——119.8 K, o=3.805 A). The basic simulations were
performed for a face-centered cubic (fcc) system of
N =256 particles at reduced temperatures (kji T/eo) of ap-
proximately 0.3 and 0.5. By using these data for a com-
parison, several of the relevant parameters (viz. the system
size, the value of W [see Eq. (1)], and temperature) were
varied. The results for three independent runs for the
N =256 system are presented in columns 3, 8, and C of
Table I. All the calculations employed a third-order Gear
algorithm along with a time step of 8.6 fs. The mass W
associated with the h matrix was set equal to the mass of a
single argon atom. This value of W yields an optimal
coupling between the motion of the boundaries of the MD
cell and the particles of the system. Figure 1 shows the
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TABLE I. Comparison of low-temperature elastic constants (in units of Nk~T/V) derived from strain fluctuations with Monte
Carlo results for a fcc lattice with nearest-neighbor Lennard-Jones (12-6) interactions. The number in parentheses gives the number

of MC steps per particle.

MD run Cowley'

System size, N
No. of steps/10

k~ T/ep

R/g
(4) /Nkg T
Cp/Nkg

8,
3 (C11+C22+ C33 )
1

—(C12+C13+C23 )
1

3 (C44 +C55 +C66 )

Nk& T/V (kbar)

'Reference 9.

256

50

0.3093

1.1497
—17.649

3.52

124

179+8

94+7

79.3+1.5
0.120 59

256

50

0.3131
1.1502

—17.413

3.52

112

169+5

84+ 5

73+11

0.121 91

256

40

0.3101
1 ~ 1498

—17.605

3.38

123

180+7

96+3

83+13

0.120 86

108

100

0.3065

1.1498
—17.817

3.65

112

170+9

84+ 8

81.7+1.3
0.11949

108

50

0.3068

1.1499
—17.802

3.45

121

176+6

93+8

79+8

0.11959

108

(25)

0.3100
1.1495

3.54+0.04

119.1+0.5
175.620.5

90.8+0.5

79.0+0.2

averages of the elastic constants for the run labeled A in
Table I as a function of the number of time steps over
which they were evaluated. The results were obtained by
inverting the compliance matrix as determined from the
strain fluctuations according to Eq. (4). The individual

C;~ which are required to be identical by cubic symmetry
are also plotted. The data in Table I represent averages
over the three symmetry-related Cz evaluated at the end
of the run. It is clear from Fig. 1 that the convergence
with an increasing number of time steps is disappointingly

P00 33 Qi. fcc (N = 256)
Q %+a+ Q

X/

I 80-

-c l~-
l20-C~l O

cg p

slow. The MD run had to be continued well beyond 10
time steps in order to obtain an accuracy better than 10%.
A similar convergence was found for the specific heat. In
addition, there seems to be a persistent discrepancy be-
tween the values of the symmetry-related C,J even after
5)& 10 time steps which may be due to a small but stable
residual distortion of the cell from cubic symmetry. This
perturbation, negligible for structural properties such as
lattice constants, is magnified to a considerable degree for
the C,z. The disagreement between the three symmetry-
related C,J can be used to estimate the statistical errors,
and the errors quoted in Table I are the standard devia-
tions with respect to the average over symmetry-
equivalent quantities. A comparison with the results of
the two independent runs 8 and C gives a further estimate
of the errors. From this we conclude that the precision
obtained for a simulation with this particular set of pa-
rameters is of the order of 5%. The columns D and E
contain data for a fcc sample of 108 particles. Figure 2
shows accumulative averages of C~&, C22, and C33 for run
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FIG. 1. Adiabatic elastic constants (in reduced units) for an
fcc system of N =256 Ar atoms as a function of the number of
time steps for 8'=mA, . The data are for run 3 of Table I.
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FIG. 2. Adiabatic elastic constants C11 (circles), C22

(squares), C» (triangles) for an fcc system of N =108 Ar atoms
as a function of the number of time steps over which the aver-

ages are evaluated for W=mA, . The data are for run D of
Table I.



TABLE II. CompM1son of high-teIllperatule elastic constants
in units of Xk~ T/V derived from strain fluctuations with Monte
Carlo results for an fcc lattice with nearest-neighbor Lennard-
Jones (12-6) interactions. 'The number in parentheses gives the

number of MC steps per particle.

p ~~~~p
p

~V~p

System size,

No. of steps/10

kg T/eo

8/o
(a ) rxk, T
Cq/%kg

8,
—,
' (C„+C„+C„)
3 «~2+ CI3+C23)

3 «44+ Css+ C66)

Nk, T/V (l bar)

'Reference 9.

256

50

0.5089

1.1773
—9.779

4.13

57

80+3

0.184 83

50

0.5076

1.1770
—9.814

4.36

81.7+1

44.3+1

32.0+1

108

(25)

0.5090

1.1759
—9.794

4.33

55.5+0.4
80.5+0.4

42.9+0.4

32.3+0.2

B. Stress-strain relations

To investigate the validity of the linear relations (5), a
stress was applied to several of the runs quoted in Tables I
and II, by using the last time step of each as a starting
point and reference state. Some of the results are shown
in Pigs. 5 and 6. The stress was increased in stages, each
having a typical run length of 5 X 10 —10X 10 time steps;
thc stress was then dccrcascd agan ln stages. No lrrcvcr"
sible hysteresis effects were observed, and within the er-
rors mentioned before the samples recovered cubic sym-
rnetry. The straight lines in Figs. 5 and 6 are the linear
relations as predicted by the complianccs obtained from
the equilibrium fluctuations in the reference state. For a
more quantitative comparison the points in the stress-
strain cycle have been fitted to a straight line. Because the
strain in the reference state (zero stress) vanishes by defi-
nition [see Eq. (9)], the line is forced to go through the
origin. When a set of stralll con1pone11'ts could be as-

D. The convergence for the smaller sample is worse but a
possible number dependence of the final averages seems to
be well below the errors introduced fmm other sources,
and no quantitative estimate of the X dependence could be
determined. Increasing the mass fV by a factor of 10 has
serious consequences for the convergence as can be seen
from Fig. 3 for N =256. The response of the MD cell
boundaries to the motion of the particles has become con-
siderably slower, and no reliable values for the C'J can be
derived in a run of 50X10 steps. Another variable that

may be relevant to the accuracy is temperature. Results
for the N =256 system at the reduced temperature of 0.5
are presented in Fig. 4 and Table II. The convergence of
the averages with the number of time steps is no different
from the lower-temperature data shown in Fig. 1. Howev-

er, the (relative) systematic error due to the persistent non-

cubic perturbation seems to be slightly less (see also Table
II).

sumed to be identical by symmetry, the "experimental"
values were averaged and taken as one point in the linear
regression. The error estimates of the least-mean-square
procedure were used as a measure for the statistical errors
of the C~ derived from the stress cycles. Table III gives
the results along with values of the CJ in the reference
state from Tables I and II. The agreement is vnthin the
statistical error. However, the errors for Cii and C12 as
obtained from the linear elastic relations are considerable.
As with the results in Tables I and II, the CJ from the
stress-strain relations show no significant N dependence.

For a comparison of the efficiency of the two methods
we note that the total length in time steps of the stress cy-

fcc(N =256)
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FIG. 4. Adiabatic elastic constants (in reduced units) for an
fcc system of X =256 Ar atoms as a function of the number of
time steps for 8'=m, . The data are for run A of Table II.

OF TiyE s~E~s r ~0~

FIG. 3. Adiabatic elastic constants C ~ ~ (circles), C22
(squares), C33 (triangles) for an fcc system of N =256 atoms as a
function of the number of time steps over which the averages
are evaluated for 8' =10mA, .
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FIG. 5. Effect of shear stress applied to an fcc solid (run A of
Table I). S gives the value of the nonzero stress components
S4 ——S5 ——S6. The open symbols are strains obtained with in-

creasing stress; the symbols with a cross were obtained with de-

creasing stress. The straight line gives the linear elastic relations
as predicted from the equilibrium fluctuations in the reference
state. Note that the nonvanishing value of the e&, e2, and 6'3 ls a
nonlinear effect.

cles is about equal to the length of the runs in the refer-
ence state. However, applying stress breaks the cubic
symmetry. This implies that the accuracy for C'» can no
longer be improved by averaging over symmetry. This ef-
fect is one of the origins of the larger errors in C'» and

Cr2 obtained from uniaxial loading. Moreover, two dif-
ferent stress cycles are needed for a determination of a full
set of I'1k', i.e., uniaxial loading as well as shearing. For a
crystal with lower symmetry than cubic (see below) the
system must be subjected to stress in additional indepen-
dent directions. Hence we may conclude from these con-
siderations that an evaluation of the C,J from equilibrium
fluctuations is the more efficient method.

For a comparison of the NMD approach to the (E, V, T)
Monte Carlo (MC) method the last column of Tables I
and II contains the results of Cowley, for a nearest-
neighbor Lennard-Jones model of solid argon. (A small
temperature correction has been applied to the data of
Ref. 9.) The MC averages were obtained for a system of
108 particles with about 20&& 10 configurations per parti-
cle. This makes the length of the MC calculation compar-
able to the length of the MD runs in Tables I and II. The
agreement is satisfying particularly for the high-

FIG. 6. Effect of stress loading along the X axis of an fcc
solid (run A of Table II). The symbols have the same meaning
as in Fig. 5.

temperature C,z. However, the precision claimed for the
MC calculation is an order of magnitude better than our
MD results. This clearly implies that the MC method is
the more efficient procedure We.will return to this point
in the Discussion section.

C. hcp argon

A system of argon atoms, with the same nearest-
neighbor interaction as before, was set up in a hexagonal
close-packed (hcp) lattice. As is well known from litera-
ture, ' the hcp elastic constants and the fcc constants mea-
sured with respect to an equivalent reference frame are al-
most indistinguishable. This enables us to examine the
hcp elastic constants by comparing them to the equivalent
fcc values. The first column of Table IV lists the CJ ob-
tained from the equilibrium fluctuations in a hcp sample
of E =250 particles. Figure 7 shows the averages of the
CJ as a function of the number of time steps. Despite the
effect of the perturbation from perfect symmetry dis-
cussed before, the reduction of cubic to hexagonal symme-
try is evident from the splitting in the manifold of three
CJ identical in a cubic system. In particular, for C33 the
coefficient for loading along the c axis, the convergence is
rather poor. The second column in Table IV gives the re-
sults for a N =150 particle system. The size of this sys-
tem in the c direction is —, the size of the larger one. The

TABLE III. Comparison of elastic constants for fcc argon (in units of Xk~ T/V) derived from fluctuations and stress-strain rela-
tions.

Elastic constants

X =256 (Xk,rr V=0.1848 kbar)

Fluctuations Stress-strain

X =256 (%AT/V =0.1206 kbar)

Fluctuations Stress-strain

N =108 (Nk~T =0.1195 kbar)

Fluctuations Stress-strain

3 (C11+C22 +C33 )

3 ( C12 +C13 +C23 )

3 ( C44 +CS5 +C66 )

84+ 12

48+12

32.5+1.5

179+8

79.3+ 1.5

197+24

111+24

77.2+0.3

170+9

84+8

81.7+0.3

188+17

99+16

77.1+0.9
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TABLE IV. A comparison between hcp and transformed
frame fcc elastic constants in units of Ek~T/V derived from

strain Auctuations.

300 — g

0~ /
260—

System size, N
No. of steps/10

kg T/eo

8/o
e/a
&C )Zek, T
Cq/%kg

8,
2 «I~+ C22)

C~2

2 «~3+ C23)

2 «~+C55)

%kg T/V (kbar)

250

50

0.3091

1.1496

1.6337
—17.675

3.54

128

150

50

0.3054

1.1493

1.6338
—17.901

3.59

115

57+0.5

256

50

0.3093
1.1497

—17.649

3.52

124

228+11
82+4
70+3

55+2

67+3
0.120 59

200—
I PG—

O~ c —o~0
8G

Ch E7 '
H

' —+» '«8

0

NG. GF T)ME STEPSglG'

50

8G-
66

V ~g~ o~g~e~g~» '0 ~~e~+

CJ for the smaller sample seem to be slightly lower.
However, this difference may not be significant because
the errors ( —10%) for the hcp C,J are considerably larger
than for the fcc system. This is confirmed by a compar-
ison with values obtained from stress-strain cycles applied
to the hcp system (see Table V). Since not all independent
I

g~
necessary fol Rll lllvcrs1011 11avc bccll measured, co111-

pliances are compared in Table V rather than elastic con-
stants. The last column of Table IV gives the fcc C~ ob-
tained from sample A in Table I, transformed to the prop-
er frame. ' For technical reasons related to the constant-
pressure MD program, this frame was not quite the same
as the trigonal frame introduced in Ref. 10. An additional
rotation of m./12 about the c axis is required. However, it
turns out that the constants listed in the tables are invari-
ant under this rotation and the transformation rules as
given in Ref. 10 are still valid. But the constant coupling
uniaxial loading and shearing are different in the two
frames. This implies that the corrections for internal
strain must be modified. For this reason the transformed
fcc constants presented in Table IV have not been correct-

FIG. 7, Adiabatic elastic constants (in reduced units) for an
hcp system of X =250 Ar atoms as a function of the number of
time steps for 8' =mA, . The data are for run A of Table IV.

ed for internal strain. Within the errors mentioned above
there is no distinction between the fcc and hcp system.
The internal strain corrections evaluated according; to Ref.
10 can be used as an order of magnitude estimate of the
strain corrections, despite the fact that they are evaluated
in a slightly different frame. We conclude that the inter-
nal strain may be neglected in view of larger errors in-
volved in the determination of the CJ.

IV. DISCUSSION

We have presented the results of molecular-dynamics
calculations of the second-order elastic constants of the
Lennard-Jones solid with the use of the NMD method. '

The results have been compared vnth Monte Carlo calcu-
lations employing the (N, V, T) ensemble. '" Our main
flIldlllg ls tllat I'Rtllcl' lcllgthy CRlculatloIls scc111 to bc rc-

TABLE V. Comparison of complianccs [in units of 10 (V/Xk~T)] derived from fluctuations and

stress-strain relations for hcp argon.

Compliance

X =250 (V/Xk@T =8.2974 kbar ')
Fluctuations Stress-strain

X =150 (V/%AT =8.3921 kbar ')
Fluctuations Stress-strain

C—I

(C33 +C23

2 «44'+C55')

—1.09+0,06

18.9+0.8

—1.18+0.03

18.5+0.2
16.3+0.3

—1.0+0.2
4.9+0.1

—1.16+0.06

15.9+0.3
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quired to obtain elastic constants to 5% accuracy from
MD calculations using either fluctuations or the stress-
strain relationships. Accordingly, Monte Carlo
methods ' would seem to be the preferred means of calcu-
lation.

This conclusion is disappointing since the computer
codes for carrying out NMD calculations for molecular
systems have already been developed. ' ' A natural appli-
cation of the methods discussed in this article would be
the study of the elastic constants of molecular solids in the
vicinity of phase transitions. While such calculations
remain to be done, the results presented here suggest that
prohibitively long calculations will be required. However,
at present Monte Carlo calculations have not yet been

used to study the elastic constants of molecular solids. It
remains to be established whether or not the pessimistic
conclusions for solid Ar can be carried over to the case of
molecular crystals where additional relaxation mecha-
nisms (via translation-rotation coupling) exist. Indeed, the
determination of a stress free reference state in the
(X, V, T) Monte Carlo method is a nontrivial calculation.

ACKNO%LEDGMENT

One of us (M.S.) gratefully acknowledges support by a
Natural Sciences and Engineering Research Council (Ca-
nada) fellowship. We thank Roger Cowley for useful dis-
cussions and for providing us with details of his unpub-
lished calculations.

&M. +pm and K,. Huang, Dynamical Theory of Crystal Lattices
(Clarendon, Oxford, 1954).

B. P. Stoicheff, in Rare Gas Solids, edited by M. L. Klein and J.
A. Venables (Academic, London, 1977), Vol. II.

M. L. Klein and R. D. Murphy, Phys. Rev. 8 6, 2433 (1972).
4M. L. Klein and T. R. Koehler, in Rare Gas Solids, edited by

M. L. Klein and J. A. Venables (Academic, London, 1976),
Vol. I.

5M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981).
6M. Parrinello and A. Rahman, J. Chem. Phys. 76, 2662 (1982).
7I. K. Schuller and A. Rahman, Phys. Rev. Lett. 50, 1377

(1983).
8B. R. Squire, A. C. Holt, and W. G. Hoover, Physica 42, 388

(1969).
E. R. Cowley, Phys. Rev. 8 28, 3160 {1983).
S. F. Ahmad, H. Kiefte, M. J. Clouter, and M. D. Whitmore,
Phys. Rev. 8 26, 4239 (1982).

~ M. L. Klein and W. G. Hoover, Phys. Rev. 4, 539 (1971).
S. Nose and M. L. Klein, Phys. Rev. Lett. 50, 1207 (1983);J.
Chem. Phys. 78, 6928 (1983).
R. %. Impey and M. L. Klein, Chem. Phys. Lett. 103, 143
(1983).


