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A formahsm to compute x-ray spectra due to core excltatlons 1metals by using SIngle-particle

band-structure tccbniqucs 1s pl cscntcd and illUstlatcd with 8 dctailcd calculation of thc E, L, and M
emission and absorption spectra of palladium over 200 cV. %ithin the muffin-tin approximation
for the potential, any spectrum can be factorized into atomiclike and solid-state contributions. The
atomiclike factor is the dipole transition strength connecting a core state to a muffin-tin orbital in a
free-electron metal. The solid-state factor is proportional to the density of band states with angular

momentum determined by the orbital symmetry of the core state and the dipole selection rules.
These pro)ected dcnsitics of stRtcs have bccn calcUlRtcd by Using 8 11ncarizcd vcI'sion of the
augmented-plane-wave Inethod specifically designed to cover large energy ranges. In particular, the

method can describe simultaneously several principal quantum numbers of the eigenstates (e.g., 4d
and 5d for palladium).

I. INTRODUCTION

The emission and absorption of x rays are among the
most simple probes of the occupied and unoccupied elec-
tron states in solids. Historically, the first measure of the
width of a partially filled conduction band came from x-
ray emission. Today synchrotron-radiation facilities make
x-ray absorption an attractive experimental tool: Good-
quality, highly resolved, absolute measurements can readi-
ly be obtained. All core states are now accessible (from 35
eV for the sodium L edge to 100 keV for the uranium E
edge), and there is sufficient intensity to measure the spec-
trum far above the edge.

The procedures employed so far to compute x-ray-
absorption spectra have been based on one of two ap-
proaches: the scattering formalism (short range) or band-
structure calculations (long range). The simplest short-
range approach is represented by the standard extended
x-ray-absorption fine-structure (EXAFS) formula, which
has been extensively applied to interpret EXAFS's. This
formula fully includes the effect of the central atom, but
treats that of the neighboring atoms only via single back-
scattering events, and is therefore restricted to energies far
above threshold where the atomic cross sections become
smaller. Recently, the short-range approach was extended
to low energies by including multiple scattering events
and it was successfully applied to compute a variety of
near-edge structures. Qn the other hand, reported calcula-
tions of absorption spectra using conventional band-
structure methods have been restricted to the near-edge re-
gion.

Using the augmented-plane-wave (APW) method,
Szmulowicz et al. calculated the K-edge spectrum of Al
(Ref. 4) up to 23 eV above the Fermi level and the K and
L edges of Ni (Ref. 5) up to 41 eV above the Fermi level,
and identified the symmetry lcvcls assoc1atcd with each

feature of the spectrum. In order to discuss the relative

importance of band-structure and many-body effects at
threshold, Gupta et al. calculated the K edge of I.i (Ref
6) and the L2 3 edge of Na (Ref. 7) and Mg (Ref. &) up to
2 or 3 eV above the Fermi level. Papaconstantopoulos and
co-workers calculated the K edge of Ca (Ref. 9) and the L
edge of Ni (Ref. 10) up to 17 eV above the Fermi level and

both the Ti and Fe K edges of TiFe (Ref. 11) up to 10 eV
above the Fermi level. Wakoh and Kubo' calculated the
E edges of V, Fe, Ni, and Cu up to 30 eV above the Fermi
level. In prevous work' i.n the present research program,
the K edges of Zr, Mo, Pd, and Ag have been calculated

up to 60 eV above the Fermi level using Andersen's linear

APW method, '" and the systematic trend of the main
features of the spectra along the 4d row has been dis-

cussed. In this paper a formalism for calculating x-ray

spectra due to core excitations in metals over an extended

energy range based on a more suitable band-structure
method is presented and illustrated with a detailed calcu-
lation of the palladium K-, L-, and M-edge spectra up to
200 eV above threshold. An extensive application of the
scheme to the K edges of 3d metals and the L edges of 3d
and 4d metals has been presented elsewhere. '

A principal result of this work is that the spectra can be
understood as the product of an atomiclike term and a
solid-state term. This factorization results from the local-
ized nature of the core state involved in the x-ray transi-
tion. Further, since the dipole transition dominates the
pIoccss, cxc1tat1on of R core stRtc having orbitRl angular
momentum / probes the (+1 components of the conduc-
tion band. The / —1 term exhibits a much smaller transi-
tion amplitude and can be ignored in the discussion (al-

though it is included in our calulation). We are thus lead

to the following simple understanding of the x-ray spec-
tra: (1) The overall magnitude and shape of a particular
spectrum is determined by the corresponding atomic tran-
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sition rate, and (2) the fine structure of the spectrum is
determined by a solid-state factor which is proportional to
the density of band states with /+1 orbital character.
Thus, using core states with different orbital symmetry,
one can study the angular momentum content of the band
states, the states below (above) the Fermi level showing up
in the emission (absorption) part of the spectrum.

The calculation of the absorption part of the spectrum
using a band-structure approach requires the knowledge of
conduction-band energies and wave functions to quite
high energies. This adds to the magnitude and complexity
of the calculation because of the large number of energy
levels in the high-energy region of the spectrum. For each

Bloch vector k the number of levels up to a given E,„(in
Ry) is given roughly by X =Q(E,„/3n ), where 0 is the
volume of the primitive cell in atomic units. In the case
of palladium, with 0=99.4a 0, up to E „=10 Ry, there
are N-107 energy levels for each Bloch vector. More-
over, at least 256 Bloch vectors in the irreducible part
(—„th wedge for cubic systems) of the Brillouin zone are

required to accurately evaluate the k sums at high ener-
gies. In order to solve the band-structure problem, we
have used a modification' of the linear-APW method of
Andersen. ' The main difference is that in the new
scheme, computed logarithmic derivative functions them-
selves are used, instead of a parametrization of them, and
as a result, an arbitrary range of principal quantum num-
bers of the energy eigenstates can be handled simultane-
ously. It is this feature which makes the scheme uniquely
suited to the calculation of absorption spectra.

The central approximation of our formalism is that x-
ray absorption and emission are treated as single-particle
processes. This necessarily means that we cannot calcu-
late the singularities near the edge. ' Nonetheless, such a
single-particle calculation is a necessary first step in the
understanding of the x-ray spectra and their systematic
trends in the Periodic Table. Furthermore, deviations of
the experiments from accurate single-particle calculations
may point the way to many-body effects. One such effect
involves the filling of the core hole and the decay of the
electron excited in the absorption. This effect has been
phenomenologically incorporated in the present calcula-
tion by convoluting the single-particle result with a
I.orentzian broadening function whose width is equal to
the sum of the inverse lifetimes of the core hole and the
excited electron.

The potential employed in this calculation was con-
structed from a superposition of atomic charge densities.
This potential, even though it may not reproduce all the
detailed features of the occupied states, is quite adequate
for describing the higher-energy states. These states are
mostly affected by the part of the potential close to the
nuclei, where it is essentially equal to the atomic potential.
Use of a self-consistent potential leaves all high-energy
features unaffected; the 4d band, however, moves about 1

eV higher in energy, producing minor changes in the ab-

sorption spectra, which extend up to about 8 eV above
threshold. Consistent with our band-structure approach„
we use a strictly periodic potential. This is appropriate
for the x-ray-emission problem, while for the x-ray-
absorption problem it might be preferable to use a poten-

II. X-RAY SPECTRUM

Both the x-ray absorption and emission spectra of a
core level c =(n, l,J) with energy E, and wave functions

P,~ are proportional to the spectral distribution F, (E) of
the oscillator strength, given by' '

(2.1)

(2.2)

Here E , and g- are-t.he energy and wave function ofkj kj
the jth conduction band at reduced vector k, co=E —E, is
the energy of the emitted or absorbed photon, and
( ) = Jd3r( ) denotes integration over the volume 0 of
the primitive cell. The contribution p, of the cth core lev-
el to the absorption coefficient p (in units of bohr ') can
be expressed as'

p, (E)= J', (E), E &Ez0/v
(2.3)

where cx '=137.036 is the inverse fine-structure constant,
EF is the Fermi energy, and v is the number of contribut-
ing atoms in the primitive cell. The corresponding emis-
sion intensity J, for a hole created in the cth core shell is
given by"

I,(E)=(ace) F, (E), E &EF . (2.4)

In deriving the previous expressions, we have intro-
duced the following limitations. (i) We have averaged
over the polarization e and the direction of the wave

tial with a core hole. It has been suggested that the local-
ized core-hole potential may give rise to energy shifts in
the placement of the high-energy features of the spectra. '

In the present calculation, we have used self-consistent
Dirac core wave functions and have computed the band
states including all scalar relativity corrections. The in-
clusion of spin-orbit coupling in the band states is expect-
ed to have a negligible effect for all but the heaviest ele-
ments (Z) 75); it will be discussed elsewhere.

Finally, it should be pointed out that the high-energy
bands and wave functions could be employed for a num-
ber of other uses besides x-ray spectra. Some of the exper-
imental techniques which also probe high-energy levels are
angle-resolved x-ray-photoemission spectroscopy, brems-
strahlung isochromat spectroscopy, electron-energy-loss
spectroscopy, and photoelectric yield spectroscopy.

In Sec. II we describe our approach to analyzing x-ray
spectra as a product of atomiclike and solid-state factors;
the detailed derivations can be found in Appendixes B and
C. In Sec. III we present our linearized version of the
APW method. Practical aspects of the scheme are dis-
cussed in Sec. IV in terms of an application to palladium.
Finally, in Sec. V the physical origin of the relevant
features of the spectra is discussed. Unless otherwise stat-
ed, we use atomic Rydberg units, which we have summa-
rized in Appendix A.
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vector q of the photon in order to describe polycrystalline
samples. If needed, the fully anisotropic expression can be
recovered by replacing r . by 3

~

e r -
~

in (2.1).
eM, kj q eM, kj

(ii) We have employed the electric-dipole approximation,
which neglects the spatial variation e'q " of the electric
field of the x rays over the region where the core wave
function is appreciable. As the energy of the x rays in-
creases, this approximation becomes less reliable and one
may need to include further teins. In Table I, we show the
ratio of the electric-quadrupole to the electric-dipole con-
tributions, and we observe that the neglect of quadrupole
terms is justified for systems of lower atomic number.

For completeness we rewrite the experimental quantities
(2.1), (2.3), and (2 4) in cgs units as

p, (E)= —F,(E), E&Ep
mc Q

2e ficoI, (E)= 3 F, (E), E (Ep .
PlC

(2.3')

Q.4')

A. Spectral distribution of the oscillator strength

Here we construct an angular momentum decomposi-
tion of the oscillator strength which is consistent with the
band-structure approach and allows an identification of
atomiclike and solid-state effects in the spectra. This
decomposition, which is the same that is used in the
scattering formalism, will permit us to make the connec-
tion between both theories and will prove useful in dis-
cussing the results. In Appendix 8 we show that, with the
neglect of spin-orbit coupling for the band states, the spec-
tral distribution of oscillator strength F, for a core state
c =(n, l,J) can be written as '

T

co 21+1 l E l+1
3 2(2l y 1) 2l —1

" 2l+1 ' +

(2.5)

F,(E)=, (RN ) y y ( (y,~ ~

r
~

tl „.) [
'5(E E—„), .

kj

(2.1')

Q.6)

The angular-momentum-projected density of states Ni is
defined as

Ni(E)=2++ (&r, ~y„.) ('5(E —E„.).
m

(2.7)

The wave function Pi(E, r) is a solution of the radial
Schrodinger equation inside the muffin-tin (MT) sphere of
radius S =SMT, and is given by

P&(E,r) =[cos5i(E)]ji[(E—Vo)' r]
—[sin5i(E)]ni[(E —Vo)' r] (2.8)

for r &S, where 5i(E) is the 1th phase shift and Vo is the
muffin-tin zero of the potential. The integrations in (2.6)
and (2.7) extend over the volume 0 of the primitive cell.
For close-packed systems, however, they can be approxi-
mated with negligible error by integrations over the
Wigner-Seitz (WS) sphere with radius Sws given by
&=4~~w's~3

Consider now a single muffin-tin potential confined in a
sphere of radius Sws embedded in a constant potential Vo.
The corresponding spectrum for the core state c is also
given by (2.5) but with f, i(E) replaced by

f,"~(E)=(2l+ 1)N" (E)(P,
~

r
~
Pi(E)) (2.9)

where N" (E)=(E—Vo)' l2ir is the free-electron (FE)
density of states (see Appendix C). As we argue below,
for E & 0, this spectrum is very close to the single-particle
atomic spectrum and we shall refer to it as "atomiclike. "
Note that the normalization (2.8) of the partial waves is
used in the single-particle problem to ensure an overall
free-electron density of states. In the energy-band prob-
lem, on the other hand, this normalization is arbitrary and
cancels out in the secular equation.

In order to make the connection between the solid-state
and the single-sphere problems, it it convenient to intro-
duce the projected density of states

where ~ is the energy of the x rays, and
Ni"(E) =—(2l + 1)N" (E)(Pi(E) )0 (2.10)

Element E (1s) I.l (2s) L 2, 3 (2p)

TABLE I. Validity of the electric-dipole approximation. The

average value of the ratio (c
~ q r

~
k,j) /(c

~
qr

~
k,j ) of the

electric-quadrupole to electric-dipole contributions over states

~
k,j ) up to 3 Ry above EF is given for various systems and dif-

ferent core levels
~
c ). We expect the electric-dipole approxima-

tion to be satisfactory for the systems above the dashed lines.

for the single-sphere problem. Now we can rewrite (2.6)
as

Ni«)
fc,I(E)=f",i(E)

Ni"(E)
(2.11)

which provides the desired factorization of the spectra. In
the remaining parts of this section, we interpret the ratio
NI/NI as a solid-state contribution and identify the
atomic strength f i as an atomiclike (superscript "at")
contribution to the spectrum.

)3A1

29Cu

47Ag

7OYb

79Au

0.012
0.05 8
0.152
0.314
0.397

0.004
0.026
0.07 3
0.194
0.270

0.001
0.010
0.029
0.063
0.084

B. Solid-state effects

We consider first free electrons with energy E-
2

k=k —Vo described by plane waves
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The general energy dependence of the atomic oscillator
strengths has been discussed in detail by Fano and Coop-
er. For the case of localized core states, however, this
dependence becomes particularly simple. The near-edge
structure is dominated by the centrifugal barrier which
produces a delayed or enhanced edge (also called a white
line) when the values of the logarithmic derivative of the
valence wave function at the Wigner-Seitz radius Sws is
positive or negative, respectively. For example, the M45
spectrum of Pd exhibits a delayed edge which lies -30 eV
above the Fermi level, while the L2 & spectrum of all tran-
sition metals with unoccupied d states has white lines.
Above the near-edge structure the atomic spectrum has a
broad maximum at E=l(I+ I)/Sws+ Vp, and decreases
slowly with increasing energy, due to the increasing curva-
ture of the valence wave function in the core region.

A. Basis functions

Consider the problem of solving

(H —E )P (r )=0, (3.1)

partial term I of a plane wave is augmented with a solu-
tion of the radial Schrodinger equation whose energy
ei(K) is related to the energy of the plane wave, K . In
this way, the range of energies covered by the scheme is
limited only by the number of plane waves included in the
calculation. This feature is achieved at the price of keep-
ing a larger number of parameters than in Andersen's
method, namely the crystal potential functions ei(K).
However, this is not a difficulty, since the calculation is to
be performed on a computer.

III. ENERGY-BAND PROBLEM

Here we describe a linearized version of the APW
method which can handle wide energy ranges. The cen-
tral idea of the APW method is to decrease the number of
plane waves needed to produce an accurate Bloch state by
augmenting the plane waves with functions which have a
more appropriate radial dependence over the core region.
In the linearized versions of the APW method, these radi-
al functions are chosen to be independent of the energy of
the Bloch state. This leads to a linear secular equation
for the crystal eigen values and eigenfunctions. In
Andersen's original scheme, the augmenting functions are
related to solutions of radial Schrodinger equation for the
muffin-tin part of the potential with arbitrarily specified
energies. ' This scheme is therefore restricted to an ener-

gy range of one principal quantum number about these
fixed energies. By contrast, in the present scheme each

I

with

H= —V +V(r), (3.2)

for a periodic muffin-tin potential V(r ). We expand the
Bloch wave function g„. for a state with reduced wavekj
vector k and band index j in terms of a set of basis func-
tions g; that is,K'

(3.3)

The index K stands for

(3.4)

so that the basis set is defined for each wave vector k, and

is labeled by the reciprocal-lattice vector G. The basis
functions are the energy-independent APW's defined by

4' + Yr*(E j)L (K, r ) =e' ', r &S
L

X-(r )= j((ES)4~+ YL, (K )QI. (&i(K), r),r (S
L Pi(ei(K), S) '

(3.5a)

(3.5b)

where S =SMr is the muffin-tin radius, and we have de-
fined

jL (K, r ) =i'Yr (r j)i(Kr)

I

where

D FE(Kp) x Jld x
j&(~) dx

and

(3.10)

using the notation L =I,m. The wave function

yL(e, (K), r ) =i'YL (r" )y, (e,(K),r )

is a solution of the Schrodinger equation

Hpl (E, r )=Eel (E, r )

(3.7)

(3 8)

Di(ei(K))=Di" (K ), (3.9)

inside the muffin-tin sphere with fixed angular momen-
tum quantum numbers L, and with the energy E =ei(K)
determined by the logarithmic derivative boundary condi-
tion

r df(Eyr)
yi(E, r) dr

(3.11)

r=S
In the interstitial region the energy-independent AP% P K
is defined to be the plane wave of wave vector K, and in-
side the muffin-tin sphere each of the partial components
of the plane wave is augmented by a solution of the
Schrodinger equation with energy chosen so that 7 and

K
its first derivative are continuous at the muffin-tin radius.

The set of crystal potential functions ei(K) for
I = 1,2, . . . , defined by Eq. (3.9) contains all the informa-
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tion about the spherically symmetric part of the potential
which is relevant to the band-structure problem. These
functions bear a simple numerical relation with the
energy-dependent phase shifts 5J(E) used in Sec. IIA.
While in Eq. (2.8) we have shifted the free-electron solu-
tion by 6I outside the atomic sphere in order to have con-
tinuous and differentiably partial waves, here we shift the
energy inside the muffin-tin sphere by ei(K) K—and re-
tain the unshifted sinusoidal form of the plane waves in
the interstitial region. The plane waves provide a very
convenient way of fulfilling the periodic boundary condi-
tion by imposing the restriction (3.4) on our basis set.
Note that X-, although it satisfies Bloch's theorem with

Bloch vector k, is not a solution of the Schrodinger equa-
tion for the solid because its energy ei(K) inside the
muffin-tin sphere is different for each l and is also dif-
ferent from its energy K in the interstitial region (except
for the special case of free electrons).

B. Muffin-tin overlap integral

The overlap integral for the partial waves inside the
muffin-tin sphere of radius S is given by

&y. (E)y, (E )),
Di(&) —Di(E')

511 Sgi(E,S)—PJ(E',S), . (3.12)

In order to prove this expression, we convert the volume
integral into a surface integral using Green's theorem as
follows:

g (H „,—Z„JO„„,)a =0,
K '

where

H„„,=(x iH ix-„,)

(3.16)

(3.17)

0- -„,=&x ~x„,& . (3.18)

The secular equation (3.16) is linear in the energy simply
because the basis functions X- are independent of the en-

K
ergy E kj

It is convenient to write the Hamiltonian and overlap
matrices as

&x-„~(H —E) ~x„,&M, =Qy w, (&,K')m, (K.,K )

+(x- i(H E) ix, )—MT. (3.19)

Here ( &, & &;„„and ( )MT indicate integration over the
primitive cell, the interstitial (subscript int) region, and the
muffin-tin sphere, respectively. The subscripts kj in the
energy eigenvalues and eigenfunctions will be omitted
hereafter whenever there is no possibility for confusion.

The contribution from the muffin-tin sphere can be
evaluated using (3.5b), (3.8), (3.12), and the addition
theorem for the spherical harmonics, and one has

«' E)&NL, «—)NI. «') &MT

=&/ (&)Hy (E')& —&y (&')Hy (E) &

(3.13)
where the quantity

X [eJ(K')—E], (3.20)

51L S p—i(E, r) pi(E', r)
dr

l(E'r )
d ~ldr (3.14)

and we use the definition (3.11) of the logarithmic deriva-
tive Di(E).

C. Secular equation

The Schrodinger equation (3.1) can be obtained from
the variational principle

5(t//-„J
~

(H E„)~q-„J)=0. —
, (3.15)

Substituting the trial wave function (3.3) into Eq. (3.15)
and treating the expansion parameters 3-.as independentkj
variational parameters leads to the secular equation

O'J(K, K')= (2l+1)PI(K K'j)((KSj)I(E'S)0
DFE(K2) DFE(K~2)

x '
(3.21)E —E'

is a geometrical factor which depends on the crystal struc-
ture but is independent of the potential, and

E —E'
(3.22)

ei (K) eJ(K')—mi(K, K') =

is a nondiagonal effective mass.
The contribution from the interstitial region can be

written as the difference between the integral over the en-
tire primitive cell and that over the muffin-tin sphere.
The integral over the primitive cell is simply
Q(K —E)5- -, since the plane waves e' ', with wave

vectors K=k+G, form an orthogonal set over that
volume. The remaining integral over the muffin-tin
sphere is a particular case of (3.20) with ei(K)=K and

(mi, KK)=1, so that

(e ' '
~

( V' E)
~

e'" '),„,—=Q(K—'—E)5„-„,—Qy 8;(K,K')(K' E) . —
1

From (3.20) and (3.23) one obtains the following expression for the secular matrix:

(3.23)
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—(H- -, E—O-, )=(E' —E)5,+ g 8'I(K, K')Im((E, E')[eI(E')—E] (—E' —E)] .
I

(3.24)

The Hamiltonian and overlap matrices can be rewritten in the form

H—-,=E 5- -,+ + 8'I(K, K')
I 2[@(—(E)+@i(E')]mr(EE') ,'—(E—~+E'~)],

I

1

~ O- -,=5- -,+ g W((K, K')[m)(EE') —1],
I

(3.25)

(3.26)

which are explicitly Hermitian.
In practice, the I sum in (3.24) is necessarily terminated

at some finite I =I,„. Nevertheless, as in other APW
schemes, the formalism automatically incorporates the
remaining terms from I =/, „+1 to I= co with
ei(E)=E and m~(E, E')=I. Therefore, as long as the
neglected terms are free-electron-like, this approximation
entails no truncation errors. Note also, that for free elec-
trons, the method becomes exact [cf. Eq. (3.24)].

D. Crystal potential functions

The crystal potential enters the Hamiltonian and over-
lap matrices through the potential functions e~(E), for
I =0, 1, . . . , etc. In our calculations, these functions are
computed and tabulated for a discrete set of values of E,
defined on a mesh chosen to have 100 points uniformly
distributed within each n, l band. These are fed into the
calculation as input data, and the specific values of e~(E)

required to construct the secular equation are then ob-
tained by numerical interpolation.

To construct these functions, we solve the implicit
equation (3.9) numerically for each value of E in the
mesh. This is schematically illustrated in Fig. 4, where we
note that DI(eI) assumes the value DI" (E ) for infinite
many values of e~. Each solution yields a different branch
ei (E) of the crystal potential function. The different

(n)

branches have been labeled with a superscript which indi-
cates the value of the principal quantum number of the
first band included in each branch. This means that the
function e~"'(E), for instance, includes all the n, l bands
with n)y. The use of these different branches to gen-
erate different energy panels will be discussed in Sec. IV.
To keep the notation simpler, however, the superscript in
the crystal potential functions will be omitted whenever
there is no possibility for confusion.

The evaluation of the diagonal terms of the secular
equation (3.24) requires special mention. For E =E', one
needs

IO

FIG. 4. Construction of the crystal potential functions. (a) The crystal-potential (solid line) and free-electron (dashed-dotted) loga-
rithmic derivatives for the d bands of palladium. For each value of K, there are an infinite number of solutions ed"'(E) with the same
logarithmic derivative Dq(K). (b) The n =4, 5, and 6 branches of the crystal-potential functions for / =2.
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Wl(K) =—(2~ + 1 ) (jl'(K') )MT0 (3.27)

[cf. Eq. (3.21)], which has been evaluated using (3.12), and
one also needs

)

(RY}

c„(K'}-

dE
ml(K) =

d E'I
(3.28)

[cf. Eq. (3.22)]. Rather than using numerical differentia-
tion of the function el(K), it is more accurate to evaluate
this last quantity via

(PI (El (K) ) ~ MT /4 I (6!(K),S)
ml (K)=, (3.29)

~jl (K ) ~MT/jl (KS)

c„(K}

K Kt2

which follows from (3.9) and (3.12). The numerator of
(3.29) can be easily obtained by numerical integration of
the wave function pl(eI(K), r), while for (jl (K ))MT in
(3.27) and (3.29) we use Eq. (2.14) evaluated at the
muffin-tin radius S =SMT. In this paper we have evaluat-
ed ml(K) in a seperate calculation and furnished it as ad-
ditional input data.

The crystal potential functions for the 4d and 6h
branches of palladium are shown in Figs. 5 and 6, togeth-
er with the corresponding diagonal effective masses
mI(K).

E. Physical interpretation of the secular equation

In attempting to interpret this formalism, we first con-
sider the effect of a single APW and then discuss the in-
fluence of the off-diagonal matrix elements.

The diagonal terms of the secular matrix (3.24) are
given by

1—(II-„-„Eo-„—) =(1—Q, /Q)(K' —E}

where the weight factor WI(K) is defined by Eq. (3.27)
and satisfies the normalization condition

gW(K) ( I KI—K! r )
I

I g e MT (3.31)

By requiring that the diagonal terms vanish, one obtains
the expectation value of the energy for the single energy-
independent APW's, namely

l"„(K,K'}

FIG. 6. Interpretation of a free-electron-like crystal-potential
function. The plot of e~(K) as a function of K is almost a
straight line, and mq(K)=1 for palladium. Accordingly, both
the pseudopotential I I and the overlap function AI can be ap-
proximated by constants independent of K and K' for l =5. The
same holds for l ~ 5.

+ g WI(K)mI(K)[eI(K) E], —
1 (1 QMTIQ)K +—g Wl(K)lnl(K)el(K)

(3.32)
(1—QMT/Q)+ g WI(K)lIII(K)

I

(3.30) E«)=
Jl

md

(R )

c (K'} -——.—.

cd(K}--——~-, Y

K K'

Id (K, K')

FIG. 5. Interpretation of a general crystal-potential function.
The thick solid curve represents ed'(K) for palladium. The
pseudopotential I d(K, K ) is given by the intersection of the
straight (solid, thin) line through the points X and X with the
horizontal axis, and the nondiagonal effective mass mq(K, K') is
the slope of this line. Also shown is the diagonal effective mass

md '{K)=mg{K,K).

From (3.29) and (3.32) it follows that E(K} represents the
weighted mean of E from the interstitial region and

el(K), for each l, from the muffin-tin sphere, the weights
being given by the probabilities of finding the energy-
independent APW in the interstitial region and muffin-tin
sphere, respectively. In the actual band-structure calcula-

tion, as one scans all values of the Bloch vector k in the
irreducible part of the Brillouin zone, each function el(K)
is sampled for all values of K with a weight given by
WI(K)ml(K). From (2.13) and (3.27) we observe that
Wl(E) is proportional to the projected density of states for
free electrons Nl" (K ) in the muffin-tin sphere Thi.s
means that the crystal potential functions with small-
(large-) l components are sampled preferentially by the
energy-independent APW's with small- (large-) K values,

where the corresponding NI" (K ) in the muffin-tin sphere
is large (cf. Fig. 1). Also, bands with larger effective
masses ml(K) have larger weight in the secular equation.

To discuss the off-diagonal terms of the secular equa-
tion, it is convenient to rewrite (3.24) as
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=(IC' —E)6„,+ g Wi(K, K )[ri(K,K )
1

Eb—i(K,K')] .

(3.33)

The degree of mixing of the energy-independent APW's

with wave vectors K and K' depends on the crystal struc-
ture and the potential. The dependence on the crystal

structure is determined by the functions 8'i(K, K') for
each I, while the dependence on the potential is deter-
mined by the pseudopotential function

r, (K,Ic') =m, (K,K')~, (K) Ic'—
in the Hamiltonian, and by the overlap function

bi(K, K') =mi(K, K') 1—
(3.34)

(3.35)

in the overlap matrix.
A simple physical interpretation of I i(K,K') and

Ai(K, K') is given in Figs. 5 and 6. Notice that the pseu-

dopotential I i(K,K') is that constant potential which
would make a free particle with orbital quantum number /

and mass mi(K, K') have the energies ei(K) and Ei(K') for
wave vectors of magnitude K and E', respectively. Ob-

serve also that for the case of a general band, illustrated in

Fig. 5 with the d band of palladium, the pseudopotential
I I has a complicated dependence on E and E', not suscep-
tible to any simple mathematical approximations. On the
other hand, for a free-electron-like band, as illustrated in

Fig. 6 by the h (l =5) band of palladium, ei(K) plotted as
a function of K is almost a straight line. The behavior of
the 1th partial wave of the eigenstates is determined by the
effective potential

lation are presented and briefly described. Then, in sub-
section 8, the use of energy panels is discussed. As we
shall see, it is not essential to use them, but they provide a
convenient way of increasing the accuracy and computa-
tional speed. The convergence properties and practical ac-
curacy to be expected from the band-structure scheme is

discussed in subsection C, while the k-space —integration
method is described in subsection D. Finally, in subsec-
tion E, the broadening of the spectra in order to account
for the finite lifetimes of the initial and final states is ex-
plained.

A. Overview of the calculation

The basic ingredient of any band-structure calculation
is the crystal potential. The one used in the present calcu-
lation for palladium is a non-self-consistent muffin-tin po-
tential constructed using the so-called Mattheiss prescrip-
tion (see Fig. 7). In general, the muffin-tin approxima-
tion is expected to introduce errors of the order of the po-
tential step at the muffin-tin radius, which in this case is
equal to 0.4 eV. This error can be neglected here since it
is much smaller than the linewidth of the states involved
in the x-ray-absorption process, which we are interested
in. From the muffin-tin potential one can obtain the crys-
tal potential functions following the procedure described
in Sec. III 0.

Although, in principle, the method can generate the
band structure over an arbitrarily large energy range, in
specific applications it may be convenient to subdivide the
total range into smaller overlapping energy panels and to
perform a separate calculation for each panel. The gen-
eral arguinents relating to the choice of energy panels are
discussed in subsection B. In the application presented in
this section, the range of energies of interest, which ex-

Vi(r) = V(r)+
I (1 +1)

r 2
(3.36)

(see Fig. 7). For large I values, the centrifugal term

l(l+1)lr confines the corresponding partial wave to the
outer region of the atom where V(r)=0. Since the centri-

fugal term is included exactly in the formalism, both the
pseudopotential I i and the overlap function b, i can be ap-
proximated by constants independent of K and K' for a
large energy range. This approximation represents an im-

portant simplification for the bands at high energies,
where large values of I are required. For free electrons,
both I i and b, i are identically zero for all I, so that the
method is exact in that limit.

0
LO
LX
LU

UJ

IV. PRACTICAL ASPECTS AND PERFORMANCE
OF THE SCHEME

In order to illustrate the practical features and perfor-
mance of the method developed in the preceding section,
here we present the details of the calculation of the vari-
ous x-ray spectra of palladium over an energy range of 10
Ry. Subsection A gives a cursory description of the entire
calculation; the input and output of each step of the calcu-

FIG. 7. Muffin-tin potential for palladium. The effective l-

dependent potential VI(r) = V(r)+l(l +1)/r is presented for
various values of l. The muffin-tin potential V(r) has a step of
0.03 Ry at the muffin-tin radius SMT not noticeable by the eye in
this scale. The energies are referred to the muffin-tin zero
Vp ———1.29 Ry.
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3'-.3 -, .I 8"((K,K')
l ws

—[ml (E,E') —1]

X K(K,K')I (4.2)

for 1=1, . . . , l,„and j=l, . . . , d, where d is the num-
ber of basis functions used in the solution of the secular
equation. Here 8'1(K,K') lws is given by (3.21) with
Bessel functions and logarithmic derivatives evaluated at
the signer-Seitz radius.

The result1ng energy bands along the h1gh-symmetry
directions are shown in Fig. 9 for the first two panels
Observe that in the low-energy region, between 0 and 1

Ry, the second panel is inappropriate because the 4d

tcllds f1oI11 0 to 10 Ry allovc tllc IllllfflI1-till zclo, llas been
subdivided into three panels. The relevant potential func-
tions used each panel are indicated in Fig. 8. The first
panel has been designed to accurately represent the states
which arise from or are affected by the 4d band, and it is
expected to yield the correct band structure over the range
from 0 to 3 Ry. The second panel is intended to cover the
energy range from 2 to 7 Ry, in which the band structure
is mainly determined by the 4f band; the main difference
is the use of the function c'd instead of cd so that the
second panel does not include the 4d bands. Also, since in
this energy region cs

' begins to depart appreciably from
free-electron behavior, it had to be included in the calcula-
tion. The third panel has been arranged, in a similar way,
to leave out both the 4d and 4f bands.

In each panel, the calculation was performed for 256 k
points in the irreducible « th wedge of the Brillouin zone.

For each value of k, on obtains the energies E for
j=1, . . . , d, and thequantities

~ws
g(k j)=f, d 'X l&1' ly-„, &l' (4.1)
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FIG. 9. Energy bands of fcc palladium for the first (pluses)
and second (squares) panels along the high-symmetry directions.
The energies are referred to the muffin-tin zero Vo ———1.29 Ry.

bands are missing. However, in the range from 2 to 4 Ry
the disagreement between the energies from the two panels
is smaller than 0.04 Ry (=0.5 CV). These discrepancies
are a direct measure of the errors in the energies of the
first panel due to the finite basis set; notice that, as expect-
ed from the use of the variational principle, the energies of
the second panel lie always lower than those of the first
onc.

From the quantities E- and Ql(k, j) one. can calculatekj
the total and partial densities of states given by

C 0

0 C ~
C ~

\ ~ X(E)=2 —g fd k5(E E-,)—
J

(4.3)

2 0 6 8 10 &2

K (Ry)
FIG. 8. Choice of energy panels. The crystal-potential func-

tions for palladium used in panels 1, 2, and 3 are shown (solid
lines). The functions e,' ' and e~

' (omitted for clarity) have been
employed in all three panels.

XI(E)=2 —— g Jd k QI(k,j)5(E E- ), (4.4)— .(2~)',
respectively, where the factor 2 "out front" comes from
the spin sum. These integrations have been carried out by
the method described in subsection 0, using an energy
step of 5 InRy for the first panel and 10 mRy for the oth-
er two panels. The first two panels of the function Nz(E)
are presented in Fig. 10. Notice that in the lou-energy re-
gion the second panel misses the structure due to the 4d
band. However, there is a range of energies from 1.5 to 4
Ry where thc dlscrcpancy between thc t&o panels 18 qu1tc
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2 3 4

ENERGY (R j
FIG. 10. First (solid line) and second (dashed line) panels of

t e =1 projected density of states for palladium. The energies
are referred to the muffin-tin zero V = —1.29 R .0= —

~

small. These discrepancies give an indication of the error
in the energy eigenvalues and in the / =1 part of the wave
functions.

that tw
Since one can (and should) always arrange th'ings so
a wo consecutive panels agree over a finite range of en-

ergies, the actual limits of each panel are not critical.
Probably the best way to choose them is by visual inspec-
tion of the results plotted as in Fig. 10. In the calculation
presented here the first panel was used from 0 to 3 Ry, the
second from 3 to 7 Ry, and the third for energies above 7

y. The resulting total and partial densities of states are
isp ayed in Fig. 11. We observe that these curves exhibit

strong departures from the free-electron form (cf. Fig. 1),
even several Ry above the Fermi level.

The calculation of the x-ray spectra has been discussed
in Sec. II A, and the results are displayed in Fig. 12. The
part of the spectra below EF is proportional to the x-ray-
emission intensity and that above Ez is proportional to the
x-ray-absorption coefficient [cf. Eqs. (3) and (4)]. The ab-
sorption part has been broadened to account for the finite
lifetime of the initial and final states in the manner
described in subsection E. These results have been also in-

Fmally, the emission spectrum or the absorption coeffi-
cient can be calculated using Eqs. (3) or (4). In Fig. 13 the
E-edge absorption coefficient has been presented together
with the experimental results of Lengeler.

B. Energy panels

The use of energy panels has been introduced not out of
necessity but rather as a matter of convenience. It would

ave been possible to perform the calculation described in
the preceding subsection with a single panel. To that end
one would have used the branches 5s, 5p, 4d, 4f, Sg, etc. ,
of the crystal potential functions. In order to sample
these functions from 0 to 10 Ry, one should have included
in the calculation all the reciprocal-lattice vectors with at
least

~

G
~

(17 Ry (see Fig. 8). The dimension of the
corresponding secular problem is, then, approximately
given by

20

(4m /3)G, „
(2 )3gII 9

+( ws max)

where Sws is the Wigner-Seitz radius and v is the number
of atoms in the primitive cell, of volume Q. In the present
case Sws ——2.87 bohr and v= 1 for fcc palladium, so that
at least 120 reciprocal lattice vectors would have been re-
quired. We observe in Fig. 8 that this number is deter-
mined by the presence of the narrow 4d and 4f bands.

We now consider the calculation described in the
preceding subsection, in which thr 1

lo ed. F
ree panes were em-

p oye . For the first panel, which extends from 0 to 3 R,is,„= y (see Fig. 8), so that, by the argument
presented above, the minimum dimension re uired f

to 7 R
quation is d&

——31. The second pan 1 t dne exen sup
o y but utilizes the 5d rather than the 4d branch of

the l =2 crystal potential function. Thus 6,„ is now
determined by the 4f crystal potential function, so that
one has Gm» ——11.5 Ry, which yields dz ——65. The third
panel does not include either the 4d or the 4f branches so

(4.5)

~D d

, p ~~~"P~W~ x0.2

E=O 2 4 6
ENERGY (R j

FIG. 11. To
(solid lines for

F . . tal and the I =0—4 projected densiti f' 'es o states
i ines) or palladium are shown together with the free-

electron total density of states N" (E) and the ro'an t e projected densi-
ies o states NI"(E), for the single-sphere problem (dashed

lines). The energies are referred to the Fermi level EF———0.80
Ry, and the units of the vertical axis are states p tes per a om per y.
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I I I I I I I I

d cIf df L, edge
pcl

0.01

~ xQ))
a

that at 10 Ry one has 6,„=12Ry, from w
'

3
——2 hich d =70.

The number of operations involved in a matrix diago-

that performing the calculation in three panels is compu-
tationally faster than using a single, larger panel.

Another reason for using panels is to improve the prac-
tical accuracy of the eigenvalues and eigenfunctions. For
a given state, the error introduced by the variationa prin-
ciple increases wi'th the number of lower-energy states in-

cluded in the calculation, and is therefore smallest or t e
first few bands included in each panel. This point is more
quantitatively discussed in the next subsection.

C. Convergence properties and practical accuracy

0.02-

0.01-

0.005—

0.002-

0.001

pd f

I I I I I I 'I I I I I

L, edge

The results of a convergence test of the method for the
energy bands of palladium, over an energy range of 10 Ry,
are ex i ite in ig.h'b' a ' F' 14 The test was carried out or a
single low-symmetry point in the Brillouin zone wit
Bloch vector k =(m/4a, ~l4a, 0), that is —,th of the dis-
tance along the line I"E, and only for a few eigenstates.
These were selected because they were particularly " a y

ehaved, " so that the conclusions of this subsection corre-
d to a "worst-case" situation. For the presentspon o a

ana ysis, e cl
'

th orrect energies will be taken to be
d' =160computed with a secular equation of dimension d =

E =0 5 10

ENERGY (Ry)
FIG. 12. K, L&, Mi, L2 M2, and M4 raw spectra for palladi-

d b th thin solid lines. The thick solid linesum are represente y e in
to account for t ehi ustra e e'll te the absorption spectra broadened to

are referred toinitial- and final-state linewidths. The energies are
the Fermi leve 1 E = —0 80 Ry and the units of the vertical axis

—Iare Ry

-- 6d

6f -9

g

IIIIII
I
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f-2

C)
2

CL
Q
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lJ)

~ 0
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ENERGY (eV)

FIG. 13. Calculated K-edge absorption coefficient of palladi-
um (continuous line) compared with the experimental results of
Lengeler (discrete line).

4d
. 5s,

1600 20 40 60 80 I 00 l 20 l40
NUMBER OF BASIS FUNCTIONS d

FIG. 14. Convergence test for palladium. The error in the
energies as a unction o er

' f th dimension d of the secular equation
ted for a selected (worst-case) set of eigenstates from t e

The eigenva ues orI f d= 160 have been taken as the correct ener-

gies and are represented by horizontal solid lines.
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and from the panel which gives the lowest values. These
correct energies are represented in Fig. 14 by horizontal
solid lines, RQd thc crrols arc given~ ln Rn cxpRndcd scale»
with respect to these reference lines.

We observe that the criterion (4.5) presented in the
preceding subsection for the minimum dimension of the
secular equation actually gives the minimum number of
I'cclprocRl"latflcc vectors required to obtaIQ reasonable I'c-

sults. According to that prescription the energies are
correct only to 15 mRy, and if one reduces the value of d
further they become quite wrong. On the other hand, in
order to obtain energies correct to within I mRy, one has
to take approximateiy twice as many basis functions.

Notice also how the presence of localized, and therefore
narrow, states tends to reduce the accuracy of higher-
energy bands with the same orbital symmetry. For in-
stance, with d=160 the 5d band of the first panel shown
in Fig. 14 is in error by 26 mRy, while in the second panel
the same band is accurate within 2 mRy with only 4=60.
It should be mentioned, with reference to Fig. 8, that in all
cases where the discrepancy between the energies from the
two different panels is appreciable (noticeable by eye), the
corresponding eigenstates have mostly l =2 character.

Thus we conclude that it is advantageous (faster and
more accurate) to compute the contribution to the band
structure from narrow bands in separate panels. In the
case of palladium, there are two nonoverlapping narrow
bands, the 4d and 4f, and so two special panels have been
chosen.

D. k-space integration

N((E) = g g((k„j)
cJ

~

7 „Eq(k, )
~

where the quantity Q~(k„j) is also evaluated at the center
of the microcell.

The contribution of each microcell can be expressed in
terms of the energies at the corners of the microcell, for
each band. For a tetrahedral microcell of volume V, this
contribution is given by

(4.8)

The density-of-states integral (4.3) can be conveniently
cxpI'csscd as

2Q g J dA
(4

~
V-E, (k )

~ E,.(P)=z
Dividing the irreducible part of the Brillouin zone into
microcells filling the entire region, the surface integral
(4.6) can be evaluated as

X(E)= A,~(E)
(4.7)

ej
~
V-„EJ(k, )

~

Here A,J(E) is the area of the surface of energy E inside

the cth microcell, and
~

V -EJ(k, )
~

is the magnitude of
k

the energy gradient at the center of the microcell for the
Jth band.

Similarly, the projected densities of states (4A) are given
by

A,J (E)

i V-„Ej(k,)
/

(E E( )~3V, Ei &E &E2
zj 31 41

(E Ei ) (E——Eg)

(E —E4)'
3y

(4.9)

where E~, E2, E3, and E4 are the corner energies arranged in increasing order and 6,J =E; —E&.
The simplest way to implement this scheme is by the interpolation approach: All quantities are calculated at the ver-

tices of the tetrahedra and labeled consecutively according to increasing value of the energy. In applying (4.9) one then
assumes that quantities with the same label belong to the same band. However, when two or more bands cross inside the
microcell, this procedure gives an incorrect assignment of the corner energies. In order to circumvent this difficulty, we
have used an extrapolation approach. The secular equation was diagonalized for a set of Bloch vectors k =k„defined
at the center of each tetrahedron, and the energies EJ(k; ) at the corners k; were obtained using perturbation theory as

EJ(k;)=EJ(k, )+(k;—k, ) g 2" .A, . H- -,(k ) —EJ(k ) O, (k )Kj K'j dl K K' J
dk K K'

K, K' k=k
C

(4.10)

where E~(k, ) and A . are the energy eigenvalues andKj
eigenvectors at the corner of the tetrahedron. Equation
(4.10) permits us to assign the band indices consistently to
the four corners of the tetrahedron.

Figure 15 shows a comparison of the interpolation and
extrapolation methods applied to the free-electron density
of states. Observe that the interpolation method produces
a spurious singularity at each band crossing. This effect
also occurs in crystalline solids at high energies where the
energy bands are rather free-electron-like. Another con-

I

venient feature of the extrapolation method is that each
tetrahedron contributes separately to the integral, i.e., one
does not have to store the eigenvalues and eigenfunctions.
On the other hand, the method is more time consuming
than the interpolation scheme because of the evaluation of
(4.10).

E. Lifetime broadening

» the discussion presented so far, both the core hole
and the excited electron produced in the photoabsorption
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TABLE II. Linewidths of the atomic energy levels for palla-
dium (in eV).
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FIG. 15. Comparison of the interpolation and extrapolation

k-space —integration methods for free-electron bands. The den-

sity of states of an empty lattice, with the lattice spacing of pal-
ladium, has been evaluated using 256 tetrahedrons in the irredu-
cible part of the Brillouin zone.

F—E
I c " F(E')dE'
271 —~ (E E')2+ —I

(4.11)

while that due to the final-state width I „(E),which is en-

ergy dependent, produces an additional broadening which
can be represented by

I „(E')F(E')dE'
F(E)—

277 —~ (E E')~+ —' I (E')2
(4.12)

For the core-hole linewidth there exist both theoretical
and experimental values which are in rather good agree-
ment. The ones used in this work are listed in Table II.
For the final-state width, rather few values have been re-
ported in the literature (either theoretical or experimental).
The 1„(E)utilized in this work has been estimated' by
interpolation from the available compilations.

process have been assumed to have an infinite lifetime,
and thus the initial and final energies of the electronic
transition have been taken to be sharp. This assumption
leads to the one-body spectra displayed in Fig. 12 (thin
lines) which exhibit a distinct structure which is a rapidly
varying function of energy. Experimentally it is found,
however, that the initial and final states do have finite
lifetimes. The core hole decays by radiative or Auger
electronic transitions from some occupied higher-energy
shells, while the excited electron loses energy by emitting
plasmons or creating electron-hole pairs until it falls to
the Fermi level. These finite lifetimes give to the initial
and final states a Lorentzian line shape which manifests
itself as a broadening of the spectra. This effect can be in-
corporated in the single-particle results by convoluting
them with a Lorentzian function of the corresponding
width. The broadening of the absorption spectrum due to
the core-hole width I, is given by

V. PHYSICAL INTERPRETATION
OF THE SPECTRA

The crucial result, proved in Appendix 8, is that one-
electron spectra due to core excitations factorize into
atomic and solid-state terms. The atomic term determines
the overall amplitude and shape of the spectra. It has a
rather smooth energy dependence (cf. Sec. IIC) and varies
rather weakly with the atomic number Z. By contrast, the
solid-state term has a rapidly varying energy dependence
which is characteristic of the ba,nd structure of the system
and which shows itself as oscillations about the atomic
term.

In Fig. 12 we present the raw spectra together with the
broadened absorption spectra for palladium. The spectra
having the same solid-state factor look very similar: the
E, LI, and M& spectra involve the p final states of the
conduction band; the L2, L3, M2, and M3 spectra involve
the d (and to a lesser extent, the s) final states; and the M&
and M& involve the f (and to a lesser extent, the p) final
states. Here we neglect the spin-orbit coupling of the
band states, which is expected to be negligible for palladi-
um and lighter elements. The L3, M3, and M5 spectra are
not shown in Fig. 12, since we find that I'L ——2.09FL,

3
' 2'

5FF~ and F~,——1.53FM, , the departures from

the statistical ratios of 2, 2, and 1.5, respectively, being
due to differences in the corresponding atomic factors.
Furthermore, the E, L I, and MI spectra, as well as the L2
and M2 spectra, are distinguished only by differences in
the atomic factor, the latter being more constant as a
function of energy for the deeper core states.

The band structure of palladium is dominated by two
narrow bands: the 4d band, which is mostly occupied, and
the 4f band, which lies about 25 eV above the Fermi level.
This last feature, namely the existence of a non-free-
electron 4f band far above the Fermi level, is the main
characteristic of the metals of the 4d row, which distin-
guish them from those of the 3d row. The physical origin
of this effect is illustrated in Fig. 7 where we show the ef-
fective potential Vl(r) = V(r)+l(l+ I)/r for the partial
waves of palladium. As a result of the competing effects
of the attractive electrostatic potential V(r) and of the
centrifugal term /(l+I)lr, the function Vf(r) becomes
rather flat for E-2 Ry, giving rise to a large effective
mass [cf. Eq. (3.28)] and to a large density of states Nf"(E)



(cf. Fig. 3) at that energy. The 4f band, which in the
rare-earth metals is known to give rise to sharp states near
the Fermi level, begins in the 4d series to "peel off" from
the continuum and to become a narrower band.

Many of the features of the band-structure results of
Fig. 11 can be explained in terms of hybridization between
the different n, l bands. In the presence of narrow bands, a
description in terms of canonical densities of states is
most appropriate. ' The canonical densities of states'
contain the full crystal-structure data but no information
on mixing between the different l components. For a nar-
row band the corresponding partial density of states is
essentially equal to the canonical one, almost unaffected
by the other n, l bands. The narrow band does, however,
affect all the other partial densities of states by means of
two mechanisms: (i) the lighter states (which usually have
an angular momentum I less than that of the narrow band}
are pushed away from the narrow band, producing a
suppression in the corresponding partial densities of
states, and (ii) all the other partial densities of states ex-
hibit a replica of the density of states of the narrow band.
This latter effect arises from the tails of the orbitals of the
narrow band centered in adjacent sites. Viewed from the
centI'31 atom, these tails have, in general, a finite projec-
tion on all values of the angular momentum, leading to
the above-mentioned structure.

In the case of palladium the 4d band lies between 0 and
—4.75 eV with respect to the Fermi level. This narrow
band gives rise to a large d density of states, a feature in-
dicated by d in Figs. 11 and 12. A replica of d can be seen
in all the other partial densities of states. There is also a
suppression of the s and p densities of states just above the
d feature. The states pushed away by the 4d band pile up
in a peak above the d suppression, which we have denoted

On the other hand, the 4f band is broader than the 4d
band and gives rise to weaker features, indicated by f in
Figs. 11 and 12. It interacts mostly with the 5d band, pro-
ducing a suppression in the d density of states. The d
states pushed away by the 4f band pile up in two peaks
denoted by df in Fig. 11. The replica of the f features can
be seen in the s and p densities of states followed by a

suppression due to the upper df peak.
Features in the solid-state term lying at higher energies

cannot be explained simply in these terms. There, it is
more appropriate to apply the EXAFS approach where
one thinks of the final-state wave functions as being local-
ized by the first few shells of the neighboring atoms.
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APPENDIX A: ATOMIC RYDBERG UNITS

The units in the atomic Rydberg system are composed
of various combinations of the charge ( —e} and the mass
mo of the electron and of Planck's constant A. They are
given as follows.

(i) The unit of mass is 2m0=1. 821906&&10 g.
(ii) The unit of charge is e/v 2=3.396411&&10 '0 esu.
(iii) The unit of length is ao=A' /e mo=5. 291772

g 10 cm.
(iv) The unit of energy is Ry=e /2ao ——2. 179914

X10 "erg =13.605823 eV.
(v) The unit of angular momentum is f2=1.054592

X 10 erg sec.

V(r) =2Z/r . (Al)

Notice also that the velocity of light is given by
c =2+ '=274.072, wher'e a is the fine-structure constant.

In this system. of units the energy of a free electron of
wave number k is given by E =k, and that of the static
Coulomb energy at a distance r of a nucleus of atomic
number Z is given by

APPENDIX 8: FACTORIZATION OF THE SPECTRUM INTO PROJECTED DENSITIES OF STATES
AND ENERGY-DEPENDENT MATRIX ELEMENTS

As a first step to deriving the factorized expression for the x-ray spectra we introduce l, j-projected densities of states
appropriate for the case of spin-orbit coupling. In this case it is convenient to write the crystal wave function in terms
of eigenfunctions

~
l,J,M ) of the total angular momentum J =L+ s as

pIJ(eIJ(E), r )(r )=4m g gAJ i F(* (E j)((ES) g p/(l, rn, o) ~l, J; m+o),
l, m p~(&~(&),& )

(81)

' 1/2J+2om+ 2
Pj—/+ f/2(lyplyo )—20

2I+1
where we notice that the crystal potential functions are also labeled by /, J. The wave function can be rewritten as

.(r )= g SEJM(k,j 'r)
~

I J,M )
1,J,M

(83)
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where the vectors
~

/, J,M ) contain all the angular and spin dependence, and t/tIIIII(k,j;r) is a spherically symmetric wave

function. Since HI/t-. =E-.I/t ., the function I/tlqM(kj;r) is a solution of the radial Pauli equation at the same energykj kj kj'
E-., that iskj

PIJJtr(k J''p) =txltsr(k JVu«k, . p)

where the normalization coefficients aII~(k,j) are connected to the amplitudes A byKcr
jI(ICS)

(k,j)=4~/' g ~' gP&(/, ~,~)l'I' ) .
K ~ t/t~(E, g)

K,o' k j
In this representation the new projected densities of states are given by

X~(E)= +ATE —E„.)g ~
(/, J,M ~y„.) ~'

kj ' ' kj
k,j

=&Au(E) & g@E—E-„.) g I
cIIJM(k j) I'

Mk,j
where in the integration we have again replaced the primitive cell by a sphere of radius Sws, so that

(@(E))=I dr r @(E,r) .

The contribution to the spectrum F,(E), which corresponds to a core state c =(n, /, J), is given by

F„I ~(E)=—/ 5(E E„}yj (—n, /, J,M,
~

r
~

I/t-„, ) )

'
k,j

tznM(k J)tel"J M-(ktj)kj 1',J',M',k,j

hatt

Jtt ~tt

&(g (E,I',J',M'
(
r

~
n, /, J,M). (n, /, J,M

~

r
~
E,/",J",M"),

(87)

where we have denoted
( E, /, J,M) =t/tlat(E)

~
/, J,M &. The M sum in (810) can be evaluated using Eq. (13 .1) of Condon

RIld Shortly to obtR1I1

l' J'= I'+1/2

F„IJ(E)= g —g (E,/', J'(r ~n, / J) e(J',J) +5(E E„)g ~ap—g~(k, j)
~

I J'=I'+Ir2 k,j
(E,I,J

~
r ( n, /, J) e(J,J ) +l'J' E

(Ppy, (E) ) 2J'+ 1

(E I J
i
I j t1 I J) 8(JJ ) [ I

(
1/J(J+1), J'=J

&4I J «) & (2J+3)/( J+1) J'=J+1
(813)

pl~«)=&A~(E)& '"I
are the reduced matrix elements of the Wigner-Seitz-Eckart theorem, and we have used the fact that

(2J'+1)6(J',J)=(2J+1)e(J,J') .

Therefore, one has

(814)

(815)

3 1 2J+ I 1

4 J ' ' J(J+1F.,AJ =I+In«) =
4

—
J pI I,~ I (E»i I,s-I«)+-pl+I z(E)/I/I+ I z(E)

2J+ I+ J
If wc llcglcct tllc spin-orb1t coupllllg, the Illtcglals pIJ(E) bccolrlc independent of J, tllc apploprlatc projcKtcd dcns1tlcs

of states are
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N (E)= N (E)I 2J+l 1J

and the spectrum (816) becomes

3 2J+1 Nt ~ )(E) 2 Nt t(E)

co
"' ' 2(21 +1) + 2l +3 21 —1

F—„,J(E)= (l +1)rt'+, (E) +lrt', (E)

(817)

(818)

APPENDIX C: SPECTRUM OF A SINGLE MUFFIN-TIN POTENTIAL

Here we discuss the x-ray spectrum for a core state c =(n, l,J) of a single muffin-tin potential confined in a sphere of
radius S embedded in a constant potential Vo. The corresponding final states are plane waves scattered by the central
potential. For the relativistic case, these can be written in terms of eigenfunctions

l

l', J',M') of the total angular

momentum J =L+ s as

Skl'J'M'(r ) Nl'J'«r)
l

l' J' M'& (C 1)

where PLt is a solution of the Pauli equation with the normalization (2.8). The dispersion relation E =k + Vo is deter-
mined by the free-electron character of the final states at large distances. The corresponding spectrum F„"tJ(E) is given

by

k dkF„"„(E—)=J, S(E —k'+ V, ) g g l (n, i,J,M
l
r

l
E,l', J',M') l'

3 "" 2~2 I',J',M' M
(C2)

=4~(2J+1)N (E)X X (E l' J'l r
l

n l J)'e(J J')
I' J' =I'+ 1 /2

(C3)

where we have again utilized Eq. (13 .1) of Condon and Shortley ' as well as (815). Notice that the atomic spectrum is
proportional to the free-electron density of states. Substituting the reduced matrix elements given by (813), we have

at =1 FE 2J+3 1 2J —1
n, , = 4Fn t I titty(E) =

4 (2J + 1)N (E) Mt+ i I+t(E)+ Mt+ t J(E)+ Mt i g i(E)J+1 J J+1 J (C4)

where

~~S
2Mt J(E)=4tr r dr/„tJ(r)rgt J(E,r) .

In the limit in which we neglect spin-orbit coupling for the final state, this reduces to

2J+1F„"tg(E)= — N" (E)[(1+1)Mt+,(E)+lMt, (E)] .

(C5)

(C6)
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