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Hindered and modulated rotations of adsorbed diatomic molecules: States and spectra
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%'e present results for the rotational states and spectra of adsorbed diatomic molecules whose ro-

tations are frustrated by the interaction with the substrate, for several solvable models of the in-

teraction potentials. For a vertical adsorption configuration, hindrance is modeled by constraining

the molecular motion via an infinite conical potential well. For a horizontal adsorption configura-
tion the infinite conical-well model as well as hindrance caused by a softer hindrance potential are
studied. For both hindrance models we study the effects caused by a modulation of the molecular

motion due to periodic azimuthal potentials dependent upon the adsorption site symmetry and other
characteristics of the adsorption system. A detailed analysis of the spectra as a function of the pa-
rarneters of the models is presented, allowing us to formulate a state classification scheme and draw

general conclusions with regard to the systematics of the spectra of frustrated rotations of adsorbed

diatomic molecules applicable to a wide class of potentials, which could guide the analysis and inter-

pretation of data.

I. INTRODUCTION

Knowledge of the eigenstates and spectra of physical
systems is a fundamental element in understanding their
physical properties, the nature of their interactions, and a
prerequisite for investigations of dynamical processes.
The interaction of atoms and molecules with solid sur-
faces is characterized by potentials and boundary condi-
tions which, depending on the particular solid and molec-
ular species involved and on ambient conditions (such as
temperature), can (and often do) alter significantly the
spectra of the separated systems. The recent development
and application of experimental techniques [such as high-
resolution electron-loss spectroscopy (HREELS), " surface
infra-red spectroscopy, surface neutron scattering mea-
surements, and laser-induced fluorescence "'] provide de-
tailed spectroscopic information about the vibrational and
rotational states of adsorption systems and the internal
states distributions of scattered, desor bed, or ejected
molecules. + ' Analysis of such spectroscopic data of ad-
sorption systems could yield information about the under-
lying substrate-adsorbate potential-energy surfaces, ad-
sorption configurations, and the nature of the adsorbate
motional degrees of freedom. Since at this stage of
development accurate knowledge about molecule-surface
interaction potential surfaces is rather sparse, it is fruitful
and timely to investigate simple soluble models which in-
corporate the essential physical elements, allow systematic
investigations, and permit understanding of the system in
terms of basic physical concepts. While in the present
study we explore the rotational states of molecules ad-
sorbed on solid surfaces, the concepts and method of
analysis which we introduce can be generalized in a rather
straightforward manner to investigations of the rotational

spectroscopy of diatomic molecules in solid matrices.
Motivated by the above considerations, we introduce in

this paper several exactly soluble models of the rotational
motion of an adsorbed diatomic molecule and analyze
their solutions in an attempt to demonstrate some of the
effects which the molecule-surface interaction could have
on the rotational spectrum of the admolecule. In the limit
of a weak interaction with the substrate (physisorption),
one expects free rotational motion of the molecule' (par-
ticularly on close-packed surfaces) while for stronger in-
teractions, hindrance (frustration) of the rotations is ex-
pected. ' The manner and degree in which the substrate
may influence the rotations of the admolecule will depend
on characteristics of the adsorption system potential sur-
face which, in turn, depends on the adsorption site local
symmetry and on the adsorbed molecule configuration. In
our study we consider the rotational motion of diatomic
molecules whose equilibrium adsorption configuration is
either vertical or horizontal with respect to the surface.
For the case of vertical adsorption we solve for the rota-
tional eigenstates and spectra of a molecule whose motion
is hindered by an infinite conical well and investigate the
changes in the rotational eigenstates as the degree of hin-
drance (opening angle of the conical well) is varied. For
an adsorption system where, in equilibrium, the internu-
clear axis of the admolecule is parallel to the surface we
consider two possible hindrance potentials: an infinite
conical well which restricts the molecule to a finite
volume and a "softer" hindrance potential which turns on
gradually as the molecule deviates from its equilibrium
configuration. In addition, for such horizontal adsorption
configurations we study the effect of periodic azimuthal
modulation of the rotational motion due to the local sym-
metry of the potential surface about the adsorption site.
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We present a detailed analysis of the hindered and/or
moldulated rotational states of the admolecule as a func-
tion of the model parameters (degrees of hindrance and
modulation, site geometry, and types of hindrance poten-
tials), w11lcll allows lls to 1cacll R stRlc classlf Ication
scheme and draw general conclusions with regard to the
systematics of the states as a function of the potential pa-
rameters which should hold for a wide class of potentials.
In addition we suggest a systematic prescription for the
extraction of the band structure associated with the
periodic azimuthal potential from experimental data.

A description of our models and their analytical solu-
tions are presented in Sec. II. Results of calculations
which demonstrate the spectroscopic consequences of our
model interaction potentials and a systematic classifica-
tion scheme for the corresponding admolecule rotational
states are adduced in Sec. III. The incorporation of these
results, and their consequences, in model calculations of
the internal state distributions of desorbed molecules have
bccll discussed by lls prcvlollsly fol' R ccrtatn clRss of oui
models and will be reported in detail in a planned subse-
quent publication.

II. MODELS AND SGI.UTIONS

1n Fig. 1 we illustrate schematically the constraints im-
posed by a solid surface upon the rotational motion of a
diatomic molecule chemisorbed eitheI vertically or hor-
izontally with respect to the surface plane. The primary
effects of the surface are those of hindering the motion of
the adsorbed molecule, or restricting the volume in which

z z

6

V=

(b) «««««««««««««««««««««~«z~~

the molecule rotates, and of possibly introducing a depen-
dence upon site local geometry via an azimuthal modula-
tion of the molecular motion (Fig. 2). The Schrodinger
equation for such rotations is given in spherical coordi-
nates by

1 I Ill v(v+1)
2I ' 2I

L (x,g)+ U(x, g) — f p(x, g)=0, (la)

82
L (x,p)—:Iri (1—xz) +

Bx Bx
(lb)

where x —=cos8, and l( „is normalized,

f dx I

U(x, g) = 8'(x)+ V( ) A'

(2)
1 —x'

From here on energies and potentials are in units of A /2I.
With U given by Eq. (2), the wave function can be fac-
tored as

g„„(x,g) =I'",(x)@„($), (3a)

where the functions 4„({t) and P",(x) are the solutions to

T11c polal Rllglc 8 ls defined wltll lcspcct to tllc outward
surface normal, the quantity I is the molecule's moment
of inertia with respect to its center of rotation, U is the
potential energy of interaction with the surface, and the
last term in Eq. (la) represents the energy in a form which
makes an obvious connection with the limit of free rota-
tions. The quantity p represents other quantum numbers
arising from the dependence of U upon the azimuthal an-
gle 0

In accordance with our stated objective of modeling the
system by a solvable model we express U in the unique
form which permits separation of variables:s

(c)

iK
1-X2 , +p' —&(P) @„(P)=0,

FIG. 1. (a) Schematic plctuI'e of molecular adsorption sys-
tems in which hindrance and/or modulation of the admolecule
motion may occur. The adsorbed diatomic molecules at the left
and center differ in their equilibrium adsorption configuration
(vertical and horizontal, respectively). (b) Schematics of the in-
finite cone-well hindrance model for vertical adsorption configu-
ration (U model). The molecular rotations are restricted to a con-
ical sector of opening polar angle u. (c) Schematic of the infinite
cone-well hindrance model for horizontal adsorption configura-
tion (h model). The molecular rotations are restricted to a coni-
cal sector defined by the angles a and P. (d) Schematic of the h2
hindrance model, for horizontal adsorption configuration. In
the figure x =cos8 where 8 is the polar angle measured from the
normal to the surface and the two curves correspond to the V{{{))
defined by Eq, (9) in the text.
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FIG. 2. Kronig-Penney azimuthal modulation potential [see

Eq. {9)].X is the symmetry number {periodicity), d is the height
of the modulation barrier, and y is the width of the barrier.
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and

(1—x )

+ v(v+1}——
2

—8'(x) P"„(x)=0 . (3c)
I —x

In the limit V~O, 4-e' ~, where m is an integer since
single valuedness dictates 4(tI})=4(P+2n. ), and Eq. (3c)
reduces to Legendre's equation for W=O.

We first model the hindrance of the molecular rotation
by constraining its motion about the polar angle to conical
volumes of rotation [see Figs. 1(b) and 1(c)]. The forms of
potentials W(x), see Eq. (2), corresponding to this model
of hindrance for vertical (i.e., U) and horizontal (i.e., h)
configurations of the adsorbed molecule are [using the an-

gle conventions in Figs. 1(b) and 1(c)]

P„(cosa)=0, (5a)

where m is an integer and P„denotes the regular solution
of Legendre's equation. The eigenfunctions obey

tP„(8,$)=&, (2m) ' P„(x)e' i'8(cos(a) x)—,

with'

(5b)

chemisorbed molecule, denoted by hz, is simply that of
neglecting the polar hindrance potential W(x) in Eq. (2)
(e.g., no conical well) while retaining a inodulating poten-
tial V(P) which as discussed above can serve as a hin-
drance of the polar motion.

In order to facilitate discussion of the physical proper-
ties of our model potential in Eq. (2} and the relation to
previous work, we first present the solutions of the U, h,
and h2 models. The eigenvalue equation of the U model is
given by

W„(x)—:lim C8(cos(a}—x),
C~ oo

Wt, (x)= lim C[8(x—cosa)+8(cos(P) —x)),
C—+oo

where 8(t) is defined as

(4a) A =—— P„,(cosP) P„(cosa)V+ Nl m (Sc)

The h model involves a geometry complementary to
that of the U model, as in Fig. 1(c), with the dispersion re-

lation of the eigenvalues obeying,

8(t)= lim —1+—1

s .+2 it I+~
The potentials 8'„(Ref. 6) and 8'I, describe infinite square
wells in the variable x, and a and P are opening angles of
the cone as defined in Fig. 1(c).

A few comments are in order regarding the form of the
potential in Eq. (2). The term V(P)/(1 —x ) has a
minimum for x =0 and diverges as

i
x

~

~1, as illustrated
in Fig. 1(d). We choose to include such a potential term
only for horizontally adsorbed molecules and we omit it in
our studies of the vertical adsorption configuration (i.e.,
p =m where m is an integer for the U model). As illustrat-
ed in Fig. 1(d), we can simulate the effects of hindrance by
choosing the magnitude of V(P) appropriately, since the
rotor does not penetrate readily into classically forbidden
regions.

Our second model of hindered rotation of a horizontally
I

L~(cosP) =P"„(cos a) Q"„( cosP)

—P"„(cosP) Q"„(cos a) =0, (6a)

f~(8,$) =B„&[P"„(cosa)Q"„(x)

Q"„(cosa—)P"(x )]4„(P),
B„~L„q(x)4„—(P),

where 4& represents the normalized eigenfunction of Eq.
(3b) [see Eq. (11) below] and the normalization factor B„&
satisfies

1/2

where the opening angles a and P are defined in Fig. 1(c),
p is the eigenvalue of Eq. (3b) [the solutions of our model
for V(P) are described in our Eqs. (8)—(11)], and Q"„
represents the irregular solution of Legendre's equation.
The corresponding eigenfunctions are given by

B„„:—(2v+ 1)P"„(cosP) [L,„(cosP)P"„(cosa)W,„] (6c)

with the Wronskian W„„defined by

W„„—:(1—x ) Q"„(x) P"„(x) P"„(x) Q"„(x)—, (6d)

and the respective eigenfunctions satisfy

lP„p(8,$)=C„pP„'"' (x)ep(y), (7b)

2 "I' 1+ — I (-,'(1+v+p, )]
+ i 1(1+v+ IS I)

I (1+v—~p ~
)

—1/2

(7c)

I [I+-, (v—p)]1 [-, (I+v —V )1
(6e)

v= ipi+n, n=0, 1,2, . . . , (7a)

The solutions of the h2 model, where we have no res-
trictive cone, are much simpler, since, for a given p, the
eigenvalues v obey

The choice of P"„,p &0, in Eq. (7b) derives from require-
ments of regularity at x = + 1; these requirements produce
the eigenvalue spectrum in Eq. (7a), which, therefore, is
seen to result from the boundary conditions in the same
way as the spectra for the U and h models [i.e., Eqs. (5a)
and (6a), respectively].

In our treatment of the azimuthal motion [see Eq. (3b)]
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we consider an adsorbed molecule bound at a site such
that the potential which the molecule feels due to the en-
vi«nment causes a periodic modulation of its motion.
Thus, for our II models,

V(P+n»)= V(P), »= 2n.I—N,
where n and N are integers, the latter characterizing the
rotational periodicity of the site (i.e., twofold, fourfold,
etc.). From the Floquet-Bloch theorem, and the property
of single valuedness [i.e., 4„(/+2') =4„(p)],we have

C„(P)=e' ~U„(P),

where m is an integer and U„(P+»)= U&(P).
From Eqs. (3b) and (8), it is clear that t:he azimuthal

Illotloll colTcspoIlds to that of 8 pgrtlclc IIlovlllg lI1 8 onc-
dimensional periodic potential with periodic boundary
conditions, which is a standard problem. Since we are in-
terested here in determining the physical effects of a
modulating potential, we model it by perhaps the simplest
such periodic potential, a Kronig-Penney model potential
(see Fig. 2) whose value in the nth unit cell is

V(P) = V, +6, »—y &P n«—»

= Vl, 0($—n»'(» y—
dcfllllllg tllc RZIIIllltllR1 orlgln, Rnd wc lct 5)0 (I.c., 8 bal-
rier of width y). Choosing 5=0, and VI&0 and setting
W(x) =0 in Eq. (2) corresponds to a horizontally adsorbed
Inolecule whose unmodulated motion is hindered in the
polar direction by the potential V, /(1 —x ) (i.e., the un-
modulated h2 model), while when W(x)=0, b,&0, and
V»0 the modulated h2 model is obtained. In our calcu-
lations of the modulated II model we set Vl ——0,5&0 and
hindrance is provided by Ws [see Eq. (4b)]. The eigen-
values of Eq. (3b) corresponding to the wave function in
Eq. (8b) are given by the transcendental equation

2cosm»= I(K —k )sin[k(» —y)]sinh(Ky)kE

+2kK cos[k (»—y)]cosh(Ky) j,

r~ = —F„(K,k)/Fq(K, —k), (1 le)

I~=«—y—)(1+ lrI I')

+—ReIr„e '""+r'sin[k(» —y)]j,2
(1 lh)

III =—G(K)+G( K), —

G(K) =yC(K)C*( —K)+ ' (1»—2x&)
2E

C(K)=r~A(K, k)+A(K, —k) .

(1 lj)

(1 lk)

Thc colTcspolldlllg qURIltitlcs fol k )Q cgn be derived
~«m Eqs (11)»mply by making the correspondence
K~iK, Rnd the complex-conjugate relation ln Eq. (lid)
holds as well for imaginary K. A general result for prob-
lems of this type is that the eigenvalues and eigenfunc-
tlons ln Eq (10) and (11) are independent of the absolute
value of the minimum potential, herc Vl. that is, they ln
volvc k =p —Vl ln oui' problem. Equations (6) gnd (7)
for the polar angle quantities, on the other hand, involve
k'+ V, .

Insight into the meaning of the term V(p)/( 1, —x2) cgn
be derived by treating a rigid diatomic molecule of inter-
nuclear sepal ation P' bound hor1zontallY a distance zo
above 8 solid plane, which, for simplicity, we first assume
to be isotropic for azimuthal motion. For smaH oscilla-
tions (small x) about one of the ends, the potential energy
of the admolecule can be expanded in smaH deviations
fl'onl flic cqu111brlum confllgUrRtloll,

d U(zo)U(zo+rx)= U(zo)+ — r x2 (12a)
ck

Fq(K, k)=A(K, —k)+A( —K, —k) —e' 'e' '. (llf)

The normalization factor S& is

~I =[N(I~+III)l '"
~here

E =6—k

k =P —Vl.

(1 la)@'„(P)=&„[r„f„(P)+f„*(P)],
f„(P)=exp(ikP), 0&/(» —y

=A (K,k)e ~+A ( K,k)e x&, » y(p (—, »—
(11c)

(1 lb)

A(K k)—= '~-'"& +' ' =A "(K' —k)2E

Equations (10) apply for k &5 (i.e., below the barrier).
The corresponding expression for k )6 can be derived by
lett1ng E~EE.

The corresponding wave fUQctlons take the form, 1Q the
first unit ceH, for k & 6,

r2 d2
U(zo) —— U(zo )

dz

d U(zo)

dz
(12b)

1 —x
The quantity r is the length of the molecule (assumed rig-
id here) and a similar, but more complicated, expression
results from considering an arbitrary point of support.
Equation (12b) derives from the expansion of (1—x2)
for small x . An expression identical to Eq. (128) was
treated by White and I.assettre for the study of ortho-
para H2 separation at solid surfaces. The relation between
Eq. (12b) gnd tllc model po'tclltlR1 lI1 Eq. (2) permits Us,
for small x, to interpret the constant potential term [e.g.,
V~ in Eqs. (9)—(11)] as a force constant governing polar
angle oscillations about the equilibrium configuration.
The inclusion of P-dependent potential terms in Eqs. (12)
would correspond to modulation of the azimuthal motion.
Within this interpretation, the (1—x )

' factor in Eqs. (2)
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and (12b) when x is allowed to take all values (
~

x
~

&1),
can be regarded as a simulation 'of hindrance of the polar
motion beyond the harmonic approximation.

In order to make a closer connection with the work of
White and Lassettre, we consider the eigenvalue spectrum
of Eq. (7a) for the case of V&&0 and no modulating po-
tential [i.e., 6=0 in Eq. (9)] so that p =m ~+ V, with I
an integer. Under these conditions, we have

v(v+I) —V~
——I +(2n+1)(V&+m )'~ +n(n+I) (13a)

—+ m +(2n +1)~V, +n (n +1) . (13b)
V) —+ oo

As V& ~0, v—+l, where I is the angular momentum of the
free rotor. Then since Eq. (7a) holds for arbitrary V&, we
can make the identification n =I —m. In the limit of
V~ —+oo, for fixed n, the energy spacings are those of a
plane rotor' [whose energy equals (R /2I)m ], as in pre-
vious work. For fixed m and n «~V~, the energy spac-
ings are those of a harmonic oscillator of force constant
fi V~/I, in agreement with Eq. (12a). Finally, we should

note, from Eq. (13a) that hindrance of the rotation persists
for all states even for small V~.

40

0 20 40 60 80 100
C (deg)

0 20 40 60 80

III. RESULTS AND DISCUSSION

For the analysis of experiments in which frustrated ro-
tation of an adsorbed molecule may be probed, it is of im-
portance to be able to interpret the measured spectra in
terms of models of the molecule's rotational potential en-
ergy. In this section, we first discuss the physical inter-
pretation of the energy spectra calculated for our various
hindrance models in the absence of modulation, and then
describe the effect of azimuthal modulation of the rota-
tional motion. In order to facilitate interpretation of ex-
perimental spectra, we emphasize, throughout the presen-
tation, discussion of those features of the calculated spec-
tra which are model independent, delineation of those
characteristics whose interpretations are unambiguous,
and discrimination of the effects of hindrance and azimu-
thal modulation.

In Fig. 3(a), we present results of calculations of the ro-
tational quantum number v as a function of the opening
angle a for the U model [i.e., see Fig. 1(b) for definitions of
our conventions] considered previously. From this fig-
ure, it is clear that increasing rotational hindrance (i.e., in-
creasing spatial localization) increases v (i.e., increases the
kinetic energy), in such a fashion that the order of the
displayed eigenvalues is maintained (i.e., there is no level
crossing) throughout the angular range presented (i.e.,
from constraint to a half-space to nearly complete frustra-
tion). The states for a=-m/2 (i.e., half-space constraint)
are just those free rotor solutions for which 1+m is odd
(i.e., only odd PI vanish on the midplane) and the evolu-
tion of these states with increasing frustration is iIlustrat-
ed. The azimuthal quantum number m is always con-
served for these states, but v is not an integer, except for
special cases. '"' Consideration of a larger hindrance an-
gular range and higher rotational quantum numbers than
those shown introduces complications (such as level cross-
ings). A fuller treatment of these features is presented
elsewhere. "

(0,5)

0 10 20

— (0,3)
(p ])30

FIG. 3. (a} Rotational quantum number v of a vertically hin-
dered rotor vs the cone opening angle a (U model). The four
lowest states are designated by the azimuthal quantum number
m. (b) The rotational quantum number v of an azimuthally un-
modulated, horizontally hindered rotor (h model) vs the cone
opening angle a (in degrees) with P=180'—a [see Fig. 1(c)].
The families of states are designated by (n, m) where n =I—m
and I is the rotation quantum number in the limit of a free rotor
(a=0). States in the first four families (n =0, 1,2, 3) are shown
with the azimuthal quantum numbers in each family taking the
sequential values 0, 1,2, . . . , in one to one correspondence to the
order of the energies (v} in each family. The convergence of the
states in each family, as the hindrance increases (increasing a),
to two-dimensional rotor states is shown and further exhibited in
the inset where the energy differences E—Eoo =v(v+ 1)
—voo(voo+ 1) vs a for a & 60' are displayed. A plane rotor spec-
trum is evident for the n =0 and 1 families. Note the rather
large range of a for which the planar rotor behavior is obtained.
(c) Energy differences E—Eoo vs V& {in units of R /2I) for the
unmodulated h2 hindrance model. States are designated by
{n=I—m, m) where I is the rotational quantum number in the
limit V~ ——0 (i.e., free rotor). States corresponding to different
n s belong to different families. The different families are dis-
tinguished by their asymptotic slopes [see also inset to (b)j. The
plane rotor spectrum, is manifested for a wide range of V~

values (larger range for the lower families).
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+q H =0,dHp
2 ~P

q:—v(v+1) —p + —,
' .

From the boundary conditions, H,„(+g)=0, yielding

H,„(p)o: sin[q (g+p)],

(14c)

q=(n+1)m/2$= — —,n=0, 1, . . . ,
(n +1)m
2 COSA

The solutions for H,&
are just those for a particle in an

infinite square well of width 2( and the eigenvalue spec-
trum is, for a =~/2,

E~p ——vip(v„~+ 1) E(n)+p

e(n)—:[(n + l)n. /2 cosa], n =0, 1,2, . . . .

Equations (15a) and (15b) clearly demonstrate the group-
ing into families, each of which is characterized by a
quantUID nUIIlbcI' n. The spcctluIIl %'1th1Il each fRIQ11y 1s
charactcr1zcd by p', thc cncI.gy of R plane rotor 1n R

periodic azimuthal potential [see Eq. (3b)]. The quantity
n is the number of zeros of P", in the range a & 8 & rr —a
(or g &p & —g). The number of nodes of a solution of Eq.
(3c), however, is invariant as we change a. This is,

Corresponding results for v for the symmetric A -model

[i.e., a=a —I3 in Fig. 1(b)] without azimuthal modulation
are illustrated in Fig. 3(b), where a runs the gamut from
nearly total hindrance (i.e., a=re/2) to free rotation (i.e.,
a=O); in all the h-model results presented, we set V~ ——0
in Eqs. (9) and (10c). As in our previous discussion, the
Iotatlonal quantuIIl nuI11bcrs 1ncI'case w1th 1ncI casing spa"
tial localization. For intermediate values of a, the levels

change their order from that of the free rotor and the
separation of the levels into families as u~m/2 is clear,
where all members of a family correspond to a common
value of I —m (i.e., v~l as a~O), and the energies of the
families have the same order as the values of I —m. Each
family comprises the spectrum of the plane rotor, which
can be appreciated from the inset in Fig. 3(b), where we

plot the energy difference E Eoo=—v(v+ I )—voo(voo+ I)
in the region of a & ~/3 for the lowest two families and

voo characterizes the ground state. The m free plane ro-
tor spectrum is obvious.

In order to motivate our discussion of the spectra classi-
fication scheme we examine the behavior of the h model
as a—+m/2. Transformation of the differential equation
(3c) [with IV= IVq in Eq. (4b)] to one involving angles
defined from the midplane, p =n/2 8, .

g
—=—m/2

—a =P—m/2 (i.e., symmetric cone), and H„„(p)
&cospP"„—(cos8) yields

d H,„(p) + v(v+1) — -+ —,+ —,tan p H,„(p)=0 .
dp cos p

(14a)

In our region of interest, p =0 and / =0, so that
v(v+1) »p /cos p=p » tan p=p, permitting us to
wr1tc

perhaps, most clearly seen fron Eq. (14a), which has the
form of a one-dimensional Schrodinger equation where p
is interpreted as a potential parameter. For a fixed p the
sequential order of the eigenvalues, v(v+1), is the same as
that of the number of nodes (see Sturm's first comparison
theorem ) independent of the value of a [even though the
order of states corresponding to different IM may change,
as in Fig. 3(b)]; this ordering is, of course, reflected in
Eqs. (15a) and (15b). Therefore, we can classify the states
by the values of p and n for all values of the opening an-
gle a. In the absence of modulaton and in the free rotor
limit (a=O), n=l —m, so that we can characterize the
states by the quantum numbers m and n, and, for a =@/2,
we have in the absence of modulation,

2
7T(l —m + 1 ) 2 ] (15 )

2 cosA'

which corresponds to Fig. 3(b).
The partitioning of the energy in Eq. (15a) into the sum

of a plane rotor (1.e., p ) term and a term dependent upon
the number of nodes signifies the approximate separation
of the motion into rotation in the midplane and motion
independent of m in the polar direction (an approximation
which becomes exact as a~a/2). The kinetic energy of
this 8 motion is a function of the number of nodes (num-
ber of oscillations for a g 8 ~ m —a) and the boundary
conditions (as embodied in a). From the generality of our
arguments, we expect a similar separation, in the h model,
of the motion for a=@/2 into independent degrees of
freedom (i.e., motions within and perpendicular to the
midplane) even if we admit: nonsingular potentials depen-
dent only on cos8. Therefore, the grouping of the spec-
trum into families which are distinguished by the number
of nodes n and each of which comprises the full spectrum
of plane rotation (i.e., full spectrum of p ) as a~a./2 is
expected to be general for the boundary conditions incor-
porated in the h model.

Interpretation of these results in terms of the degree of
rotational frustration would indicate separation of the
motion into the same independent degrees of freedom for
any potential IV(cos8) [see Eq. (3c)] which severely
hinders the rotation in the polar direction. For different
hindering potentials, however, one expects a different ex-
pression for the n-dependent energy in Eq. (15b):
nevertheless, the form of Eq. (15a) is expected to be gen-
erally valid for any potential which causes severe hin-
drance. This point is clearly illustrated in Fig. 3(c), where
we present results for Z„~ E~ vs VI [see Eqs. (—13)] for
the unmodulated h2 model (i.e., the hindrance is incor-
porated in the potential V~/sin 8 as in the discussion of
Eqs. (12) and the notation is clear from our discussion of
Eqs. (15)]. The plane rotor m spectrum for large V~ is
clearly manifested. The spectrum in Fig. 3(c) is described
by Eqs. (13), which demonstrate the separation (as
V~~oo) into independent degrees of freedom [as in Eq.
(15a) for the h model], the dependence upon n =I —m,
and the sensitivity of the exact form of e(n) to the form of
the potential. Additional analysis of this model is given in
the discussion following Eqs. (13) and we would like to
point out the validity of the foregoing points even when
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we consider azimuthal modulation of the potential energy
l.c., p+m, Rll Integer), 111 allalogy wltll oui dlscusslon of

Fig. 3(b).

A. Azimuthal modulation

The effects of azimuthal modulation [ E (2)
] are presented in Figs. 4—9. In order to make close

connection with experimentally measured energy dif-
ferences, we present plots of E E —[i—=v (v 1 i=&IIII &II@+ )j IIl Figs. 5 Rnd 7 9. To facllltatc cxtl'ac-
tion of absolute energies, we give in Fig. 4 the ground-
state rotational quantum numbers voo for f f ld d

E. (8a f
od azimuthal symmetries [%=4 and 6 t' 1, '

q. a)j or both the h and h2 models for the azimuthal
potential parameters we use in Figs. 5—9 I F'n lgs.

(d)—4(f) and in Fig. 9, in which results for the hz model
are displayed, we have chosen to exhibit our results for the
energies, versus the variable rI—= tan '(V' ). This h

'

allows
1S C O1CC

a ows us to show results for all values of Vl (Vl ——0 and
ao correspond to II =0 and Irf2, respectively), and thus af-
or irect comparison with the corresponding results for

e infinite cone-well hindrance model (the h model,

where a=O and Irf2 correspond to absence and infinite
indrance, respectively) shown in Figs. 5(a)—5(d) and 8.

The choice of the specific form f th d f' ' '0 c c lnltlon of ls
motivated to ive cg' comparable energy differences
E„„Ez—&) in the limit of strong hindrance for the h and

h2 models [see Eqs. (13) and (15)].
In Figs. 5(a)—5(d) we present E E—f hoo oI' t c A model

with symmetry number Ã =4 barri 'd harrier wi t parameter
y=e 3 and VI ——0, as a function of a fo b

'
h

'I' Rrrlcr clg ts
=0 (i.e., no modulation) 5 20 and 40 The Rt ls, pI'ogrcs-

slvcly strongcI' azimuthal potcntlals. In each panel, a
ixe number of the lowest-energy states is dis la ed. Th

p azimuthal energies (p ) of increasing 6 [ob-
ained by solving Eq. (10a)] is illustrated in Fig. 6 where

we display k [=p here since Vl ——0, see Eq. (10c)] as a
function of m in the reduced zone sch (', dsc erne i.e., modulus a
multiple of Xi2) for E =4 and 6. N t hn . ote t e progressively
grcRtcl bandlIlg Rnd spllttlIlg fol' m =2,4, 6, . . . , w cI1
%=4(ie., m=369 . . . " — '

e~ ~ y
m:

y y p ~ ~ p wL cll X:6) as wc lllcrcasc flic
height of the barrier h.

The bandin sh
'

g shown in Flg. 6 is clearly reflected in the
energies displayed in Fig. 5. Th' b dis an mg is reflected

10

10-

80 0 80

FIG. 4. Rotationtiona1 quantum numbers v for the ground states of the h ~i.e. (a)—c a
angles o, and q

—= tan '( V' "
) in d

&
", 'n egrees, respectively, for various azimuthal modulation barrier h

'
s R cs 0 I c [I.c., (R)—(c)] alld III [I.c., (d)—(f)] lllndrallcc moIlcl tllesvs e

e ex i i e in a 1 (
' '

parameters y=e/3 and y=2e/3 corre-e ex i i e in a, 1, (d), and (e) vnth barrier width ara
pec ive y. c an display sixfold symmetry results with y =e/3.
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FIG. 5. Effect of azimuthal modulation on the energy differences E—Eoo (in units of A' /2I) for horizontally hindered rotors (II

model) of symmetry numbers N =4 [i.e., (a)—(d)j and %=6 [i.e., (e)—(h}]. In all calculations V~ ——0 and the barrier width y=e/3.
The unmodulated spectra are shown in panels (a) and (e) and spectra for successively larger modulation barriers are shown as follows:
6=5 1n (b) snd (f)' 6=20 1n (c) and (g)' SIld 6=40 ln (d) and (h). In each case thc (Ps Pl) dcslgnatlon fol' thc Pl =0 faIHlly ls shown
with m being the azimuthal quantum number in the limit of vanishing modulation. The convergence of states into bands upon in-

creasing modulation strength is clearly seen. The band gaps duc to the periodic azimuthal modulation (see Fig. 6) are indicated by
curly bI'ackcts on tllc right of each panel along w1th thc COI'I'cspondlng fPl quantuIIl nuIBbc1s. FOI lal'gc hlnd1ancc (G) and In the ab-
sence of modulation the states within each family exhibit a plane mtor spectrum [shown clearly in the n =0 families in panels (a) and
(e)]. In the presence of modulation and for large hindrance the separation between consecutive states (in each family) obey Eqs. (16).
States belonging to the n =1 and 2 families are indicated in (d) and (h).

within each of the families discussed earlier. The limiting
form in Eq. (15a) describes the energies in the high-a re-

gime. It is interesting to observe from Fig. 5 that this
form is valid over a larger range of hindrance angles than
one might expect from the derivation of Eq. (15a},which
indicates that the separation into independent degrees of
freedom discussed in connection with Eqs. (15) (one in-
volving only n and the other only p), is valid over a rather
large range of hindrance angles a. Note that the size of
the angular range of validity of Eq. (15a) decreases with
increasing energy. In this angular range, the energy

ln particular ~

Eo„—Eoo =P —Po=k —ko2 2 — 2 2

%'h[ere po and ko correspond to the 10%vest band energy.
The energy difference of states of different n diverges as
rx~7r/2, of course.

(16b)

difference of two states characterized by the same value of
n (i.e., belonging to the same family} is

(16a)
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FIG. 6. Band structure (k vs m) corresponding to the Kronig-Penney periodic azimuthal modulation potential (see Fig. 2) for
fourfold and sixfold periodicities [X=4 in (a)—(d) and X =6 in (e)—(h), respectively], in the absence of modulation [(a) and (e)] and
foI' lncreaslng barner heights: 6=10 1n (b) and (f); 5=20 1n (c) arid (g) and 5=40 1n (d) and (h). In 811 calculations V] ——0 and

y =e/3. The reduced zone scheme is used; m =2 and 3 are the first Brillouin-zone edges for E=4 and 6, respectively. The values of
k were obtained via solution of Eq. (108) and are denoted by circles. The numbers alongside the circles give the value of m (i.e., ex-
tended zone scheme) to which p corresponds. Note the opening of band gaps at the Brillouin-zone edges which become wider along
with a flattening of the dispersion upon increasing modulation barrier height A.

and

E„q—Eon ——k —k o+ (2n + 1)k kc+ n (n +—1),

Ec„Eco——k ——ko+(k —ko) .

(17b)

(17c)

In the unhindered (a =-0 and Vt ——0) limits of the h and
h2 models, the energies can be calculated from Eq. (7a).
The equations corresponding to Eqs. (16) are in this case

E.„E.„,=l 2 I f+(2—n+1)(} 2
——

) t)

It Is evident from Flg. 5 that thc variation in thc plotted
energy differences for the n =0 family is slow across the
whole range of hindering cone angle a; if we could, there-
fore, isolate the contribution of this family to the experi-
mentaI spectra, wc could expect to be able to extract the
azimuthal band structure (k spectrum) by some interpo-
lation technique. In either of the limiting regimes dis-
cussed above, our program of azimuthal band-structure
extraction should proceed without serious complications.
In the intermediate angular (hindrance) regime, however,
isolation of the n =0 family is complicated by the pres-
ence of levels corresponding to nonzero values of n: that
is, level crossing. In fact, the seeming slope discontinui-
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FIG. 7. Energy differences E —Eoo (in units of A /21) for the horizontally modulated hindered rotation model (h model) as a func-

tion of the azimuthal modulation barrier height 6 in the absence of hindrance la=0) in (a) and for increasing hindrance [a=20, 45,
60, 70, and 85, in degrees, corresponding to panels (b)—(f), respectively] for fourfold periodicity (X =4). In all calculatons V&

——0 and

y =e/3. The different families in the spectra are indicated by their n values. The m values for the n =0 family are shown in (a) and
(f). The grouping of the states into well-defined bands upon increasing modulation strength is evident. The range of 6 s for which a
clear separation of bands is possible increases upon increasing hindrance strength. The increase in the energies of states belonging to
n&0 families is exhibited.

ties of the energies in Fig. 5 arise because, for graphical
simplicity, we consider a fixed number of lowest energy
states for each a: level crossing produces the appearance
of discontinuities in the slope.

The effect of increasing the barrier width y is to in-
crease the energies of the states. For a given value of y,
increasing the barrier height 6 can increase the number of
bound states which the well can support [k & 6, see Eq.
(10)] and for these states the bands become narrower and
the band gaps wider. Note, however, that for the unbound
part of the spectrum (k ~ 6) the above rule is not neces-
sarily obeyed.

We should note that the spectrum becomes progressive-
ly simpler as the band effects become stronger [e.g., com-
pare Figs. 5(a) and 5(d)]. This effect is clearly manifested
in Fig. 7, where we present E„&—E~ for the h model,
X =4 and y=e/3 as a. function of 6 for different values
of a. The spectrum simplifies for large modulating poten-
tials (large 5,), and in the extreme limits of hindrance
[a—+0, Fig. 7(a) and o;~~/2, Fig. 7(f)]. For these situa-
tions, we expect to be able to extract information regard-
ing the azimuthal motion without major difficulties.
Even in the regime of intermediate hindrance and inter-

mediate azimuthal band-structure effects, it is possible to
use these systematics to formulate a prescription for data
analysis. We postpone discussions of the procedure until
the end of this section.

An illustration of the azimuthal band-structure effects
observable in the spectrum is given in Fig. 7(f), which cor-
responds to +=85' (i.e., high hindrance). As we increase
6 the opening of gaps at the Brillouin-zone boundaries
(i.e., even values of m for N =4) is evident. As we de-
crease a (i.e., lower the degree of hindrance), we see that
the higher energy states are the first to exhibit the compli-
cations produced by level crossing for intermediate values
of h. Note, for example, that the levels of the lowest band
retain their simplicity at least until a =4S .

Another clear feature of Fig. 7 is the behavior of the
families corresponding to different n with increased hin-
drance (increasing a). As we increase a, the n&0 bands
rise with respect to the others, until, in Fig. 7(c), the n =2
band is the highest band [i.e., compare with Fig. 5(e)].
With further increase of a, the n&0 bands rise even more,
until, for +=60', the n =2 band has risen above a third
n =0 band, and the n =1 band has become the third
highest in Fig. 7(d). At 70, only n =0 bands appear in
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FIG. 8. Energy differences E—Eoo for the horizontally modulated hindered rotation model {h model) as a function of the azjmu-
thal modulation barrier height 6 for sixfold periodicity (X=6). See caption to Fig. 7.

Fig. 7(e); also see Eqs. (15).
Figures 5(e)—5(h) and 8 correspond to Figs. 5(a)—(5(d)

and 7, respectively, for the h model, where the azimuthal
modulating potential possesses a sixfold symmetry (i.e.,
N =6). Except for such details as the position of the Bril-
louin zone edge (i.e., the gaps occur at multiples of 3 in
this case), the discussion of Figs. 5 and 7 is adequate to
describe these spectra.

Finally, in Fig. 9, we present E„&—Eoo for the h2 model
for N =4 and y =a/3. In Figs. 9(a)—9(c) we show results

1/4for the energy differences versus r) =—tan ( Vi ) for
azimuthal barrier heights 6=0, 10, and 40, respectively,
while results plotted versus the modulation barrier height

for selected values (0, 10, and 1000 or r) =0',
60', and 80', respectively) of V& (which controls the de-
gree of hindrance) are shown in Figs. 9(d)—9(e). The re-
sults in Figs. 9(a) and 9(c) correspond to Figs. 5(a) and
5(d) for the other hindrance model (h model), respectively.
The results shown in Figs. 9(d) and 9(e) for intermediate
and large values of V& correspond, respectively, to the re-
sults for intermediate values of a which controls the de-
gree of hindrance in the h model, shown in Figs. 7(c) and
7(d).

In the unhindered, or V& ——0, limit of the h2 model, the
energies are given by Eqs. (17). We can write the exact ex-
pressions for the energy for this model for general Vi.
From Eqs. (7a) and (10c), we have

E„„E„„=k2——k i+(2n + l)(p~ —pi),
p;=(Vi+k )'",

(18a)

(18b)

(18d)

E„„Err,——k —ko+(—2n+1)p po+n—(n+1), (18c)
2

Eop —Eoo =k2 —ko+p —po .

The quantity po represents the lowest m =0 band state.
In the limit V&~oo, the energy differences are identical
to those corresponding to the h model for a~rr/2 given
in Eqs. (16), illustrating the separation into independent
degrees of freedom [i.e., see the discussion of Fig. 3(c)].

In Fig. 9, we observe the same systematics as discussed
in connection with Fig. 5. In particular, it is shown that
the energy differences between states of a given n family
have identical forms for the h and h2 models in the unhin-
dered and high hindrance limits. Furthermore, the varia-
tion of these energy differences due to varying the degree
of hindrance is smooth. Although the variation is slowest
(i.e., almost constant) for the n =0 family, it is still quite
slow for the low n&0 families.

From the similarity of these systematics of the h and h2
models, which correspond to different hindering poten-
tials, we expect them to be general for any separable
hindering potential. For motives of data analysis, there-
fore, it is sufficient to utilize Eqs. (18) to represent the
variation with frustration (even though the energies in the



UZI I.ANDMAN et aI.

(),2)
(1,1)
(&,0)
(0,2)
(0,1)

~2,2)
(e) ~'(2 q)

(2,0)
===---==(o.4)

N o.")
0,2)

(&,2)
1G $-=-—--==' (i, i)

(1,0)
V, =1G

G

4G
=1GGG

~c~ISIS~QPJgfQ RL

4G

FIG. 9. (a)—(c) Energy differences E —Boo (in Units of A'/2I) fcr the A, hindrance model vs q =tan-'( V,'") (in degrees) in the ab-

sence of azimuthal modulation [6=0 in (R)] Rud for intermediate Rud large modulation barrier heights [6=10Rnd 40 in (b) Rnd (c),
rcspcctlvcly]. Dlffcrcnt fanllllcs Rlc 1IldlcRtcd RIll tllc PI dcslguatloll of states 111 t11c II =0 fRmlly Is glvcll. Thc slm11Rrlty of 'tllc spec-
tra to those shown in Fig. 5 (corresponding to the h hindrance model) is evident. (d)—(f) Energy differences E —E~ for the h2 hin-

drance model vs modulation strength 5 in the absence [Vl =0 in (d)] Rnd for intermediate [Vl ——-10 in (e)] Rnd high [V~ ——1000 in (f)]
values of the hindering parameter V[ of the A2 model. The classification of the states by (n, m) is indicated on the right of each
panel. Note the sirr[ilarity of the behavior of the spectra with increasing hindrance ( Vl ) to those in Fig. 7 for the h hindrance model.

h model could be. parametlized from, for example, Figs. 5
Rnd 7).

From these conslderRtIQns~ %'c cRQ sUggcst 8 prcscAp"
tion for data analysis.

(a) A complete assignment of the states and analysis in
terms of model potentials requires a large data base.
Without informRtion regRrding the energies of the n&0
fRII1111cs, 1t 1s not possible, 1n gcnc181, to UQRmbiguouslp
clctclD1ine both the b8nd structure RncI thc hindering po™
tentiRl.

(b) Determination of the site symmetry (i.e., N) should
be made via independent experiments (such as low-energy
clcctloIl dlffrRctlon~ high resolution v1brRt1QQRl EELS, Qr

other methods). In principle, in the presence of strong
band effects the site symmetry may be determined {as in
Figs. 5 and 7—9).

(c) Parametrization of the energy differences; as we

have discussed, Eqs. (18} provide an adequate parametri-

zation in the absence of independent information concern-
1ng thc h]tndcnng potcIlt18l.

(d) Determination of the hindrance-modulation regime:
(i) If the experimental spectrum displays' well-

scpRrRtcd bRBds, wc Rrc 1Q thc scvcrc hlndI'Rncc Icglnlc
and the band struture (i.e., p ) can be extracted without
difficulty (although exact determination of the hindering
potential is not possible).

(ii) If, on the other hand, the spectra manifest well-
dcf1Ilcd bRnds, Rll Qf which Rrc Qot ncccssRnlg clcRQlp
separated, as in the intermediate range in Figs. 5(c) and
5{f),for example, we have the strong azimuthal band effect
regime [there is obviously an overlap between regimes (i}
and (ii)j. In this regime, assignment of the values of n is
strRightforvvRrd Rnd thc cIRtR cRQ be RQRlpzcd fI'QII1 thc
consistency relations embodied in Eqs. (18).

(iii) The intermediate regime (moderate hindrance and
modulation) is the most difficult to analyze because the
spcctl 8 px'cscnt nc]tthcr %veil-clef lncd bRnds QQI vvcll-
scpRI'Rtcd 11ncs. IQ th1s cRsc, 1t ls neccss8~ to tcntRtivclp
identify the n values to which the spectra correspond, with
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the aid of the systematics exhibited in Figs. 5—9. The
lowest n =0 and 1 bands, for example, must be consistent-
ly related, as in Eqs. (18). The resulting parameter values
must obey Eq. (18c) for the lowest n =2 band. If this fi-
nal step is violated, the n values of the spectra must be
reassigned. This discussion clarifies the reason for
Ineasuring as many n&0 spectra as possible.

We have studied the rotational states of an admolecule
for different adsorption configurations and for different
types and degrees of hindrance and azimuthal modulation
of the molecular motion. For a molecule whose equilibri-
um adsorption configuration is parallel to the surface, we
have considered an infinite conical-well hindrance (the h

model) and a hindering potential which prevents the mole-
cule from assuming a vertical configuration in a gradual
manner (the h2 model). In addition to the above hin-
dI'ance models of IIlotlon 1n thc polar angle dlrcct1on, wc
investigated an azimuthal modulation of the molecular
IIlotlon %1th a pcrlodIclty dcpcndcnt upon th.c adsorption
site local symmetry. In the case of a molecule bound to
the surface in a vertical equilibrium configuration (the u

model) only tllc IIlflnttc colic-well hlndrallcc was coII-
s1dcrcd.

Common to all the model systems which wc have stud-
ied is the raising of the energy of the rotational states due
to hindrance and/or modulation potentials which act to
spatially confine the system. Examination of the solution
for the h model in the regime of strong hindrance led us
to a classification of the rotational states of the system in
terms of quantum numbers n and p where n is the number
of zeros of the wave function P",(cos8) for the polar
motion and p characterizes the azimuthal motion of the
rotor. For an unhindered rotor v —+I and in the absence of
modulation p~m such that n =I —m. The partitioning
of the rotational energy into contributions from the polar
motion (characterized by n) and planar rotation (charac-
terized by p), which becomes exact for large hindrance, is
shown to hold for any potential which introduces severe
frustration. This separation forms the basis for the gen-
eral classification scheme in which the quotational states
alc grouped according to n and &Ithln each gI'oup cxh1blt
a manifold of states characterized by p. This classifica-

tion scheme allows us to correlate states beta'een the limits
of weak and strong hindrance.

Effects due to azimuthal modulation of ihe
admolecule's motion were studied by us via a simple
Kronig-Penney potcntlal model Which posscsscs thc ad-
sorption site symmetry (i.e., dependent upon the substrate
atomic arrangement 1n thc v1cln1ty of thc adsorbed mole-
cule). In this model the index p is a solution to a charac-
teristic transcendental equation [Eq. (10)] which depends
on the potential parameters [the base potential VI, height
aIId width of thc barrters (5 aIId y, respccftvcly) and thc
symmetry number X (see Fig. 2)]. The solutions of Eq.
(10) provide the azimuthal rotation band structure (see
Fig. 6). We observed banding of the rotational states, for
hindered rotors, which occurs vvithin each of the spectral
families (indexed by n) and is pronounced over a range of
hindrance and modulation strengths (in the limit of large
modulation barriers the solution for a particle in an infin-
ite square well of width 2y is reached).

The generality of our arguments concerning the effects
of the hindering potential and the periodic azimuthal
modulation as well as the similarity of the numerical re-
sults foI' the model hindcnng potcnt1als %'c cons1 der
(which differ in the manner in which they influence the
molecular motion), lead us to believe that the overall
characteristics, the classification scheme, and the spectro-
scopic consequences of our models will be manifested in
1nvcstlgat1ons cIIlploy1ng morc claboratc 1ntcI'action poten-
tials (when available).

Based on thc above obscl vat1ons wc suggest a data"
seduction scheme, summarized at the end of Sec. III,
which could be used for the classification and analysis of
future experimental data and provide guidelines for the
extraction of information about the character of the ad-
molecule motion and the degree of its hindrance and
modulation by the interaction ~ith the substrate.
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