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The embedded-cluster method is used to calculate the density of states (DOS) of nonrandom sub-
stitutionally disordered alloys. This method is based on the calculation of the Green’s function for a
cluster of atoms embedded in an effective medium. The effect of increasing cluster size as well as
of different choices of the effective medium is investigated numerically in terms of one-dimensional
alloys with various scattering strengths and degrees of short-range-order (SRO). A method for the
self-consistent treatment of SRO in terms of the pair distribution function is proposed and in many
cases is found to lead to results in much better agreement with exact DOS’s than those obtained

when SRO is not treated self-consistently.

I. INTRODUCTION

The introduction and application of the coherent-
potential approximation? (CPA) has increased greatly
our understanding of disordered systems, particularly of
random, substitutionally disordered alloys. In these al-
loys, atoms of various species are randomly distributed
over the N sites of a regular lattice. The CPA provides
the most satisfactory prescription for the calculation of
the site-diagonal element of the Green’s-function operator,
and hence for the calculation of the one-particle properties
of these systems within a single-site approximation. In
the CPA, one considers that the real, disordered material
is replaced by a self-consistently determined effective
medium which is characterized by an energy-dependent
site-diagonal self-energy, and which preserves all sym-
metries of the lattice. The CPA yields unique and analyt-
ic results, i.e., densities of states (DOS’s) and momentum
spectral weight functions that are non-negative and satisfy
fundamental sum rules. There exist several reviews of the
CPA (Refs. 3—5) both for systems describable by tight-
binding® (TB) and muffin-tin** (MT) Hamiltonians.

In spite of its many desirable properties, however, the
CPA possesses several limitations. The most important
among these are the following: (i) the CPA is applicable
only to random substitutionally disordered alloys and can-
not account for the effects of short-range order (SRO)
which is known to be present in many disordered systems,
and (ii) the CPA cannot treat the effects of many-site sta-
tistical fluctuations. By SRO, we mean the tendency of
atoms of a given kind to surround atoms of the same kind
(clustering) or of a different kind (ordering). In principle,
both of these limitations can be removed in a multisite, or
cluster extension of the CPA, and several such extensions
have been proposed®~3! in the literature. In this paper we
propose new methods and cluster techniques for the calcu-
lation of the DOS of nonrandom, substitutionally disor-
dered alloys.
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FIG. 1. Exact DOS’s (histograms) for one-dimensional
weak-scattering alloys with €4=—ez=1.0, W=1.0 (§=1.0),
¢ =0.5, and various degrees of SRO designated in the manner
defined in the test. The CPA DOS’s (solid curve) for a random
alloy is also shown for comparative purposes.
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A satisfactory cluster theory of disordered systems
must satisfy a rather stringent set of criteria, the most im-
portant of which are listed below. Among other proper-
ties, the theory should include the following:

(1) It should yield analytic, physically meaningful re-
sults, i.e., non-negative DOS and momentum spectral
weight functions. Analyticity is necessary for the satisfac-
tion of causality and of fundamental sum rules on the
DOS.

(2) It should be unique in the sense that it can be de-
rived within various formalisms and from various points
of view. For example, the CPA can be derived® within the
locator, propagator, variational, diagrammatic, and func-
tional® formalisms. There is strong indication that
uniqueness is necessary for the analyticity of a cluster
theory as exemplified by the analyticity of the molecular
CPA (MCPA),” and the nonanalytic behavior of
nonunique theories, some of which are discussed below.

(3) It should preserve the symmetries of the underlying
lattice. Such preservation is essential to the calculation of
meaningful momentum spectral weight functions.

(4) It should become exact in the weak scattering and
dilute-alloy limits.

(5) It should be applicable to multicomponent alloys
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FIG. 2. Cluster DOS’s associated with the centers of clusters
of three, five, seven, and nine sites (solid curves) embedded in a
CPA medium for a random alloy with €, = —ez=1.0, W =1.0,
and ¢ =0.5, compared with exact DOS histograms. Compare
also with Fig. 1(a).
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describable by either TB or MT Hamiltonians.

(6) It should incorporate various kinds of disorder, such
as disorder in the diagonal as well as the off-diagonal ele-
ments of the alloy Hamiltonian in a TB description.

(7) It should yield DOS’s which become exact as the
cluster size increases.

(8) It should allow the calculation of one- and two-
particle properties in essentially the same formalism.

(9) It should allow the incorporation of multisite corre-
lation effects for random as well as nonrandom alloys.
Thus, it should describe correctly the structure of the
DOS’s inside the band as well as yield the proper tailing of
the DOS’s at the edges of the band.

(10) It should give correctly as many moments of the
DOS’s as possible, since the moments of the DOS’s can be
used® to obtain physical information such as interatomic
interactions in the disordered material.

(11) It should be computationally feasible.

(12) It should be applicable to certain TB disordered
systems that obey the Goldstone theorem, such as disor-
dered Heisenberg ferromagnets and alloys characterized
by both mass and force-constant disorder.’

Even though some success had been achieved’ in limit-
ing cases, no theory, single-site or multisite, has been
developed that allows the treatment of Goldstone systems
in general, in spite of attempts'®~!? in that direction. The
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FIG. 3. Results analogous to those depicted in Fig. 2 and for
the same energy parameters but for a nonrandom, weakly clus-
tering alloy with SRO=0.5. Compare also with Fig. 1(b).
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other criteria are satisfied to various degrees by cluster
theories!*~3! applied to electronic systems; many of these
theories have been discussed in previous publications.!**
A discussion of some recent attempts at the construction
of theories that could incorporate the effects of SRO and
local environment fluctuations is given below.

It is convenient to classify cluster theories in terms of
the medium in which the cluster is embedded. On that
basis, one can distinguish at least three types of cluster
theories: (1) self-consistent cluster theories in which sta-
tistical fluctuations within a cluster of atoms are incor-
porated into the theory in a self-consistent way; (2) non-
self-consistent cluster theories in which the cluster is em-
bedded in a medium determined in a non-self-consistent
way; and (3) cluster theories in which a cluster is embed-
ded in a medium that is determined in some self-
consistent way and which includes the fluctuations of a

cluster (usually a single-site) smaller than the embedded

cluster.

The forerunner of the completely self-consistent cluster
theories is the MCPA.” In the MCPA the disordered ma-
terial is considered to be a collection of clusters (or mole-
cules) chosen so that the entire lattice can be generated by
the translation of the points in a cluster through a set of
translation vectors. The cluster Green’s function now be-
comes a matrix and the scalar CPA self-consistency con-
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FIG. 4. Results analogous to those shown in Figs. 2 and 3 but

for a strongly clustering alloy with SRO=0.9. Compare also
with Fig. 1(c).
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dition is generalized to a matrix self-consistency condi-
tion. The MCPA satisfies many of the criteria enumerat-
ed above, e.g., criteria 1, 2, 4—7, and the number of mo-
ments given correctly by the theory increases with increas-
ing cluster size. However, the MCPA yields an effective
medium that possesses cluster periodicity (superstructure)
rather than point periodicity and thus violates the symme-
try of the underlying lattice. In addition, the MCPA is
very difficult to implement computationally, becoming
impractical even for nearest-neighbor clusters in three-
dimensional systems.

The self-consistent central site approximation”!%16
(SCCSA) was introduced in an attempt to overcome the
difficulties of the MCPA mentioned above. In the
SCCSA one retains only one of the MCPA self-
consistency conditions. The effective medium is deter-
mined by requiring that the cluster-averaged Green’s func-
tion associated with the central site of the cluster be equal
to the site-diagonal element of the effective-medium
Green’s function. Thus the SCCSA preserves the transla-
tional periodicity of the lattice while being computational-
ly much simpler than the MCPA. However, the SCCSA
has been shown to yield!” nonanalytic results, such as
two-valued DOS’s, and therefore is not a satisfactory
theory of disordered system.

The self-consistent boundary site approximation'®
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FIG. 5. Results analogous to those shown in Figs. 2—4 but
for a strongly ordering alloy with SRO=—0.9. Compare also
with Fig. 1(d).
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(SCBSA) resembles the SCCSA in that it also involves a
single self-consistency condition for the effective medium,
but differs from the SCCSA by using a boundary site
rather than the central site in that condition. It has been
shown'® that for a one-dimensional TB disordered system
with nearest-neighbor hopping, the SCBSA yields DOS’s
that are identical to those obtained in the MCPA. Thus,
in the case of such systems the SCBSA yields results with
the correct analytic properties. Even though no general
proof of analyticity of the SCBSA exists, published calcu-
lations,!® as well as unpublished work,%° indicate that the
SCBSA may be analytic in general. One unsatisfactory
aspect of the SCBSA is that the boundary of a given clus-
ter is not uniquely defined for all clusters.

The augmented-space formalism?! has been used in at-
tempts'1? to incorporate the effects of SRO in a self-
consistent theory. These methods yield analytic results
but the results do not reflect the rich structure in the DOS
of one-dimensional systems as accurately as those ob-
tained in the SCBSA (or MCPA). The augmented-space
formalism has also been criticized?? for its inability to ac-
count for the fluctuations in compact clusters of atoms.
Finally, the traveling-cluster approximation®* (TCA)
yields results that are in overall good agreement with
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FIG. 6. Cluster DOS’s in the CPA and associated with the

centers of three-, five-, and seven-site clusters embedded in a
CPA medium for a one-dimensional, random strong-scattering
alloy with €4 = —€5=2.0, W=1.0, and ¢ =0.5, compared with
exact DOS histograms.
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those obtained in computer simulations for three-
dimensional random alloys. However, the TCA is an
exceedingly difficult theory to apply computationally and
apparently can not be used in connection with systems
with SRO. ‘

In a non-self-consistent cluster theory,?* one calculates
the Green’s function for a cluster of atoms embedded in
an effective medium that is chosen so as to satisfy several
fundamental requirements. This approach has the advan-
tage of being computationally very simple and yields re-
sults that are in good agreement with the computer-
simulated DOS’s of disordered systems. However, this
method suffers from various drawbacks. Since the self-
energy of the effective medium is not very strongly depen-
dent on the alloy under investigation, the resulting DOS’s
may possess the incorrect structure especially near the
edges of the band and extend into mathematically forbid-
den regions, i.e., where the DOS of the alloy is mathemati-
cally shown to vanish. As a result, fundamental sum rules
on the DOS may be violated. Finally, non-self-consistent
cluster theories yield nonunique results that depend on the
choice of the effective medium.

In contrast to the methods just described, the
embedded-cluster method'*? (ECM), representing the
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FIG. 7. Cluster DOS’s associated with the centers of clusters
of three, five, seven, and nine sites embedded in a CPA medium
for an alloy with the same energy parameters as-in Fig. 6 but
with SRO=0.5. '
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third class of cluster theories mentioned above, strikes a
balance between analytic requirements and computational
simplicity. Of all cluster theories proposed, it comes
closest to possessing the desirable characteristics of an al-
loy theory. In the ECM, one calculates the Green’s func-
tion for a cluster of atoms embedded in a self-consistently
determined effective medium. The medium is chosen in
some optimal way, and is usually'*?>26 that determined in
the single-site CPA. When the method is used in its full
generality,'>2=?7 the structure of the medium surround-
ing the cluster is properly treated. In simplified ver-
sions,?® the true lattice is replaced by a Bethe lattice (or
Cayley-tree lattice) with the concommitant!® possible loss
of structure in the DOS, or the introduction of the wrong
structure. Such a replacement is usually not necessary
since for most systems the complete version of the theory
is quite simple computationally, particularly with the use
of modern day supercomputers.

The ECM has been shown'>? to yield analytic results
and DOS’s that are in excellent agreement with exact
DOS obtained by eigenvalue counting methods®® for a
large variety of substitutionally disordered random alloys.
As we show in the following sections, the ECM can also
be used to obtain accurate DOS’s for alloys with various
degrees of SRO. Furthermore, it can be used in conjunc-
tion with a two-site generalization of the CPA that allows
the self-consistent treatment of the two-particle distribu-
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FIG. 8. Results analogous to those depicted in Fig. 6 but for
weakly ordering alloys with SRO=—0.5.
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tion function. Some previous theories that have been pro-
posed®®3! for the treatment of SRO are based on the
augmented-space formalism,*® and thus suffer from the
shortcomings of that approach. In a recent attempt,’!
SRO is treated in a fashion that requires an educated
guess of the effective medium associated with a fully or-
dered structure, and the results are nonunique, depending
on the choice of that medium. In the approach taken
here, arbitrary SRO can be taken into account without
prior knowledge of the nature of the ordered medium.
This is an advantage, since most often it is not clear what
that medium ought to be. Also, it will be shown that
SRO can be incorporated into the theory in a self-
consistent manner with only a slight increase in computa-
tional effort. In fact, our numerical investigations reveal
that the effective medium plays a vital role in determining
the DOS of disordered alloys, and in many cases the self-
consistent incorporation of SRO is necessary for obtaining
accurate results.

In the following sections we develop methods for calcu-
lating the cluster average of the site-diagonal element of
the Green’s function at the central site of the cluster,
denoted by 0, and are given by the expression

ne)=—— ImGl(e), (L.1)
where € is an energy parameter, and J denotes a cluster
configuration. The total DOS’s are obtained as an average
over all cluster configurations of the partial DOS given by
Eq. (1.1),

n(e)=3 Pin’e), (1.2)
J

where P; is the probability of the occurrence of configura-
tion J. Clearly, any degree of SRO can be included in the
average through the quantities P;.

The remainder of the paper takes the following form.
In Sec. II we derive briefly the equation determining the
Green’s function of a cluster embedded in an effective
medium. In Secs. III and IV we discuss various methods
for determining the effective medium in general as well as
in some limiting cases. Numerical results obtained using
the formalism of Secs. II-IV are presented in Sec. V. Sec.
VI contains a discussion of our results and several con-
clusions that can be drawn from them.

II. THE EMBEDDED CLUSTER METHOD

The formalism for calculating the Green’s function for
a cluster of atoms embedded in an effective medium has
been presented in detail in previous publications, both for
TB (Refs. 12, 14, and 25) and for MT (Refs. 26 and 27)
Hamiltonians. For the sake of completeness, a brief out-
line of the method is given in this section for systems
describable by TB Hamiltonians.

In a TB formalism, the Hamiltonian describing a sub-
stitutionally disordered alloy can be written in the form

H=Y, e,-a,-Tai—}— > W,-ja;raj , (2.1
i ij

where the a;r (a;) create (destroy) an electron on site i. In
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a binary alloy, 4.B_,, atoms of species A and B are dis-
tributed with concentrations ¢ and 1—c, respectively, over
the N sites of a lattice. The quantities €; can in general
depend on the chemical occupation as well as on the envi-
ronment of sites /, but only the dependence on the atom on
site 7 is usually considered. Thus, the €; can assume the
values €4 and €p, with probabilities ¢ and 1—c, respective-
ly. The variation of the ¢; from site to site is known as di-
agonal disorder. The transfer terms W;; describe electron
hopping from site i to site j, and can depend on the chemi-
cal occupation as well as the environment of site i and j.
Any dependence of the Wj; on the chemical configuration
of an alloy is known as off-diagonal disorder (ODD).
Even though the dependence of W;; on the chemical occu-
pation of sites i and j can be incorporated into the single-
site CPA (Refs. 6 and 32) as well as into the ECM,'* we
will assume for simplicity that the W;; depend only on the
distance between sites i and j, and are independent of the
chemical occupation of these sites. ODD can easily be in-
corporated into the formalism that follows through a gen-
eralization to matrices of the appropriate scalar quantities.
From the definition

G(z)=(z—H)™!

for the Green’s-function operator at (complex) energy z, it
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follows that in a site or Wannier representation the matrix
elements Gj; satisfy the eqution of motion

Gyj=8i [8+ X WaGyij | - (2.3)
k

Here, g; is the “bare” locator for site i and is defined by
the expression

gi=(z—¢)'. (2.4)
If the material is considered as a collection of nonover-

lapping clusters C, the equation of motion, Eq. (2.3), can
be cast into the form

Geor=8c [SCC’+ 2 WeerGerer | - @.5)
<

Here, the various cluster quantities are defined through
their site matrix elements. We have

(GCC')ij= ij s IEC, jEC' N (268)

( __1) Z—€, i=j

8c )= Wy, i (2.6b)
and

(Wee)ij=Wy, iEC, jEC'. (2.6¢c)
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FIG. 9 (a) Results analogous to those depicted in Fig. 7 but for strongly ordering alloys with SRO=—0.9. (b) Cluster DOS’s asso-
ciated with the center of a single nine-site ordered cluster for the same energy parameter as those in Figs. 6—8 and for SRO= —0.9.
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The cluster equation of motion, Eq. (2.5), can be iterated'
with the second term on the right-hand side being treated
formally as a perturbation. One then obtains the expres-
sion

Gec=(z—Hc—Ac)™! 2.7

for the cluster-diagonal part of the Green’s function. In
this equation, z stands for zI, where I is the unit matrix in
cluster space, and H is the intracluster Hamiltonian with
matrix elements

(2.8)

The cluster-renormalized interactor A has site matrix
elements given by the expression

(Ackj= 3 WagiWiy+ X WaskWugiWiy+ - .
k#C k#C
1£C

2.9)
It is clear from this expression that (Ac);; represents the

sum of all paths that start at site i and end at site j of the
cluster C but avoid all sites in C at intermediate steps.
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For substitutionally disordered alloys describable by the
Hamiltonian (2.1), Ac depends on the material surround-
ing the cluster C but is independent of the chemical con-
figuration of the cluster. Let us then assume that the
cluster is surrounded by an effective medium character-
ized by a self-energy = with matrix elements,

For simplicity, we will assume!® that W;; = Wi;. Then, the
expression for the cluster-diagonal elements of the
Green’s-function operator corresponding to a cluster em-
bedded in that medium can be written in the form

Gec=(z —Hc—Ae) !, 2.11)

where A is given by an expression analogous to Eq. (2.9)
but with every g; replaced by the effective-medium loca-
tor,

g=(z—0)"1. (2.12)

The cluster-renormalized interactors Ac can now be ob-
tained in terms of the self-energy o. If every ¢; in H( is
replaced with o, Eq. (2.11) yields an expression for the
cluster-diagonal part of the effective-medium Green’s
function,
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FIG. 11. Results analogous to those shown in Fig. 10 but
with SRO=—0.5.
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G—CC=(2—H-C_KC)—1 3 (2.13)
with an obvious definition of Hc. The effective-medium
Green’s function (G );j can also be evaluated by Fourier
transforming its eqution of motion, e.g., Eq. (2.3) with
every ¢; replaced by o. The matrix elements of G¢¢ are
then given by the expressions

(Gee)ij=Gj
_ 1 i'l?-(f{’,-——fi.) hvr—193"
_——QBZ 526 Flz—o—W(k)]"'dk ,
(2.14)

where the integration extends over the Brillouin zone (BZ)
of the lattice, Qyz denotes the volume of the zone, and R;
denotes the position of site i with respect to a fixed origin.
The Fourier transformation of the transfer terms entering
Eq. (2.14) is defined by the expression
— ix (R R i :)
w(E)=N"1 3 wye'RTR (2.15)
(K;-X)

Equation (2.13) can now be used to obtain an expression
for the renormalized interactor of the effective medium

Ac=z—Hc—Gg . (2.16)
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FIG. 12. Cluster DOS’s associated with the centers of clus-
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SCBSA medium for an alloy with the same energy parameters
as those in Figs. 10 and 11, and with SRO= —0.9.
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With the elements of G determined as in Eq. (2.14), one
can evaluate G¢c, the Green’s function for a cluster em-
bedded in an effective medium.

A convenient choice for the effective medium is that
which is determined in the single-site CPA. The self-
consistency condition determining the CPA effective
medium can be stated in terms of the Green’s function in

the form

<Goo>=(-;—oo . (2.17)

Here, Gy is the site-diagonal element of the Green’s func-
tion corresponding to a single site embedded in an effec-
tive medium, and Gy is the corresponding quantity for
that medium.

In the original applications!>? of the ECM, the effec-
tive medium was chosen to be that determined in the
CPA. This choice was also made in much of the numeri-
cal work presented in Sec. V. However, for certain non-
random alloys it was found that the CPA did not provide
an adequate embedding medium and a different choice of
the medium had to be made. A method which yields an
effective medium that incorporates the pair correlation
function, and thus the effects of SRO, in a self-consistent
way is discussed in the following section.
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FIG. 13. Cluster DOS’s associated with the centers of seven-
site clusters embedded in a CPA medium (top part) and in a
two-site SCBSA medium (bottom part) for an alloy with
€4=—€=2.0, W=1.0, c =0.7, and SRO= —04.
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III. TWO-SITE GENERALIZATION OF THE CPA

As was mentioned in the last paragraph, it is often
necessary to consider the cluster as embedded in a medi-
um that includes any possible SRO in a self-consistent
way. Clearly, any theory that accomplishes this task can
also be used for random alloys, although for such alloys
the CPA usually provides a satisfactory embedding medi-
um. A comparison between the cluster DOS’s for random
alloys obtained with a CPA embedding medium and with
a medium analogous to that proposed below has been
given elsewhere.!*

The pair correlation function can be incorporated self-
consistently into the SCBSA applied to a two-atom clus-
ter. The self-consistency condition determining the effec-
tive medium takes the form

<(GC)00>C=§00 ’

where Gy is the site-diagonal element of the Green’s
function for one of the two sites in the cluster, and
(-++ )¢ denotes an average over all cluster configura-
tions. Note that Eq. (3.1) represents a very different con-
dition from the CPA condition (2.17). Explicitly G¢ is
given as the 2 X 2 matrix [see Eq. (2.11)]

(3.1

-1
A Ao
K10 K11 ’

Z—€p —W

GC: —-W Z—€;

(3.2)

where by symmetry Ag=A;; and Ay;=A,,. The quanti-
ties A;; appearing in Eq. (3.2) are given by Eq. (2.16) and
the self-energy o is determined through the single self-
consistency condition, Eq. (3.1). Thus, a two-site SCBSA
yields an effective medium which preserves the transla-
tional invariance of the lattice.
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IV. TWO-SUBLATTICE MODEL

Although not true in general, some disordered systems
with strong ordering tendencies can be viewed as disor-
dered states of a nearly ordered system. As a concrete ex-
ample, consider a one-dimensional binary alloy, 4, 5By s,
in which atoms of type 4 have a strong preference to be-
ing surrounded by atoms of type B, and vice versa. Such a
system may then be considered to result upon slightly
disordering a perfectly ordered system of the type
ABABAB. .. . Thus, one may describe the disordered sys-
tem as consisting of two interpenetrating sublattices, each
characterized by individual 4 and B atom concentrations.
Since an A atom in sublattice 1, say, is nearly always sur-
rounded by atoms of type B one could approximate C%,
the 4 atom concentration in sublattice 1, by P,z the prob-
ability of finding an 4 atom next to a B atom in the disor-
dered material. Then, the concentration of B atoms in
sublattice 1, C?, is given by the relation ch=1-c4
Similar considerations hold for sublattice B with the roles
of A and B interchanged.

In the two-sublattice model, the disordered material is
considered as an alloy in which the concentration varies
periodically through the material in some particular direc-
tion. Thus, in the limiting case of very strong SRO, a
disordered material may be treated as a compositionally
modulated alloy (CMA). The extension of the CPA to
CMA (MODCPA) has been described fully elsewhere,*
where it was shown that the MODCPA, essentially a
single-site theory, gives an accurate representation of the
DOS’s of strongly modulated alloys. In fact, the accuracy
of the MODCPA increases with increasing modulation
strength and in the limit of an ordered system the
MODCPA becomes exact. The formalism for extending
the CPA to a two-sublattice model is practically identical
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FIG. 14. Cluster DOS’s associated with the centers of clusters of nine and eleven sites embedded in a two-site SCBSA medium for
an alloy with ¢, =—¢€5=1.0, W =1.0, ¢ =0.5, and SRO=0.9. Compare with Fig. 4.
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to that of the MODCPA (Ref. 33) and will not be present-
ed here.

The advantage of using the MODCPA lies in the fact
that it may be possible to obtain a fairly accurate repre-
sentation of the DOS’s of strongly ordering systems by
means of a single-site theory. Numerical results, present-
ed in the following section, confirm this conjecture.
Clearly, it is always possible to calculate the DOS’s for
clusters embedded in a MODCPA medium and this ap-
proach has been shown®® to improve on the MODCPA
and to yield quite accurate results for weakly to moderate-
ly strongly modulated alloys. For strongly modulated al-
loys, on the other hand, not much improvement of the
MODCPA results upon the use of a cluster theory. Thus,
by appropriately choosing the effective medium, one can
indeed reduce the size of the cluster that is necessary for a
faithful representation of the DOS’s of nonrandom substi-
tutionally disordered alloys.

V. NUMERICAL RESULTS

We have carried out extensive numerical calculations
based on the formal considerations presented in Secs.
II—IV. Our aim is to investigate the following three ques-
tions with respect to calculating DOS’s for nonrandom
substitutionally disordered alloys: (i) Is the ECM able to
reproduce the DOS’s of nonrandom alloys? (ii) How large
a cluster is needed for an accurate representation? (iii)
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FIG. 15. Single-site DOS’s (solid curve) calculated in the
two-sublattice model described in the text for an alloy with
€4=—€3=20, W=1.0, ¢=0.5, and SRO=0.85, compared
with an exact DOS histogram.
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How important is the effective medium in which the clus-
ters are embedded in determining accurate DOS’s for non-
random alloys?

Our calculations were carried out for a one-dimensional
single-band model substitutional alloy describable by a TB
Hamiltonian of the type displayed in Eq. (2.1). Alloys of
two different scattering strengths, and of various degrees
of SRO, were investigated. The scattering strength & is
defined by the expression

6=|e4—e€p|/w, (5.1)

where €4 and ep are the site energies of the 4 and B
atoms, respectively, and w is 3 the bandwidth of either

species, taken as equal to 2 in all cases. For €4=—¢p
=1.0, §=1.0, corresponding to an intermediate scattering
strength, non-split-band case, and for €,=—€p=2.0,

6=2.0, corresponding to a strong scattering, split-band re-
gime. Short-range order (clustering or ordering) was in-
corporated into the theory by means of the pair distribu-
tion functions P,,, where u,v designate any of the species
A or B. In particular, we chose the model

P,=C,+a(1-C,), withu=4 or B . (5.2)

Clearly, a >0 (a <0) indicates clustering (ordering), and
a=0 denotes a random alloy. In the following figures,
the values displayed for the SRO parameters are the
values of ¢ in Eq. (5.2).
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FIG. 16. Results analogous to those shown in Fig. 15 but for
a weakly ordering alloy with SRO= —0.5.



29 CLUSTER DENSITIES OF STATES OF . ..

In order to follow the discussion in the text, we divide
our presentation of the numerical results of the ECM ac-
cording to the medium chosen to embed the cluster.
Thus, Figs. 1—9 depict results obtained with clusters em-
bedded in a medium determined in the CPA. Figures
10—14 show DOS’s obtained with clusters embedded in a
two-site SCBSA medium, and compare some of these re-
sults with corresponding results obtained with a single-site
CPA medium. Densities of states obtained in a two-
sublattice model are presented in Figs. 15—17. Figures 18
and 19 show comparisons between exact moments of the
DOS’s for various nonrandom alloys with the moments
obtained in the embedded-cluster method. Unless other-
wise stated, the DOS’s associated with the center of a clus-
ter were used averaged over all cluster configurations.

A. Clusters embedded in a CPA medium

Figure 1 shows exact DOS histograms for alloys with
energy parameters €4 =—e€p=1.0, W =1.0 (§=1.0), con-
centration ¢ =0.5, and with various degrees of SRO. The
CPA DOS’s for the random alloy are also shown. It is
clear from these figures that clustering [parts 1(b) and
1(c)] and ordering [part 1(d)] tendencies can strongly af-
fect the DOS. It is to be kept in mind that in all figures
corresponding to alloys with ¢ =0.5, the bands are sym-
metric about €=0.0. We see then that increasing cluster-
ing causes the weight of the DOS’s to shift toward the
edges of the subbands associated with the alloy constitu-
ents. This effect can be understood intuitively as follows.
In strongly clustering alloys, the greatest contribution to
the DOS’s arises from large clusters of atoms of a given
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kind and thus resembles the DOS’s of the corresponding
pure materials. Similar arguments yield an insight into
the shape of the DOS’s of strongly ordering alloys. Thus,
for strongly clustering alloys the DOS is very nearly equal
to the average of the DOS of the two pure systems 4 and
B. On the other hand, ordering causes the DOS to con-
centrate near the centers of the subbands and produces a
split-band effect. It is also clear from these figures that
the CPA expectedly gives an increasingly poorer represen-
tation of the DOS with increasing clustering or ordering.
Note in particular that the width of the CPA DOS is
about equal to that of the exact DOS for the case of a ran-
dom alloy, but it is narrower than the exact results for
clustering alloys and wider for ordering alloys.

Figure 2 shows cluster DOS’s for the case of a random
alloy associated with the centers of three-, five-, seven-,
and nine-site clusters embedded in a CPA medium. These
figures show the increased accuracy that is obtained with
increasing cluster size. The DOS’s obtained with a seven-
and a nine-site cluster represent the exact DOS’s quite
faithfully, resolving all major peaks and even some minor
ones. As has been pointed out in previous publica-
tions,'»?* the structure in the DOS is associated with
specific configurations of compact clusters of atoms. This
point is discussed further below.

Figure 3 shows results analogous to those of Fig. 2, but
for alloys of intermediate clustering strength. It is again
seen that cluster DOS’s represent the exact numerical re-
sults quite accurately within the band. However, the
edges of the band are represented somewhat less accurate-
ly. This is because the CPA effective medium produces a
band which is much narrower than that of a clustering al-
loy, and the cluster DOS’s vanish in the region in which
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FIG. 17. Single-site DOS’s calculated in the MODCPA for a modulated alloy with €,=—ep=2.0, W =1.0, C4;=0.9, and

C,4,=0.5, compared with an exact DOS histogram.



4288

the CPA DOS’s vanish. This effect is seen more dramati-
cally in Fig. 4, which depicts the results for a strongly
clustering alloy. The cluster DOS’s give an adequate rep-
resentation of the exact DOS inside the band, but a very
poor representation near the edges especially with increas-
ing cluster size. Note that the cluster DOS’s would
correctly tend to move toward the edges of the subbands
with increasing cluster size, but in the outermost of these
regions the CPA DOS’s vanish. We will see later that this
deficiency is remedied with the introduction of a two-site
self-consistent cluster theory.

Densities of states for strongly ordering alloys are
shown in Fig. 5. This figure shows results analogous to
those in Figs. 2—4, and it is seen that a nine-site cluster
gives an excellent representation of the main part of the
DOS’s and even resolves the minor peaks on the sides of
the central peak. Recall from Fig. 1(d) that the CPA
bandwidth is larger than that of the ordered alloy and
thus the CPA effective medium can support the structure
induced by intracluster fluctuations.

Figures 6—9 depict exact and cluster DOS’s for strong-
scattering split-band alloys, §=2.0, with concentration
¢=0.5 and various degrees of SRO. Figure 6 shows
DOS’s for a random alloy. It is seen that the seven- and
nine-site cluster DOS’s agree quite well with the exact re-
sults inside the band, with the greatest differences between
exact and calculated results occurring near the edges of
the band. Analogous results are obtained for clustering al-
loys in Fig. 7. As was the case for clustering, weak-
scattering (8=1) alloys, the edges of the bands are
represented poorly by cluster DOS’s, especially for large
clusters.

Figure 8 represents results analogous to those of Fig. 6,
but for ordering alloys. In this case, the CPA provides an
adequate medium in which a cluster can be embedded,
and cluster DOS’s give a very accurate representation of
the exact DOS. This is also found to be the case for
strongly ordering alloys, Fig. 9(a). Note in particular that
the main contribution to the DOS’s arises from the
single-ordered configuration, ABABAB. . ., as is shown in
Fig. 9(b). Here, the solid curve represents the DOS at the
center of a nine-site cluster in the ordered configuration.

B. Clusters embedded in a two-site SCBSA medium

Figure 10 depicts cluster DOS’s for clustering alloys as-
sociated with clusters embedded in a two-site SCBSA
medium as described in Sec. III. Short-range order is in-
corporated into the theory in a self-consistent way
through the use of the appropriate two-site distribution
functions, P4, Ppp, and P,p, in the cluster average in Eq.
(3.1). It is seen in this figure that the cluster DOS’s espe-
cially those for the seven-site cluster, give a faithful repre-
sentation of the exact DOS’s inside the band, and even
represent the structure near the edges of the band quite ac-
curately. Thus, the self-consistent treatment of SRO
yields a more appropriate embedding medium than that
obtained with the CPA. Note in particular that the DOS’s
for a single site embedded in a SCBSA medium are almost
as wide as the exact results. The gains resulting from a
self-consistent treatment of SRO are evident upon com-
parison of the cluster DOS’s for five- and seven-site clus-
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ters shown here with the corresponding clusters embedded
in the CPA medium (Fig. 7).

Results analogous to those shown in Fig. 10 (but for or-
dering alloys) are shown in Fig. 11. Comparing them with
Fig. 8, which shows analogous results for clusters embed-
ded in a CPA medium, we observe that (i) small size clus-
ter, one and three sites, embedded in a two-site SCBSA
medium for relatively weakly ordering alloys, yield a
somewhat more accurate representation of the DOS’s then
corresponding clusters embedded in a CPA medium for
random alloys, and (ii) for larger clusters, five and seven
sites, the cluster DOS’s for clusters embedded in an
SCBSA medium are quite similar to those obtained in a
CPA embedding medium. Thus, the embedding medium
becomes less and less important with increasing cluster
size, provided that it is an appropriate medium, i.e., its
bandwidth is sufficiently large to support the structure in
the DOS’s produced by local environment fluctuations.
Equivalently, the more appropriate the embedding medi-
um the smaller may be the size of the cluster required to
produce an adequate representation of the DOS’s. Results
analogous to those in Fig. 11 (but for strongly ordering al-
loys) are depicted in Fig. 12, which should be compared
with Fig. 9(a).

It should be noted that the DOS’s associated with a
single-site or a three-site cluster embedded in a two-site
SCBSA medium (Fig. 11) can possess very sharp struc-
ture. This structure is not an indication of nonanalytic
behavior since the SCBSA for one-dimensional TB alloys
with nearest-neighbor hopping yields DOS’s identical to
those of the MCPA which is known to yield analytic re-
sults. Figure 11 shows that clusters larger than a single
site are indeed necessary for an accurate representation of
the DOS’s.

The discussion just given is further illustrated by the re-
sults shown in Fig. 13. Here, the energy parameters of the
alloy are the same as those in Figs. 6—12, but with con-
centration ¢ =0.7 and a=0.4 (weak ordering). For this
case both the CPA and the SCBSA provide appropriate
effective media. Thus, the cluster DOS’s for a seven-site
cluster embedded in a CPA medium (top part) are very
similar to those obtained with an SCBSA medium (bottom
part).

Further comparison between the results obtained with
CPA and SCBSA embedding media is afforded by Fig.
14. Here, the curves represent cluster DOS’s for 9- and
11-site clusters, left- and right-hand side panels, respec-
tively, embedded in a 2-site SCBSA medium for the same
alloy parameters as those in Fig. 4. Comparing the re-
sults for the nine-site clusters we see that the DOS’s in the
interior of the band are similar in the two methods, but
that the clusters embedded in an SCBSA medium are in
excellent agreement with the exact DOS’s near the band
edges in contrast to the results obtained with a CPA medi-
um. Thus, we see once again that for band regions that
are within the span of the effective medium either a CPA
or a two-site SCBSA medium can be used in conjunction
with the embedded-cluster method. However, the SCBSA
provides an embedding medium that is appropriate for a
wider range of alloy parameters than that obtained in the
CPA.
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C. Two-sublattice model calculations

Figure 15 shows DOS’s for an alloy with the same ener-
gy parameters as those in Figs. 6—12, with concentration
¢=0.5 and a=—0.85 (strong clustering). The curve is
calculated in the two-sublattice model introduced in Sec.
IV. It is seen that even a single-site theory can produce an
adequate representation of the DOS’s for an appropriately
chosen effective medium. Comparison with the very simi-
lar case shown in Figs. 9 and 12 shows that the single-site
results provide a better representation of the DOS’s in the
interior of the band than the ECM, but represent the
minority peaks less accurately. Thus, as was mentioned in
the previous subsection, with an appropriate embedding
medium a small cluster, even as small as a single site, may
yield DOS’s in satisfactory agreement with exact results.
Figure 16 shows results analogous to those of Fig. 15 but
for a somewhat smaller ordering parameter.

Finally, Fig. 17 shows the DOS’s for a two-site modu-
lated alloy. Here, C,;=0.9 and C,,=0.5 are the A-atom
concentrations in the two sublattices and Cp;=1—Cyy,
I=1,2. The results obtained in the MODCPA (Ref. 33)
(solid curve) for a two-site modulated alloy are in good
overall agreement with the exact results.

D. Moments of the DOS’s

The nth moment u,, of the DOS’s with respect to some
energy origin € is defined by the expression

Hn= f(e—eo)"n(e)de. (5.3)

Clearly, the zeroth moment equals the charge and the first
moment yields the band energy of a system. More gen-
erally, moments can be used® to obtain information about
the interatomic potentials in substitutionally disordered al-
loys. Also, comparisons between exact and calculated mo-
ments may be used as a gauge of the accuracy of various
approximations for calculating the DOS’s in disordered
systems. Thus, it has been shown®* that the CPA gives
correctly the first eight moments of the DOS’s of random
substitutionally disordered alloys.

Figure 18 shows moments of cluster DOS’s for various
size clusters and various SRO parameters compared with
numerically computed moments. Here, the decimal num-
bers denote the value of the SRO parameter a in Eq. (5.2),
and the numbers in parentheses indicate the numbers of
sites in the clusters used in the calculations. The CPA
moments fit the first eight exact moments of the DOS’s
for a random alloy as expected. Although not shown in
the figure, more moments of a random alloy can be fit by
using DOS’s associated with clusters embedded in a CPA
medium. For ordering alloys (cf. the two lower curves in
Fig. 18), a large number of moments can be fit, up to 20
for strong-ordering alloys, by using DOS’s for clusters
embedded in a CPA medium. For clustering alloys (cf.
the upper two curves), it was necessary to use a two-site
SCBSA embedding medium with SRO self-consistently
taken into account to obtain the fits shown. This is in ac-
cord with our discussion of the cluster DOS’s for cluster-
ing alloys given above. Figure 19 shows the gradual ap-
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proach of the calculated to the exact moments with in-
creasing cluster size for the care of strongly ordering al-
loys.

VI. DISCUSSION AND CONCLUSIONS

Our aim in this paper was to investigate the applicabili-
ty of the embedded-cluster method to calculate the single-
particle Green’s function, in particular the DOS’s, of non-
random disordered alloys. Our numerical results allow us
to reach several conclusions.

(1) The ECM provides a reliable and efficient method
for calculating the DOS’s in nonrandom as well as ran-
dom alloys.

(2) The accuracy of the CM increases with increasing
cluster size provided that an appropriate embedding medi-
um is used in the calculation. Such a medium becomes
less important as the size of the cluster increases.

(3) The embedding medium can play a vital role in the
accuracy of the calculated results. For a well-chosen
embedding medium a small cluster, even a single-site clus-
ter, can yield an adequate representation of the DOS’s of a
substitutionally disordered alloy, as is indicated by the re-
sults obtained in the two-sublattice model and in the
MODCPA.

(4) In many cases, such as for one-dimensional alloys
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FIG. 18. Logarithms of the moments of the cluster DOS’s
about €y=1.0 for alloys with €,=—€z=1.0, W=1.0, ¢ =0.5,
and various degrees of SRO indicated by the decimal numbers
next to each curve, compared with numerical (exact) results.
The numbers in parentheses indicate the number of sites in the
cluster used to calculate the DOS’s. The two top curves (cluster-
ing alloys) were calculated with a two-site SCBSA effective
medium.
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FIG. 19. Logarithms of the moments of the cluster DOS’s
about €=1.0 for various size clusters for an alloy with
€4=—€p=1.0, W=10, and ¢ =0.5, and SRO=-0.9 com-
pared with the exact results. The size of the clusters used are
shown next to the corresponding curves.

with clustering tendencies, it may be necessary to incorpo-
rate the SRO self-consistently into the calculation in order
to obtain an appropriate embedding medium.

The self-consistent treatment of the SRO necessitated
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the generalization of the single-site CPA to a two-site
self-consistent cluster theory. For one-dimensional TB al-
loys with nearest-neighbor hopping, the DOS’s obtained in
the SCBSA are identical to those obtained!® in the MCPA
and thus the two-site SCBSA used in this paper yields an-
alytic results. Indeed, no analytic difficulties were en-
countered during the performance of the numerical calcu-
lations. For higher-dimensional systems, no proof of
analyticity of the SCBSA exists. However, given the re-
sults of the various SCBSA calculations,!>? it is to be ex-
pected that the two-site SCBSA will yield analytic, well-
defined physical results in all cases. Note also that in the
two-site SCBSA the boundary of the cluster is always well
defined. As a further indication of analyticity, in all our
calculations the DOS’s were found to satisfy the funda-
mental sum rules.

The methods presented here are applicable to disordered
systems of any dimensionality describable by either TB or
MT Hamiltonians. . In most realistic alloys, clustering or
ordering tendencies are not very strong and a CPA embed-
ding medium can be used in conjunction with the ECM.
In some cases, however, where strong clustering or order-
ing tendencies may exist, the self-consistent treatment of
SRO may be necessary in order to obtain accurate results.
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