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Properties of the electron glass
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We have carried out numerical calculations on two- and three-dimensional models of highly local-
ized electrons interacting by an unscreened Coulomb potential. A Coulomb gap was found in the

density of states for bare single-particle excitations. This "soft" gap was deeper than the power-law

gap seen in earlier simulations, but for three-dimensional systems it was fitted well by an exponen-

tial form proposed by Efros. The gap fills as the temperature is raised. We also found an unexpect-

ed clustering of states with the same occupation and energies close to the chemical potential. The
density of states for dressed single-particle excitations ("electronic polarons") showed a Coulomb

gap too, but a narrower one than that for the bare excitations. There is a clear analogy between this
model of interacting electrons and an Ising spin-glass with 1/r antiferromagnetic interactions and a
random field on each site. We have exploited this analogy to search for a glass transition in the
electronic system by calculating the specific heat, susceptibility, and a modified Edwards-Anderson
order parameter.

I. INTRODUCTION

The behavior of noninteracting electrons moving in a
random potential and the resulting phenomenon of locali-
zation have been studied extensively since Anderson's
original paper of 1958,' and in the last few years this
problem has become reasonably well understood. The ef-
fects of electron-electron interaction on such a system
have so far received less attention, but interesting results
are expected. Altshuler and Aronov have calculated the
effect of electron-electron scattering on a dirty three-
dimensional (3D) metal, whose wave functions are extend-
ed. They find that the scattering of electrons from impur-
ities enhances the Coulomb interaction by reducing the ef-
fectiveness of the screening; this causes corrections to the
electrical conductivity at low temperatures T proportional
to 1', and corresponding corrections to the density of
states (DOS) near the chemical potential p proportional to
(E lz)'r . For two-dimens—ional (2D) systems, the square
roots are replaced by logarithms.

For the opposite extreme, a disordered insulator with
highly localized electronic states, the effects of electron-
electron interaction have been studied longer. The spatial
distribution of the electrons is strongly inAuenced by the
long-ranged Coulomb repulsion between them. This leads
to a depletion of the single-particle DOS near the chemi-
cal potential known as the Coulomb gap. It is expect-
ed to cause deviations at low temperatures from Mott's
T' law for electrical conduction by variable-range hop-

ping, for example, since this law was derived assuming a
flat DOS and neglecting electron-electron interaction.

An extensive study, both analytical and numerical, of
the Coulomb gap has been carried out by Efros,
Shklovskii, and co-workers, ' ' reviewed most recently

by Shklovskii and Efros. " They have studied a classical
model of a dilute impurity band, whose Hamiltonian in
dimensionless units is

Here n; is the number operator for site i, taking the values
0 or 1 only; P; is a random energy on site i; and the final
term is the bare Coulomb interaction between the elec-
trons (r,j ——

~
r; —rj

~

). The prime on the summation sign
indicates that the term with i =j is to be omitted. Back-
ground charges are included to maintain electrical neutral-
ity; this is dealt with more fully later. An excellent practi-
cal realization of such a system is the impurity band of a
lightly doped, compensated semiconductor, where the dis-
order arises from the random distribution of impurities
over the host's lattice sites. The carriers remaining in the
majority band interact strongly by unscreened Coulomb
potentials, and are also subject to a large random field
from the ionized minority impurities and the unoccupied
majority impurities. These forces are all long range, un-
like the quantum-mechanical effects which we have
neglected, such as tunneling which depends exponentially
on the separation between sites. A more detailed justifica-
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tion of the purely classical model has been given by
Shklovskii and Efros." Although we shall be considering
both two- and three-dimensional lattices, the electrostatic
potential always falls off with distance as I/r; thus even
in the two-dimensional systems we are considering point-
like electrons, rather than interacting lines of charge.

The single-particle energies for this model are defined

by

ni(E) ~ iE p i'— (4)

with s &D 1 in D —dimensions. By using a "self-
consistent" argument, Efros showed that s =D 1, —
within the approximation of considering the stability of
the ground state against only single particle-hole transi-
tions, and derived the constant of proportionality. He also
obtained a sharper bound for three-dimensional systems
by considering many particle-hole excitations in which the
surrounding electrons were allowed to relax,' this had the
form

n&(E) 0:exp[ —
~
Eo/(E p)

~

' '] . —

This exponential gap arises from the existence of short
particle-hole cxc1tatlons with vcI'y low tlansltlon cnclglcs.
Baranovskii, Shklovskii, and Efros' showed that the
number of such exeitations should go to zero logarithmic-
ally as the energy goes to zero, and took this into account
to obtain another form for the single-particle DOS:

n&(E) ~exp[ —Ay/[in(y)]7~41, y=EO/(E —p) .

This holds o»y «r very low energies, and so cannot be
tested numerically. There is also the possibility that the
close pairs with low excitation energies may be removed
by quantum-mechanical tunneling in a real material, and
that these exponential forms for the Coulomb gap may
therefore be unimportant in practice.

The Coulomb gap is a "soft" gap, meaning that n~(E)

E; —p is the energy required to add an electron to an emp-

ty site i (or minus the energy for adding a hole to an occu-
pied site), holding the rest of the electrons fixed. The dis-
tribution of these energies is the single-particle density of
states, which is required to have a Coulomb gap. This
was shown by Efros and Shklovskii as follows.

If an electron is moved from an occuped site i to an
empty one j, the change in energy of the system due to
this one-electron hop (or particle-hole excitation) is

1
Jl J

lJ

The last term is the attraction of the electron-hole pair
created and its presence causes the Coulomb gap. From
the ground state, all excitation energies like (3) must be
positive. This implies a minimum separation between
pairs of sites whose single-particle energies lie on either
side of the chemical potential, and if the states are as-
sumed to be homogeneously distributed through space it
leads to a bound on the single-particle DOS n, (E) of the
form

vanishes only at E=p. It is tied to the chemical potential
and its form, in the limit of large disorder, should depend
only on the strength of the Coulomb interaction, not on
the form of the distribution of random energies or on the
position of the chemical potential within the band. It is
produced by the long-ranged Coulomb forces and is there-
fore to be distinguished from a Hubbard gap, which is due
to short-ranged forces. Only in the case of one electron
per site does a Hubbard gap separate a filled and an empty
band. It is not present in the model (1) because of the re-
striction n; =0 or 1 so the chemical potential always lies
in the lower Hubbard band.

Although the theory of the Coulomb gap has been de-
rived for the limit of negligible tunneling between sites, it
should hold close to the chemical potential in any disor-
dered insulator. This is because the states in a sufficiently
small range of energy will be well separated in space and
the Coulomb interaction will aways dominate. Thus
n~(E=p) vanishes, although the form of n~(E) discussed
above may hold only very close to p.

Computer simulations of the system defined by the
Hamiltonian (1) have previously been carried out, '

both for a model with a lattice and for a more realistic
model of an impurity band. ' We have carried out calcu-
lations of the model on a lattice by a very similar tech-
nique, and find somewhat different results in the region of
the Coulomb gap. We have also calculated the distribu-
tion of single-particle states in space as a function of ener-

gy, the particle-hole density of states, and the DOS for
"electron polarons. " These may be the dominant single-
particle excitations at low temperatures ' ' '; they in-
clude a region of relaxation around the added particle and
therefore have a lower energy (measured from p) than the
bare excitations. Efros argued that the polarization cloud
should have a finite radius, beyond which the polaron ap-
pears simply as a charged quasiparticle, and the density of
polaron states n~(E) should therefore obey (4) [but not
(5)]. Mott suggested that there should be no Coulomb
gap for polarons. We find that there is a gap, but that it
is narrower than that predicted by Efros.

If nz(E) vanishes at the chemical potential, it is impos-
sible to add an extra particle to the system with an infini-
tesimal energy increase over the ground state, even if local
relaxation is permitted. By contrast, if a total relaxation
of the system is allowed, the resulting DOS dn/dp for
adding an cxtI'a clcctron at thc chemical potcntlal 1s not
expected to be zero. This is an indication that the system
may be behaving as a glass, with regions of configuration
space inaccessible from the ground state at low tempera-
tures. This glassy state arises from competition between
the Coulomb energies and the random-site energies. There
is a clear analogy here with an Ising spin-glass having ran-
dom fields on each site. We have explored this analogy, to
investigate the possibility of glass transition in the system,
and this will be described later in the paper. A short sum-
mary of this work has already been published. '

Following Baranovskii, Efros, Gelmont, and
Shklovskii (to be referred to as BEGS), the Hamiltonian
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(1) was simplified as far as possible for modeling by com-
puter. The sites were put on a lattice (square or simple cu-
bic) of unit lattice constant. This should not affect states
close to the chemical potential as these will be sparsely
distributed over the lattice sites and the underlying period-
icity should be washed out. The random energies P; were
drawn from a uniform distribution between + 28. There
were K electrons per site, with 0&K&1. Each electron
had charge —1 and, to preserve electrical neutrality, each
site had a compensating charge of +K. The total charge
on site i is then (n—; —K), so the Hamiltonian becomes

, (n; —K)(nj —K)H= gn;P;+ —,
' g'

An important difference between this study and previ-
ous work is the treatment of boundary conditions. We
used periodic boundary conditions, but took only the
shortest distance between two sites in the repeated lattice
to calculate the Coulomb energies; thus each site appears
to be on one of the middle sites of the finite model. This
method has several advantages over the free boundaries
used by others. ' ' There are no problems with surfaces,
as each site is equivalent; it is easy to program; it gives
good values for the Madelung energies of the crystal (ac-
curate to 1 part in 10 for lattices of 20 or 10 sites); it
yields results which are much less sensitive to the size of
the sample; and it facilitates the task of finding states
which are stable against particle-hole transitions.

Because each site on the lattice is equivalent, the last
two terms in the Hamiltonian (6) can be reduced to a con-
stant. Writing Q„=g' (1/r;J) for the su. m of all the
Coulomb energies to site i in a lattice with A sites, which
is clearly independent of i, gives

The single-particle energies (2) take the form

J

j JJ

The expression for the energies of excitations, such as (3),
are unchanged by the addition of the background charges.
For the work described here, a half-filled band was used,
E = —,'. In this case there is electron-hole symmetry about
the chemical potential at p =0.

The computer program to generate ground states was
essentially as described by BEGS. A set of random ener-
gies was chosen, the electrons were thrown in at random,
and the system was allowed to relax by successive
particle-hole transitions, each of which lowered the total
energy. In the first stage, called "p-sub" by BEGS, the
single-particle energies were checked to see whether all oc-
cupied sites had lower energies than empty ones. If they
did not, an electron was moved from the filled site with
the highest energy to the empty one with the lowest ener-

gy, the single-particle energies were recalculated, and the
process was repeated until the ordering was correct. Most
of the excess energy was released in this stage.

The next stage of our program, like that of BEGS,
checks that the transition energy (3) for a particle-hole ex-
citation is non-negative for every pair of sites. We
checked all pairs first and then made the most favorable
hop, as we found this to give final states of lower energy.
The search for this most favorable hop is speeded greatly
by the elimination of unnecessary tests. If a hop was
made, the program returned to "p-sub"; if not, the model
state is now stable against all single particle-hole transi-
tions.

It is impracticable to test a model of reasonable size for
stability against all multiparticle excitations, but for many
samples we carried out a limited check of two-electron
hops (double particle-hole transitions). Such a transition
is composed of two single-particle transitions but the rise
in energy associated with it is less than the sum of the en-
ergies of the component hops, although in most cases the
difference is small. On a lattice, this reduction in the elec-
trostatic energy of the transition has a maximum valueE,„(=2—v 2 for a square or simple cubic lattice), so
one component of a favorable two-electron hop must be a
one-electron hop whose energy (necessarily positive) is less
than ,E,„. We co—uld therefore construct a table of all
one-electron hops whose energy is below this maximum
and test all of the two-electron transitions which include
these; the stability of this set guarantees stability of the
sample against all two-electron transitions. Unfortunate-
ly, there were too many one-electron transitions with ener-
gies less than —,E,„and a lower cutoff than this had to
be used, leaving the possibility that some very compact
two-electron hops of favorable energy change may have
been missed.

The final state will not in general be the true ground
state of the system. Starting with the same set of random
energies but with different initial occupations, a distribu-
tion of different "pseudoground" states resulted. If the
state of lowest energy occurred frequently in this distribu-
tion, we believe (following BEGS) that this is the true
ground state. It is possible that the true ground state has
peculiar properties which make it difficult to reach by the
Monte Carlo procedure outlined above, and that our iden-
tification of it is therefore wrong. However, this may
mean that the true ground state is difficult to reach for a
real system, and that the "selected ground state" which we
have calculated may well be the one of physical interest.

It is only possible to test the efficiency of the program
in finding ground states when there are no random ener-
gies and the crystalline ground state is known. The pro-
portion of "single crystals" among the final states de-
creases as the size of the samples increases, as would be
expected, the most common defects being pairs of grain
boundaries. No single crystals were found in 40 attempts
to find the ground state of 10/10)&10 lattice. For a
two-dimensional lattice of 16 sites, 11% of the final
states were crystalline. BEGS found no true ground states
in 30 attempts on a lattice of the same size. We believe
that this marked increase in efficiency is due mainly to
the boundary conditions. In the presence of random ener-



gies with 8 =2, just over half of our simulations led to
what we believe to be the true ground state (BEGS found
20% only).

Several checks were made for systematic errors in the
modeling procedure. First is the finite size of the lattice
used. This affects the Coulomb energies because they are
not summed to infinity but, as shown by the accuracy of
the Madelung constant, this is a smaH effect only, despite
the long range of the Coulomb force. More important is
that there 18 R longest hop P'm~„on the lattice, RQd thc
main criterion used to determine t4c ground state is the
stab111tp against cxcltatlons %'hose energy change 18 g1vcn
by Eq. (3). Therefore states with an energy within about
1/r, „ofp might be affected by the finite size of the
sample. In fact, most pairs of marginal stability are com-
pact, with r ~~r, so this effect also is small. This is
shown by Figs. 1(a) and 2(a), where n&(E) is shown for
samples of different sizes. This very weak dependence of
n~(E) on the size of the lattice contrasts with results of
other workers '9 and is, we believe, another benefit of the
bounda~ cond1t1ons.
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FIG. 2. Single-particle DOS for 30 systems, comparing (a)
different sizes of models: with sides of length 6 (crosses) and lo
(squares); (b) different qualities of final states: stable against one-
and two-electx'on hops (cxosses) and selected ground states
(squares).

PIG. l. Single-particle DOS for 20 systems„comparing (a)
diffcrcnt s1zcs of models: w1th sldcs of length 10 (pluses), 16
(squares), and 20 (crosses); (b) different qualities of Anal states:
stable against one-electron hops (pluses), stable against one- and
two-electron hops (squax'es), and selected ground states (crosses);
(c) diffexent ways of averaging: simple averaging (BEGS)
(pluses), p averaging (BEGS) (squax'es), and method adopted
hexe (crosses).

A second possible source of error is that the final states
may not be true ground states. We compared n~(E) of
models tested for stability against only single particle-hole
transitions, of models tested for stability against single
and double particle-hole transitions, and of selected
ground states. In two-dimensional systems [Fig. 1(b)]
there is little discernible difference between these, in agree-
ment with BEGS; but for three-dimensional systems there
is evidence of a deeper gap in the DOS of selected ground
states [Fig. 2(b)]. As it was found that more complicated
excitations put a sharper bound on n~(E) in 3D systems
[Eq. (»] but not in 2D systems, this greater sensitivity to
the quality of ground states in three dimensions is not
surprising. Unfortunately, computing selected ground
states 18 vczjj tlIQc consumIQg Rnd most Work had to bc
done with final states tested for stability against only sin-
gle and (most) double particle-hole transitions.

A third problem arises when combining results from
different samples, because the random energies cause the
position of the chemical potential p to fluctuate from
sample to sample. This effect washes out the gap in the
single-particle DOS if results from different samples are
combined directly, as was found by BEGS, although they
840%'cd that this %'as duc to thc sHlRH 81zc of thc saITlplcs.
Theg proposed 1Qstcad that p could bc estimated Rs thc
mean energy of the highest filled and lowest empty
81Qglc-partlclc state. This has t&o disadvantages: There 18
a "hard" gap of width 1/r, „where there are no states at
all in the averaged spectrum and, because the toro states
used to estimate p come from a region of low density in
cncrgY, thc estilTlatcd value 4as a wide distributioQ about
the true value. We exploited the electroQ-hole symmetry
and took p as the mean of the random energies P; (the
mean of the final single-particle energies E; had very
closely the same value). Data averaged by the three
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methods are compared in Fig. 1(c) for two-dimensional
systems.

Grunewald et al. ' have recently reported a calculation
which uses a mean-field approach more akin to that used
in spin-glasses. They derived a set of equations for the
mean occupation numbers in terms of the mean single-
particle energies, which must be solved self-consistently.
Fluctuations about the mean occupation numbers are
neglected in this method, which is therefore exact only at
zero temperature. Also, a self-consistent solution guaran-
tees only that the occupied sites have lower single-particle
energies than the empty ones: It does not guarantee stabil-
ity of the state against particle-hole excitations.

0.5
00 0

000 0
~0 0

0
0 ~ O

0

(:"-i)

III. CALCULATED PROPERTIES
OF THE GROUND STATE

0 0
0»0 00

oy

A. Single-particle density of states

The single-particle density of states n
&
(E) for models on

two-dimensional lattices with 16 sites and average occu-
pation K= —,

'
is shown in Fig. 3(a) for bandwidths 8 of

random energies from —, to 4. The arrows at E=+0.81
indicate the single-particle energies for a perfect crystal,
and the curve for 8= —,

' in particular shows signs of the
underlying periodic lattice. The important point is the
deep minimum in the DOS near the chemical potential

0 « I

E 1

0
~0

Or
0

(2.~)

FIG. 4. Comparison of the present results {open circles) with
those of BEGS {full circles) for 2D and 3D systems. The curves
are from the theory of Efros {Ref.8).
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FIG. 3. Single-particle DOS for various bandwidths of ran-
dom energies for 2D and 3D systems.

p, =o, separating filled from empty states: This is the
Coulomb gap. The DOS appears to go not quite to zero
but this is partly an artifact due to the width of the histo-
gram bins, and partly a residual error in the estimate of p
for each sample. For the more disordered systems, the
form of the gap seems to be independent of 8 as expect-
ed. It does not, however, have the linear form of Eq. (4)
that was seen by BEGS. A comparison of our results and
theirs for 8 =2 (3= 1 in their notation) appears in Fig. 4.
There is little difference except at low energies where our
results lie consistently below theirs; this is in agreement
with their expectation that their results are less accurate
for

~

E
~

&0.15. From a log-log plot, we found that our
results for n ~(E) were best fitted by a power law with an
index of about —, near p.

Corresponding results for 3D systems are shown in Fig.
3(b). The Coulomb gap is evident, and again it is deeper
than the parabola seen by BEGS. It is, however, well fit-
ted by the exponential form (5) as displayed in Fig. 5.
However, the parameters needed to fit (5) to the data are
in poor agreement with those calculated by Efros. The
strength of the exponential term decreases as B increases,
and a parabola is probably correct in the limit of a very
large band width.

The form of the Coulomb gap should be independent of
the degree of filling of the band. %e verified this for the
case of a quarter-filled band. A much wider range of oc-
cupation fractions was studied by Efros, Van Lien, and
Shklovskii. '
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FIG. 5. Single-particle DOS for three-dimensional systems

with 8 =2 fitted to the exponential form [Eq. (5)] (Ref. 8).

B. Distribution of states in space

In deriving the equations for the Coulomb gap, it was
assumed that states are homogeneously distributed in
space. ' It is therefore of interest to examine the distribu-
tion in space of states with energies close to the chemical
potential. Figure 6 shows the positions of sites within an

energy 0.4 of p in a sample with 50 sites and B=l. It is
clear that there is considerable clustering of like states,
and that the distance between such clusters is less than the
size of the sample; this was confirmed by calculating the
spatial correlation function. This makes it unlikely that
the clustering is due to a periodic potential permitted by
the boundary conditions. The degree of correlation de-

creases as 8 increases. The clustering does not lead to lo-
cal charge imbalances: Between the low-energy empty
sites of a cluster are filled sites with energies far below p.
Nor does it contradict the arguments of Efros and
Shklovskii, which imply a correlation only between sites
of different occupation. However, it does seem surprising
that their theory still works so well, considering the
failure of a crucial assumption. Perhaps their method
should be applied to the clusters rather than to individual
states, which could lead to the following picture. Long-
ranged fluctuations of potential depress all the single-
particle energies in some areas while raising them in oth-
ers. In a region of lowered energies there are many empty
states whose energies are only just above p, but the filled
states lie well below p, in energy, and therefore a cluster of
empty states appears in Fig. 6. This nonrandom distribu-
tion of states in space will in turn affect the density of
particle-hole excitations, which will be considered next.

C. Particle-hole density of states

This density of states n2(E, r) is that for creating
particle-hole excitations of separation r and total rise in
energy E. If the positions of sites were uncorrelated with

00
0

0 0
0

~ 00
0

0 0

FIG. 6. Map of states whose single-particle energies lie

within 0.4 of the chemical potential. The model had 50&(50
sites and 8 =1. Filled circles represent filled sites and open cir-
cles represent empty sites.

with

jM+X
g(x) = de n &(e)n, (e —x) . (10)

At large distances r, any correlation between sites should
vanish and n2(E, r) approaches the true value n2(E, r)
For short transitions or low energies, though, they may be
very different.

If the simple arguments used to derive the power-law
bound (3) on n&(E) are repeated for dipole rather than
monopole excitations, it is found that D=3 is the margin-
al dimensionality, above which nz(E, r ) is required to van-
ish at E=O. A logarithmic zero is found for D=3 by
Baranovskii, Efros, and Shklovskii' (see below).

Histograms of n2(E, r) and curves of the function
nt(E, r) calculated from n&(E) by neglecting correlation
are shown in Fig. 7. These are from samples with 10
sites and B=2. Results from two-dimensional systems are
similar. For the largest separation r shown (the longest
hop allowed on the lattice before the finite size is felt), the
"uncorrelated" function is a good fit to the computed
DOS, but it is poor for the shorter hops where it is much
too large at low energies. This is what would be expected
from the clustering discussed above, but the data are not
good enough for n2(E, r)/n2(E, r) to be determined accu-
rately. This was studied in more detail by Baranovskii
and Efros, ' who claimed good agreement between their

their energies and occupations (as in a noninteracting sys-

tem), this DOS could easily be calculated from the single-

particle DOS by a convolution as follows:

n2(E, r) ~ f &Et f &E~n)(E))n)(Et)

X 5(Et E2 r' E—)——

=g(E+r ') (9)
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LA
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r =$24' assumed that the pairs of sites contributing to the conduc-
tion are distributed at random and act independently.

D. Electronic polarons

LLI

PJ

0-,
05 0 05 0 0.5

FIG. 7. Particle-hole DOS for 3D Inodels on a 10)&10&10
lattice with 8 =2. The histograms are the computed results and
the curves are calculated from the single-particle DOS neglect-
ing correlation [Eq. (10)].

computed DOS, and the theory of Baranovskii et al. ,
'

who predicted that for three-dimensional systems

nz(E, r) -nz(E, r)exp[ —(r/ro)P(E) ],
where ro ~B and P(E) has a logarithmic dependence at
low energy. No dip is predicted for two-dimensional sys-
tems by this theory, but our numerical results appeared to
show a depletion of short low-energy excitations there too.

It should be emphasized that the presence of the
Coulomb gap in n, (E) does not imply the absence of
particle-hole excitations with low energies; the only re-
quirement is that all such excitations should not have neg-
ative transition energies. There are in fact many of them,
but most involve short hops; only for large separations of
the electron and hole is the number of possible excitations
with low energy reduced greatly by the Coulomb gap. In
a noninteracting system, the particle-hole DOS is linear in
energy. The interactions enhance nz(E, r) because the en-
ergies of the electron and hole are no longer restricted to
be within E of the chemical potential. This affects, for
example, the frequency-dependent conductivity. In a
noninteracting system this obeys the Mott co law at low

frequencies,

o(co) cero ! 1nco!

but if the Coulomb interaction and a parabolic single-
particle density of states for three-dimensional systems are
included, the result becomes

cr(co) &x co/! Ines!

obtained by Efros and Shkovskii ' and independently by
us. Note that a dielectric constant which diverges loga-
rithmically as co—+0 is found if this second expression for
the conductivity is used in the Kramers-Kronig formula.
This rather surprising result, which seems to contradict
the initial assumption of an insulator with highly localized
electrons, is not yet fully understood. Correcting some of
the approximations made in the derivation of this formula
would probably remove the divergence; nq(E, r) rather
than nz(E, r) was used for the density of states, and it was
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FIG. 8. Bare (squares) and polaron (crosses) DOS for models
with 8 =2 for 2D and 3D systems.

The concept of electronic polarons was mentioned in
the Introduction. An electron (or hole) is added to a site
and the surrounding particles are allowed to relax in order
to lower the total energy of the transition. Such excita-
tions may be important for the electrical conductivity at
low temperature, but the details of this remain controver-
sIal.

It is difficult to define these polarons precisely, and the
following method was used to calculate the DOS for pola-
rons, nz(E). Starting from a selected ground state, an
electron is added to a site and held there. If it was possi-
ble to move another electron and lower the system's ener-

gy, the most favorable transition was made; in practice,
the most favorable hops were in the vicinity of the added
electron. This was repeated until the system was stable
against moving any one electron, and the energy of the fi-
nal state above the ground state was taken as the energy of
the polaron on the selected site.

The DOS for bare and for polaron excitations calculat-
ed according to the above definition is shown in Fig. 8.
Restrictions of computing time meant that only systems
with 8 =2 were studied, with 16 or 8 sites. The
Coulomb gap remains in nz(E) but it is clearly much nar-
rower than that for the bare excitations. For 2D systems,
the linear form suggested by Efros is a fair fit but the
coefficient is much larger than he predicted, about 2. 1

rather than 2/vr =0 64 The e. xp.onential form (5) and the
parabola (4) were fitted numerically to the data for three-
dimensional systems, and had roughly equal errors (again
the coefficient of the parabola was larger than that
predicted for the bare DOS, 4.9 rather than 3/m =-0.95).
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The important point about our operational definition is
that a polaron 1s csscntlally loca11zcd aI'ound thc starting
site. In general, the ground state and low-lying excited
states of the system with an added electron will have a
lower energy than this polaron, and many of these will
have the selected site occupied. However, to reach such
states it is necessary to rearrange a large number of elec-
trons, and they may therefore not be accessible from the
starting state at low temperature. This picture of inacces-
sible phase space is typical of a glass, a subject to which
we will return later.

It is probable that in our simulation the amount of re-
laxation was limited by the finite size of the samples, as
well as the restriction to only single particle-hole transi-
tions; we intend to investigate this more fully in the fu-
ture. The electrical conductivity is the process in which
these polarons are supposed to be iInportant, but it is not
yet known how Inuch relaxation is allowed there. For ex-
arnple, Efros ' has suggested that the relaxation around a
polaron of energy Ez is limited to a sphere of radius
1/~E~ ~; our calculation is directly applicable to this
model. A more precise statement about the relevance of
our calculation to polarons in transport cannot be made
until more is understood about many-particle excitations
1n hopp1ng conduct1on.

IV. EXTENSION OF THE MODELING PROCEDURE
TO TEMPERATURES ABOVE 0 K

There are two main motivations for studying these
model systems at temperatures above 0 K. The first is
that the Coulomb gap is a property of the ground state,
and therefore exists strictly only at zero temperature. In a
noninteracting system, the occupation of states changes as
the temperature rises, but not their energies; in the pres-
ence of interaction, a change in the occupation of one state
alters the energies of all the others and consequently the
form of the density of states, as well as its occupation, is
affected. Thus the Coulomb gap is "washed out" by in-

CIcasing temperatuI'c.
The second reason for interest in the properties of these

models as their temperature is raised arises from the evi-
dence that the ground state shows behavior typical of a
glass; indeed, the Hamiltonian can trivially be rewritten to
resemble that of a spin-glass with random magnetic fields
on each site and long-ranged 1/r antiferromagnetic in-

teractions. Following this analogy, we have calculated the
specific heat, susceptibilities, and order parameters to
search for a transition from a "paramagnetic" to a
"glassy" state at some temperature T~. Unfortunately, the
results are far from conclusive and we are hampered in
particular by the lack of a satisfactory order parameter for
this problem with random fields rather than random in-
tcractlons.

The modeling of temperatures above 0 K was carried
out using the time-honored algorithIn introduced by
Metropolis et a/. , which gives a correctly weighted aver-

age of the measured property over phase space by simulat-

ing detailed balance. A transition in the model is picked
at random, and its energy change E calculated. If E&0
the transition is always made, but if E ~0 it is made only

with probability exp( —E/T) (Boltzmann's constant is set
to unity). For a detailed account of the Monte Carlo
method see, for example, Binder in Ref. 25. The total en-

-ergy and distribution of single-particle energies were mon-
itored to follow the approach to equilibrium. The system
was sampled only after several times the number of Monte
Carlo steps required for these to settle down to steady
values. Subsequent samples were taken sufficiently infre-
quently to be independent; a few hundred measurements
were made at each temperature. Only two-dimensional
models with 16 sites and a bandwidth of random energies
8 =2 were studied in detail. Most samples were heated
up, starting from a selected ground state so that an accu-
rate value of the energy of the ground state was available
to calculate the specific heat. Other runs were started
with a state where the electrons had been thrown in at
randoin and cooled from there. No significant difference
was found between the results from these two procedures.

Fig«e 9 shows the average distribution of single-
particle states at various temperatures. This distribution
is that of all single-particle states of all configurations of
the system, weighted according to a canonical distribu-
tion. At low temperatures there is a deep minimum in the
DOS but it fills as the temperature is raised, and for
T y 0.3 it disappears. This may be of importance for the
electrical conductivity. It shows that any attempt to ob-
serve the CouloInb gap must be made at temperatures well
below 0.3 in these units.

The lower curve on each graph shows the density of oc-
cupied states, and from the two curves the occupation
function can be found. This is shown in Fig. 10 for
T=0.5. A Fermi curve for that temperature is a poor fit
to the numerical data. This is not surprising, as the Fermi
distribution applies to noninteracting systems. However, a
Fermi curve assuming T'=OA2 is a good fit. Similar re-
sults were obtained at other temperatures. %C do not be-

0.3

0.5

FIG. 9. Averaged single-particle DOS for 20 models with
8=2 at different temperatures. The lower curves show the
filled states at each temperature.
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The density of electrons is the analogous quantity in our
models to the magnetization, the chemical potential plays
the role of the applied magnetic field, and therefore the
magnetic susceptibility is related directly to a density of
states. To search for a glass transition, we have calculated
the specific heat, various order parameters, and suscepti-
bilities as a function of temperature.

FIG 10. Occupation function at a temperature T=0.5. The
crosses are the numerical data, the poorly-fitting curve is a Fer-
mi function for T=0.5, and the better-fitting curve is a Fermi
function for T'=0.42.

lieve that this results from a failure of the systems to
come into equilibrium, and we verified this by approach-
ing T from above instead of below and obtained identical
results. The difference between T and T' may mean that
simple mean-field theories, which would give the average
occupation numbers as Fermi functions of the average
single-particle energies, are seriously in error at all tem-
peratures above 0 K. Griinewald et al. ' used such a
mean-field theory and obtained qualitatively different re-
sults from us; for example, they did not find a linear term
in the specific heat or Edwards-Anderson order parameter
(see Sec. VB) at low temperatures. It might be thought
that such a mean-field approximation would be quite
good, given the long range of the bare Coulomb interac-
tion. However, the interaction is screened if the tempera-
ture is raised above 0 K, and the effective range may then
become rather short.

A. Specific heat

The energy per site and the specific heat cz as a func-
tion of temperature are shown in Fig. 11. The specific
heat was calculated from the derivative of the total energy
with respect to temperature and from the variance of the
fluctuations of energy, with insignificant differences. At
low temperatures, c&

——y T and it rises to a peak at T=0.5.
The value of y is 1.36, which indicates a density of states
of 0.83 (per site per unit energy). The total particle-hole
density of states extrapolated to zero energy (neglecting
the logarithmic zero mentioned earlier) is about 0.19 in
these units, so there see~s to be a large contribution to c&
from more complicated excitations. If there were no
Coulomb interaction, the specific heat would still be linear
at low temperatures with a coefficient y=vr /3B=1.64
here, surprisingly close to the computed value for the in-
teracting system.

B. Order parameters

The definition of an order parameter is difficult in an
intrinsically disordered system. The parameter which
been studied most frequently in spin-glasses is one based
on the work of Edwards and Anderson

V. ANALOGY WITH A SPIN-GLASS

The Hamiltonian (6) for a half-filled band can simply
be rewritten to emphasize the analogy with a spin-glass.
If s; is the z coinponent of the spin on site i, taking the
values + —,', it becomes

This is an Ising model with a random field (t; on each site
and with long-ranged antiferromagnetic interactions. It
has been shown that a random field is relevant in Ising
models with only short-ranged interactions for D (3 (D is
the number of spatial dimensions), but to our knowledge
this model with I/r interactions has not previously been
studied. The long range of the interactions is expected to
be important at low temperatures, but this may not be the
case at high temperatures. After some relaxation time,
the system can screen a charge at temperatures above any
glass-transition temperature Ts and so the effective range
of the interaction may become quite short, as mentioned
above. This is generally true of any arrangement of
charges which preserves neutrality over small volumes; for
example, a neutral grain boundary perturbs the energies of
only a few layers of sites.

log& T

0.2.

0

FIG. 11. {a) Excess energy per site above the ground state and
{b) specific heat plotted against temperature.



For 8=2 this fits well the numerical results for the in-

teracting system except at ver'y low temperature, as
demonstrated in Fig. 12. Clearly qE~ is not useful for
describing any glass ordering of these models, but unfor-
tunately we know of no satisfactory order parameter. To
demonstrate that the Coulomb fields induce some order-
ing at low temperature, we introduced a modified pa-
1amctcr

q ~(T ) =2& I:&s &T —f(4;)l'&z, (13)

which subtracts from each spin the value f(P;) which
would be the Monte Carlo time-average value of s; if there
were no interactions. q ~(T ) vanishes at high tempera-
ture or in the absence of interactions; if the Coulomb
fields are completely dominant it would go to unity at,

zero temperature but generally it goes to a value between 0
and 1, which measures the relative importance of the in-
teractions. (Note that q ~ here differs from our earlier

0.5
~ 4

qE& ——&(2s;)r &E .

The inner average is a thermal average of a single spin, re-
placed in a numerical simulation by a Monte Carlo time
average; the outer average is over all sites and configura-
tions of random energies. The factor of 2 ensures the nor-
malization 0 &qEA & 1. Essentially, qpA measures the ten-
dency of a spin to have some preferential alignment. In a
model with no random fields but with random interac-
tions, this should be a measure of glasslike order.

Because it measures the alignment of individual spins,

qEA is unsatisfactory for a system with random fields.
This is because the random fields by themselves tend to
align the spins without any glasslike order being present.
For a noninteracting system with a bandwidth 8 of ran-
dom cncI'g1cs,

qE&(T) =1—x tanh —(x =4T/8) .{) 1

C. Susceptibility

Thcfc RI'c var1ous ways 1n which a susceptibility can bc
defined. For example, the usual isothermal susceptibility

Xr ——aM/aH is measured by holding the sample at a fixed
temperature T, applying a small magnetic field, measuring
the magnetization, and taking the quotient. Instead, one
could measure tllc f1cld-cooled» susccptlbthty Xp by ap-
plying the field when the sample is very hot, and allowing
the sample to cool down to T with the field still applied.
Generally, these two procedures would give the same re-
sult but in a nonergodic system, such as a glass below its
transition temperature, they need not.

The susceptibility per site is given by

aM an var(x)
aH ap, AT

(14)

where N is the total number of electrons in the system of
A sites;n=X/A. Since%= g, n;, .

var(X)= g((n;n, ) —(n;)(n, )) .

definition' by a factor of 2.) Plots of q ~(T ) for 8=2
and —, also appear in Fig. 12. There is some sign, on this

log-log plot, that a transition may be taking place at a
temperature of around 0.3. However, q, d .does not go
sharply to 0 at a well-defined transition temperature Tg
and it remains a strong function of T down to T=O. Ex-
panding (13) gives

q (T)=2&(;)'& —4&(;) f(P;)& +2&f'(P;)&

4(f (P; ) ) is identical to qEA (T ) and is therefore given by
Eq. (12), so it can be seen that q ~ will vary linearly with
T near T =0. The second term has a similar dependence
because of thc partlclc-11olc RIld otllcl cxcttatlo11s w111cll

exist down to zero energy. The presence of such low-

energy excitations means that any local definition of the
order parameter will have a linear dependence on tempera-
ture at low temperatures and will not look like the BCS
form, for example. An "antiparamagnetic" order parame-
ter has been suggested as an improvement on q,d, but
suffers from the same disadvantages of having no sharp
transition and va1ying linearly at low temperature.

For systems with only random interactions whose average
value is 0, it is often argued that the cross terms in this
suID vanish on avcrag1ng~ so

X= var(E) = — — g var(n; )
1 1

AT AT

44444~4~4 44~4~

0.01 0.1

FIG. 12. Calculated Edwards-Anderson order parameter qEA

for 8=2 (filled circles), modified parameter q ~ for 8 =2 (open
circles) and for 8= ~ (crosses), and isothermal susceptibility +T
for 8 =2 against temperature. The dotted curve for the suscep-

tibility is the Curie law and the broken curve for qEA is the re-

sult qEA for a noninteracting system.

=—(var(s;)) =—[1—qEA(T )]
1 1

T ' T

but this would not be expected to hold for the models
under study here, where the interaction leads to strong
correlation between the occupation of nearby sites. There-
fore it is vital to allow X, the total number of electrons, to
change, so the Monte Carlo procedure must now simulate
a grand canonical average rather than just a canonical
average. This introduces the serious problem of electro-
static charging energies, arising from the long range and
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constant sign of the Coulomb interaction. Should an ad-
ditional background charge be added to compensate for
the charge of an added particle and keep the whole system
electrically neutral? Consider the field-cooled susceptibili-
ty at zero temperature. If E(N) is the energy of the
ground state containing N electrons,

Bp Bp
an

=A[E(N+1) 2E—(N)+E(N —1)] . (15)

The difference between the values of E(¹1)obtained by
maintaining neutrality, spreading the compensating
charge uniformly over all sites, and allowing the charge to
become unbalanced is Q„/2A, the neutral system being
lower in energy, so

Bitt(charged) Bp(neutral)
Bn Bn

The charging energy Qq is proportional to A' 'r, grow-

ing with the size of the system. Provided that neither
value of dn/BiLi is negative, this means that the "charged"
value goes to 0 as 3 goes to infinity, and the susceptibility
calculated from the neutral system is the correct one to
take. A similar argument can be made for the isothermal
susceptibility.

We attempted to calculate this field-cooled susceptibili-

ty from Eq. (15) by finding the ground state of N —1, N,
and %+1 electrons in the same set of random energies,
using models of 16 sites with 8=2. There were large
fluctuations from sample to sample and only in about
20% of them was E(N) the lowest of the three energies.
From these, the median value of dn /dp was 0.06, but the
scatter was large.

The isothermal susceptibility X~ was calculated from
Eq. (14) by using a modification of the Monte Carlo
method described earlier. Instead of particle-hole transi-
tions, single-particle transitions (i.e., bringing an extra
particle or hole from infinity and adding it to a site) were
made according to the algorithm of Metropolis et al.
Again, the systems were maintained electrically neutral by
compensating background charges. Note that this method
measures the susceptibility in a restricted region of config
uration space, unlike the equilibrium value discussed
above, and will therefore give different results for tem-

peratures below that of a glass transition. At high tem-
peratures, electrons can be added or removed at will so
both susceptibilities tend to a Curie law, 1/4T. At very
low temperature, measuring gz involves adding an extra
particle to the ground state and gz- is therefore closely re-
lated to the single-particle densities of states ni(E) and
n&(E). Both of these vanish at E=p, so presumably
Xz ( T~0)~0 unlike X„.

The numerical results are shown in Fig. 13. At tem-
peratures above 1.0, 7z- is described well by the Curie law,
and its behavior changes below about 0.3. Unfortunately,
very 1arge differences between samples arise for tempera-
tures much below this. The trouble is that the behavior is
determined mainly by a few single-particle states whose
energies lie closest to p. Their density is low there, hence
there are large differences between samples. The problem

is exacerbated by the addition of the neutralizing charges,
whose effect on the energy is to encourgage the addition
of electrons or holes to the ground state. It is not possible
to deduce from these results whether or not the isothermal
susceptibility vanishes as the temperature is reduced to
zero.

Parisi and Toulouse' have put forward the hypothesis
for spin-glasses that for temperatures below that of the
glass transition the entropy is a function only of the tem-
perature and not of the magnetic field: S(T,H) =S(T).
Consequently the susceptibility should be independent of
temperature in this region; this follows from a Maxwell
relation and refers to the "equilibrium" susceptibility Xz.
For the electronic model this means that S(T,p, )=S(T ):
The entropy is not a function of the chemical potential.
The entropy at temperature T is given by

T
S(Tp)=S(O,p)+ I c&(T',p)d lnT',

so, for the hypothesis to hold in this system, it is necessary
that both the zero-temperature entropy S(O,p) and the
specific heat c&(T,p) should be independent of p, . It was
pointed out earlier that the Coulomb gap is pinned to p
and that its shape (close to p) is independent of the degree
of filling of the band and consequently of the value of p.
Provided that the excitations which give rise to the specif-
ic heat involve only single-particle states whose energies
lie near the Coulomb gap, the specific heat should there-
fore not depend on the chemical potential. It is not so
clear that this will also be true of the entropy at zero tem-
perature, but numerically this was found to be very small,
if not vanishing. Glasses are well known often to have
nonvanishing entropies at zero temperature but there
seems to be no reason why the value of this entropy
should be independent of the chemical potential. It may
well be only slowly varying, but it is not clear to what ex-
tent the Parisi-Toulose hypothesis will hold in the model
system studied here.

VI. CONCLUSIONS

This computer simulation has confirmed that the
Coulomb repulsion between the localized electrons causes
a soft gap in the single-particle density of states whose
form agrees well with theory in three dimensions but is
deeper than that predicted in two dimensions. ' There is
considerable clustering of sites of the same occupation
with energies near the chemical potential. Although the
Coulomb gap leads also to a depletion of long particle-
hole excitations at low energies, there is a large density of
short hops available whose transition energies are very
small. The effects of these need more investigation; they
may be important for ac conduction but not for dc be-
cause a continuous current-carrying path cannot be con-
structed from them. We have also demonstrated a gap for
dressed single-particle excitations ("electronic polarons"),
albeit a narrower one than that for the bare excitations.
This may mean that they do not give rise to T' conduc-
tivity as had been suggested before' but there is as yet no
satisfactory theory for electrical conduction by the hop-
ping of interacting particles.

By extending the modeling to temperatures above 0 K,
using the algorithm of Metropolis et al. , we have found
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that the Coulomb gap fills in at a temperature of about
0.3 K. As an example, in silicon doped with donors at
about 1% of the concentration at the metal-insulator tran-
sition, a typical Coulomb energy between nearby impuri-
ties is a few meV, so the Coulomb gap should be impor-
tant at temperatures below about 10 K.

We have also used the close analogy between this model
of interacting electrons and a spin-glass to examine the
possibility of a "glass transition" ainong the electrons.
There is some evidence that such a transition has occurred
but it is not conclusive. What is needed is a divergence in
a relaxation time or a susceptibility to provide an accurate
signal of the glass-transition temperature. There is a
scope for much future work here, both in theory and an
experimental verification of the glassy state, possibly by
cooling a sample in an electric field to drive it into a re-

gion of phase space from which it cannot return to
thermal equilibrium when the field is removed. Theoreti-
cally there is also the puzzle of why, in a strongly interact-
ing system, the specific heat and Edwards-Anderson order
parameter resemble so closely those calculated for a
noninteracting system whose densities of states are very
different.
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