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We study the T=O K properties of the electron-phonon system with Coulomb interaction using a
two-cutoff renormalization procedure. We find that there exist two regimes. The "classical" re-

gime is characterized by a classical amplitude order parameter and exists when the mean-field gap
(pseudogap) 5 is larger than the phonon frequencies boa. The order parameter for spinless fermions
is increased in amplitude by a repulsive nearest-neighbor electron interaction. A repulsive Hubbard

interaction in an incommensurate spin- 2 fermion band will increase it at sInall ~D and decrease it

at finite uE, /EF. For half-filled spin- 2 fermion band, however, the molecular crystal (MC) and Su-

Schrieffer-Heeger (SSH) models behave in opposite ways, the former having its order parameter de-

clease with increasing Coulomb 1ntelactlon. We predict a maximum 1n the SSH amplitude order

parameter as a function of the Hubbard interaction when 6 is equal to the Hubbard gap. This
agrees quite well with the result of the simulation of Hirsch. For 5 ~ ma, we predict a change to a
quantum behavior. In this regime long-range molecular order can only exist for a half-filled spin- 2

fermion band whenever the effective electronic interaction is attractive and the umklapp processes
are relevant. This quantum order is weakened and can be destroyed by a repulsive Coulomb interac-
tion or a negative forward scattering. We predict the quantum to classical-amplitude crossover to
occur when A=~a. In the case of the MC model with spinless noninteracting fermions, it corre-

sponds to the disappearance of long-range order at values in agreement with the calculation of
Hirsch and Fradkin. 'We analyze the implications of these two regimes on the properties of quasi-
one-dimensional solids, more specifically on the effect of interchain potential or hopping (tj ) cou-

plings. The existence of classical or quantum gaps favors interchain particle-pair tunneling whereas

the single-particle interchain hopping is quite pertinent whenever t& is larger than these gaps.

I. INTRODUCTIGN

One-dimensional (lD) systems are well known for their
opposition to long-range order at finite temperature.
This is so because of fluctuations, both thermal and quan-
tum, which break Up long-range correlations. The in-
teracting 10 electron gas is a good example. ' It is in-
trinsically a quantum system in which Cooper and zero-
soUnd channels Rrc coupled. Thc ladder diagrams, which
Rrc pertinent to R long-I'ange order parameter, cannot bc
siIlglcd oUt. Onc can intI'oducc variants, however, such
that this system can develop an amplitude order parame-
tcl Rt T =0 K Rnd oldcI' 1Q commensurate cases. IQ thc
Efetov and Larkin limit of a large number of degenerate
conduction bands, the Cooper channel is favored. , and the
systcID dcvclops a static sUpcrconducting RIDpl1tudc order
parameter. A retarded interaction (electrons interacting
with a low-frequency phonon field) can in turn stabilize
the zero-sound channel and lead to a charge-density am-
plitude order parameter. 6'7 These limit1ng cases possess
RQ RIDplltudc OI'dcI' parameter Rnd CRIl bc dcRlt with by the
standard approach. ' ~at is not so explicit, however,

are the intermediate cases. The electron gas can clearly
be made to undergo a transition from a quantum state to
one with a classical amplitude order parameter by playing
on the number of conduction bands or the amount of re-
tardation. These are examples of a quantum-classical-
amplitude crossover induced by varying microscopic pa-
rameters. A quantum-classical [three-dimensional (3D)]
crossover can also occUI 1Q quas1-10 systcIDs and may
have considerable impact on the understanding of these
interesting solids. As a matter of fact, all of quasi-ID
physics is strongly tied into the 10 intrachain behavior. "
It is thus not only interesting but also capital to fully
understand the strictly 10 properties.

There has been a lot of interest recently in quantum ef-
fects in 10 electron-phonon systems both with and
without Coulomb interaction. ' Some T =0 K simu-
lations for a half-filled band were used to explore the sta-
bility of the long-range Peierls order with respect to the
phonon frequency and the electron-phonon and Coulomb
interaction strengths. ' lt is the purpose of this paper to
study the 10 electron-phonon system at T =0 K, with a
two-cutoff scaling model. ' Although one cannot ex-
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pcct Illolc tllall R quail'tatlvc I"cprcsciltRtlon f10111 silc11 R

model, and even though it is limited to the weak coupling
limit, it will explain the results of Hirsch and Fradkin,
Hirsch, ' and of Mazumdar and Dixit. ' Moreover, new

light will be shed on the role of quantum fluctuations.
The model also has the advantage of being easily applied
to i.ncommensurate cases.

In Sec. II we relate the model Hamiltonians we shall be
studying. In Sec. III we discuss our two-cutoff renormali-
zation procedure and the significance of the quantum-
class1cal-anlp11tudc crossover. IQ Scc. IV w'c 1nvcstlgatc
the pure Peierls case, while we add the Coulomb interac-
tion in Sec. V. In Sec. VI we end with a discussion in
which we try to correlate our findings to quasi-1D solids.

II. HAMILTONIANS

Hirsch and Fradkin have explored the electron-phonon
problem using two model Hamiltonians defined on a lat-
tice. The first one is the molecular-crystal (Mc) Hamil-
tonian

2
Pi

~OMc X 2M
+ 2.

I g(C; C—;+I +H.c. )+A, gq;n; .

The first term describes molecules with intramolecular vi-
brations characterized by a mass M, a harmonic spring
constant x, momentum p;, and amplitude q; at site i. The
second term describes electrons which can hop from any
molecule to a near-neighbor one, through the molecule
transfer matrix I C~ (C; .) annihilates (creates) an elec-
tron of spin a on the ith Inolecule. The last term de-
scribes the electron-phonon coupling on any molecule. It
has an interaction strength A, coupling the amplitude q;
and the electron occupancy n; on the molecule.

The second model was that of Su, Schrieffer, and
Heeger (SSH)

2

JfossH= g 2~+ 2«@+I e)—
l

—g[(I —&(q;+I—q;)j(C; C;+I +H.c.) .

Thc first term describes tllc Rcoustlc Illodcs of tllc lilolc-
cules. These have mass M, momentum p;, and displace-
ment amplitude q;. Each one is coupled through a spring
constant ~ to the nearest neighbors. The second term de-
scribes the electron hopping motion. Here, the transfer in-
tegral is modulated by the molecular motion. It has an
average value t on which the electron-phonon coupling is

superimposed.
The Coulomb repulsion can be added on to both

models. Thc extended Hubbard 1ntcractlon

HH=U+n;+n; +Van;n;+i (3)

has been used. It describes intramolecular and nearest-
neighbor interactions between electrons. Our renormaliza-
tion procedure requires that one use the continuous limit
of these Hamiltonians, the philosophy being that only
those electrons lying near the Fermi surface play an im-
portant role. ' The MC Hamiltonian becomes

&oMc= polo(d, dq+ z )+ pop( Ik I

—kp)Ck Ck

+gN '~ g (dq+d q)pq . (4)

The first term describes optical phonons of frequency

ohio
——(N'/~)'~ (III= I), where d» (d» ) annihilates (creates) a

phonon of wave number q. The second term is the hop-
ping energy of the electrons linearized around the Fermi
wave number, kp. Ck (Ck ) annihilates (creates) an elec-
tron of wave number k and spin a. up is the Fermi veloci-
ty. There is an energy cutoff vp

~

k
~

&Upkp ——&p at the
Fermi energy EF. The last term corresponds to the
electron-phonon coupling with g =A, /(2Mcoo)'~;

p» =gk Ck+» aCk is the electron density operator, and
N ls tllc number of Illolcclllcs II1 thc cllRin.

The SSH Hamiltonian is written as

&ossH= g~»(d, d, + 2)+ X Up( Ik
I

kp)Ck. Ck. —

g g(kq)(dq+d q)Ck~qaCka,
k, g, CE

where the acoustic phonon frequency is co»

=2(ir/M)' sin(qa/2), the electron-phonon interaction is

g (kq) = i 4A, sin(qa /2)cos(ka + qa/2)/(2Molq )'~,
and a is the intermolecular distance.

Thc Coulomb term, 1Q turn, ls to bc rcwrittcn 1n the
"g-ology"-formulation, ' '

X XgiHak~abk2+k2+2kF+p, ililk& 2kF p, a++ g—g—g2Hak, abk ilbk +p, +k,
—I

k)k~ a,P kik2p a,p

+ Y ~ Mg3H(akiaak2+k2 —2kp~p, pilk)+2kp p —G,a+H—C ) ~

k)k~ a, P

where g1~——U —2V, g,~=U+2V, and g30 ——g1~ are the
backward, forward, and umklapp scattering elements,
respectively. Note that Umklapp processes are important
in the half-filled band case and can be present in other
commensurate cases. Here, ak (bk ) annihilates an elec-
tron with k ~0 (k ~0). This last equation assumes that

I

the Fourier transform of the interaction is a slowly vary-
ing function of momentum transfer around k =0 or 2kp.
Note that the cutoff in Eq. (6) is also at Ep.

As mentioned prcvlously, thc 1IIlportant phys1cs 1Q

g-ology occUI S at small clcctron momentum aroUnd k~.
The dominant singular diagrams are logarithmic in



4232 LAURENT G. CARON AND CLAUDE BOURBONNAIS 29

EF/max(T, co, uFq) where T, co, and q are the temperature
(kr) ——1), the frequency, or the momentum transfer, respec-
tively. The renormalization-group approach of So-
lyom ' selects these logarthmic terms and generates the
key, dominant behavior at low (T,co, upq) I.t is a very
powerful tool, albeit of a qualitative nature, and is strictly
technically defendable only for gH /(n. uz ) ~ 1, where

UF =Up/a.

kF -kF

i

g lph +
i

-kF kF

,'g l ph

i glph

' g mph

i&3ph

III. T%O-CUTOFF RENORMALIZATION

In a T=0 K perturbation expansion of the electron-
phonon interaction, this interaction appears as a retarded
electron-electron interaction —2g (kq)co~/( —co +co~). It
is attractive for co &co&. The idea behind the two-cutoff
approach' is the assumption that the phonon-mediated
electron-electron interaction is instantaneous (the co &gcov
limit) and equal to —2g (kq)/col) for co less than a typical
Debye frequency coD —()c/M) '~2, and negligible (the
co &)co& limit) when co & col). It is surely an interesting
simplifying approximation. It places all of the retardation
effects into the cutoff coD. The effective phonon-mediated
interaction can be described in terms of the g-ology termi-

nology of backward [g,„„=—2g (k~, 2k')/co2k ],
ward [grph = 2g (kz»0)/coo]» and umklapp [g3ph g1phl
scattering (half-filled band case only). In the MC case,
onc has

(7a)

I

I

g)ph +
l
I

' g3ph

i g3ph

i gl ph

FIG. 1. Bubble insertions which renormalize the phonon-
mediated backward {a) g~ph and {b) umklapp g3ph scattering for
a cutoff ~, greater than the Debye frequency.

c)g3ph

BX 2g1 phg 3 ph++ (Sb)

where X =co/E~, X=BR/din(co/EF), and N is the 2k~
charge response of the electron gas, which we define as
positive (a dressed bubble substituted for the bare one in
Fig. 1). The solution to Eq. (8) at co=co, which satisfies
tile boundary condition g» ph (co =EP )=g; ph is

(g i ph+g3ph )
g~iph(~c )+g3ph(~c )=

[1 ( )~( )]
while the SSH case gives, for kF -n/2a, .

2
g 1 ph g3 ph

(giph -g3ph)
[1 ( )&( )]

(9b)

&'[(g'1 ph—)'+(g3 ph)'P+ (ga)

where g2ph is approximately small and negative. The SSH
model has an effective interaction which goes to zero at
zero momentum transfer. It is not smoothly varying
around this value and it is only approximative to describe
it within the g-ology framework. The interacting
electron-phonon problem is thus reduced to two instan-
taneous interactions g;rr (i =1,2, 3) with cutoff E~ and

g;ph with cutoff coD. If col) ~EF, there is but a single ef-
fective cutoff Ep which is the natural one for the electron.
Our results will be shown to be defective in this case, how-
ever.

The idea of the renormalization procedure is to elim-
inate the degrees of freedom at the high energies starting
from EF down to a new cutoff co, . This renormalizes the
interactions and the response functions ' ' through the
logarithmically dominant contribution. If co, is greater
than GP~, thc g;~ renorma11zc 8s 1Q thc SolyolTl mult1pllca-
tive renormalization theory ' ' ' ' and become g;H(co, ).
As far as the g;ph are concerned, they are affected selec-
tively. ' On the one hand, g2ph is unaffected because of
its lower-frequency cutoff cor) (co, . gi ph and g3ph, on the
other hand, 81c rcnormalizcd th1ough thc bubble lnscr-
tions of Fig. 1, which are always governed by the higher-
energy cutoff. One can write the I.ie equations corre-
sponding to the terms in Fig. 1:

As we observe the half-filled band (g3„h ——gi„h) and in-
commensurate (g3ph ——0) cases, this reduces to

g,'))ph(. ) =g()) p„/f 1+(g i ph+g3ph»(~. ) l .

Since g; ph ~ 0 and X g 0, it is obvious that g ph increases as
the cutoff co, is reduced from EF. It may even diverge if
1 + (gi ph +g3ph )X(co, ) =0 before co, reaches coa. Thjs
needs to be interpreted. What it means is that the fre-
quencies which have been integrated out between co, and
EF renormalize giph (and g3ph) in such a way that its
stI'cngth 1ncI'cases. As 8 conscqucncc, thc 2kF phonons,
whose frequency is related to giph, become softer and the
electrons start to develop a pseudogap A. %hen g~ph be-
comes very large, the 2k' phonon frequency goes to zero
and the pseudogap is fully developed (b, -co, ). A diver-
gence in giph points to the occurrence of a mean-field
transition to a periodically distorted lattice (a real gap).
Our' rcnormalization procedure is, of course, no longer
valid in such a situation (the free-electron gas is no longer
appropriate as an unpertubed Hamiltonian on which to
build the renormalization-group approach). But it does
indicate, however, that the system has developed strong
lattice correlations and a meaningful amp/itude order pa-
rameter for the 2k~ distortion. All the frequencies below
this critical cutoff are to be considered as purely static as
far as this pseudogap is concerned, although they are sure-
ly relevant for the phase fluctuations in the incommensu-
I'atc case. ' This wRs thc I'cason1Qg whcQ 1t was pI o-
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posed to replace the cutoff max(a), T,U~q) of g-ology (see
the end of Sec. II) by max(co, T,UJ;q, b, ) in the phonon self-
energy renormalization and pseudogap calculation of Ref.
21, whenever A&or~. All energies less than 6 are ir-
relevant to the electronic responses. Thermal fluctuations
(kinks) must of course be considered in a proper treatment
of this static problem. The chain can then be treated by
the generalized Ginzburg-Landau method. * Its quantum
version has also been used for the quantum phase fluctua-
tions in the incommensurate cases. '

If g'(~h(co, ) does not diverge before co, reaches con, the
chain essentially remains quantum as the amplitude order
parameter has no chance to develop. At m, =ma, one has
the instantaneous interaction g;, of Fig. 2 with a single
cutoff at ~D, that is,

g(t=g (h+g(H 2(g—) kg)a+g3phg3a»(D» (I»)

(1 lb)

g3t=g3ph+g3a 2(g(phg3a+g3~hg(a)E(~D), (1 lc)

where g; ~h
——g; ~h(co& ) and g;a ——g;a(roD ). Note that

g2ph=g2ph. Thc system has thus been rcnormallzcd to 8
single-cutoff one and can be dealt with as in conventional
g-ology. 2 Note that when coa pE~, the problem be-
comes that of electrons interacting through g;, =g;a+g;~h
with the cutoff E~.

As mentioned in the Introduction, one can foresee the
possibility of a quantum-classical-amplitude crossover. It
will occur as the mean-field gap 6 or ordering tempera-
ture TMF -6 determined from

I+(g) (,h+g3ph»(~) =0

becomes of the order of coa. Reducing ~g;~), ~

or E will
lower h(TMF) and permit a sweep through the crossover,
from a classical amplitude to a quantum regime.

We shall now examine the consequences of our pro-
cedure on the various limits of the electron-phonon prob-
lem at T =0 K (note that our analysis is also valid for
temperature by identifying co, to T).

b =E~exp( IJ2—~uFa/I, ) & coD, (14)

where 1M=1 for an incommensurate MC, —, for a half-
filled band MC, —,

' for an incommensurate SSH chain, and
for a half-filled band SSH chain. Note this gap is

BCS-like. One can then expect a quantum-classical-
amplitude crossover when h=coa at a critical value I,
In the quantum regime, the problem is reduced to [see
Eqs. (10) and (11)t

glt g3t glph g3ph ~g2t g2ph

Since this is the spinless-fermion case, g3, is irrelevant (it
is cancelled by its own exchange term) and g&, can be ab-
sorbed into gz, by the transformation g),~0 and

g2, ~g2, —g), ~0 (the exchange contribution of the back-
ward scattering is equivalent to the direct contribution of
the forward scattering and vice versa). 0 This transforma-
t1on removes 8 common Hubbard interaction which has
no effect on spinless fermions. The problem is thus re-
duced to that of electrons with positive forward scattering
only. The solution of the Luttinger problem is known.
The system is indeed highly quantum. It has no fermion
quasiparticles, but it does have a power-law singularity for
the charge-density response functions. There is no long-
range order. The phase diagram for spinless fermions is
shown in Fig. 3 and is qualitatively similar to the one ob-
tained by Hirsch and Fradkin' for this same problem.
Note that for the MC model and with EF -2t-UFkF and
kJ; ——m. /2a, we predict the crossover to occur at b, -coD
that is r/mD ——,

' e xp( 4t~ /A, , ) or (xt)'~ /A. , -0.4 if
r/coa —1. This is indeed quite close to the values of
Hirsch and Fradkin (in their Fig. 3). The coa~oo limit
is correctly described for the molecular crystal, and shows
no long-range order. In the same limit for the SSH

A. Spinlcss fcrmions

The chain develops an amplitude order parameter if b,

[see Eqs. (7), (12), and (13)] is larger than coa, that is, for

IV. PURE PEIERI.S

We shall first examine the limit of zero Coulomb in-
teraction for spinless and spin- —, fermions. In this case,
one has for co/EF &~ 1

X (co ) =D (0)ln(EF /a) ), (13)

where D(0) is the density of states at the Fermi level. It is
equal to (2mUF) ' for spinless fermion and (~uz) ' for
splfl- T~ feHIllons.

v Kv'F

&c

I

l

+(') h g(')H
l

g(ph
+ iN

g~ph

+ iN

g(', ) H

~(', ) H

+ ', N

'
~mph

FIG. 2. Diagrams contributing to the renormalized backward

gI, and umklapp g3, scattering when the problem has been re-
duced to a single cutoff. The last foux terms are the cross ones
between the phonon and Coulomb contributions and involve the
2k~ chax'ge response function X at the cutoff.

EF /4JD

FIG. 3. T=0 K phase diagram for the Peierls chain. The
classical-amplitude region has a well-defined amplitude ox'der

parameter for the 2kF lattice deformation. The quantum region
shows a long-range order of a quantum nature (no amplitude pa-
rameter) for a half-filled spin- 2 fermion band but no ordex for
the incommensurate spin-2 —fermion or the spinless-fermion
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I
g]ph+gsph

I

~ ~

=0
logo rithmic
response

EF

FIG. 4. Qualitative behavior of the charge response function
N for spinless fermions as a function of frequency co and for
various values of the power-law exponent y. The crosses indi-

cate the mean-field solution [Eq. (12)] for co= 6 —TM„.

range order.
In the half-filled band case, the umklapp processes are

quite relevant. One has gz, ——g~, gg2, &0, which implies
g],—2g2« ~g3, ~. There is a gap in both charge and
spin excitations and thus long-range order. It is of a
quantum nature and cannot be associated with an ampli-
tude order parameter in the Landau sense. Thus there is
always long-range order in a half-filled spin- —,

' fermion
band which confirms the results of Hirsch and Fradkin
(again the co& &Ez situation should be interpreted cau-
tiously within our scheme since, contrary to what we
predict, the coD~ao limit is different for the MC and
SSH models ). However, this long-range order is of a dif-
ferent nature in the classical and quantum cases. The
above results are qualitatively shown in Fig. 3.

V. PEIERLS WITH COULOMB INTERACTION

A. Spinless fermions

model, however, we predict no long-range order whereas
the solution of Hirsch and Fradkin predicts such order
when A, is larger than a critical value. The reason is that
the dispersion (nonlocality) in the umklapp processes,
which we have neglected in our g-ology approach, is quite
relevant. As shown by den Nijs it leads to an ordered
ground state past a critical coupling strength.

B. Spin-2 fermions

The quantum-classical-amplitude crossover is qualita-
tively similar to the one for spinless fermions except for
the change in the density of electron states at the Fermi
level. One should have mvF instead of 2nvp in Eq. (14).
The quantum regime is different, however.

In the incommensurate case, g3g —0 and g/g &g2, &0.
There is a gap in the spin excitations and a power-law
divergence for the charge density and singlet superconduc-
tivity (SS) response functions, but there is no long-

The Coulomb interaction for the extended Hubbard
case and for spinless fermions can be recast as

g ]H —g3~ —0 and g2~ =4 V (see the arguments in Sec.
IV A, the Hubbard U interaction has no effect on spinless
fermions). The charge-density response of the electron gas
for co & con and (co/EF ) « 1 has a power-law behavior

N (co)=A (co/EF )r,
where

y =2[1—2V/nvz)' /(I+2V/eve)]~2 —I], (16)

and A is some slowly varying function of co. Note that
y &0 if V&0 and y&0 if V&0. This behavior is only
valid at small frequencies, and it should join smoothly
with the perturbation theory results for the electron-gas
response (near logarithm) as co +EF. Perturbatio—n theory
predicts an enhancement of N(co) for V &0 and a reduc-
tion for V & 0 (y~ 4V/rcvF ) (see R—ef. 20 setting

g ]JJ—g3+ —0). The general behavior of N (co ) is qualita-
tively shown in Fig. 4.

The chain develops an amplitude order parameter
whenever b, & coD. It is interesting to note that for a small
electron-phonon interaction (g;ps~0) and thus a small
mean-field gap b„ the power-law behavior of N(co) leads
to the condition that for V & 0 and thus y & 0,

VF h=EF(A ']tclc/k )'~r & coD, (17)

EF/Coo
FIG. 5. T=0 K phase diagram for the Peierls chain with

Coulomb interaction and with spinless fermions. The classical-
amplitude region has a non-BCS-like amplitude order parameter
for the 2k+ lattice distortion. The quantum region has no long-
range order. The dotted and dashed-dotted lines refer to the in-
commensurate spin-2 fermion cases which show a change in

charge response as a function of coD.

which is obviously a non-BCS-like relation due to the
Coulomb interaction. Generally speaking, the solution to
Eq. (12) must be done numerically or graphically, as is
shown in Fig. 4. The ensuing quantum-classical-
amplitude crossover h=roD is shown in Fig. 5. The in-
teraction V, when positive, strengthens the charge correla-
tions and expands the classical region, the more so the
smaller coD is and the larger V is [see Eqs. (16) and (17)
when coD is small; when coD is large, N(co) is nearly loga-
rithmic]. Obviously, a nearest-neighbor repulsion favors
the formation of a charge-density wave (CDW). When V
is negative, on the contrary, it weakens the classical re-
gime. The maximum in N(co) at a given V results in pla-
teaus at fixed A,, for small AD corresponding to
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N (~ )max (g I ph +g3 ph )
—1

In the quantum regime, one recovers the Luttinger
model with an effective forward scattering g2 „——g2, —gi,
[see Eq. (11)] which has no long-range order. Depending
on the sign of gz „,the chain can show a power-law diver-

eff

gence of the CDW response function when gi „&0or of
the superconductivity response function when gz &0 (for

sufficiently negative V). These effects of the Coulomb
interaction on a spinless fermion system are predictions in
as much as no simulation has yet been performed.

B. Spin-2 fermion

l. Incommensurate case

The charge-density response function for the incom-
mensurate cases has a power-law dependence, valid for
(co/EF) «1, of the form:

8 +8,—2
(co/EF) '

8 —2
N(co) = (co/EF) '

8 —1

(colEF) '
co «h1 and g10 &0

co « h1 and g 1~ & 0

(18a)

where
' 1/2

8, =
2 —(2gZH —

giH )

2+(2g2H g 1H)
1/22+

S
2—gaa

1/2(1 —8 )~i-EF
I giH I

and

(18b)

(18c)

(18d)

I
g~H =ger�/~U~

( —1/2) (1—8, ~If giH & 0 (repulsive), 8, & 1 and b, ,=EFg»-1/ 1H~Epg 18
' »Ez in the limit g1& « 1. A1 is thus an ir-

8 —1
relevant parameter and N(co)=(co/EF) ' for all the in-
teresting cases (giH &1). The situation greatly resembles
the spinless-fermion case where 8, —1 is substituted for y.
8, —1 is negative and reinforces the CDW correlations
when 2g2H —giH

——giH+8V=U+6V&0. A sufficiently
negative value of V ( & —U/6) would then weaken the
CDW correlations. These conclusions, however, apply
inasmuch as co/EF «1. First-order perturbation theory
predicts that N (co) is reduced by a positive
2giH —g2H ——U —6V for small values of ln(EF/co). More-
over, the simulations of Hirsch and Scalapino confirm
that N(co) is reduced by a repulsive Hubbard interaction
for values of co/EF which are not too'small. Whenever
8, —1&0 (for V& —U/6) and U —6V&0, we expect the
result shown by the dotted line in Fig. 5, which is an
enhancement of the classical-amplitude region (smaller
lt., ) at large EF/coD and a reduction at smaller values. If
U —6V& 0, then the y &0 curves of Fig. 5 should describe
this situation. If 8, —1&0 (for V& —U/6) the solid
curves corresponding to y&0 in Fig. 5 should prevail.

There is no long-range in the quantum regime. The
ground state is, however, very different from the spinless-
fermion case with the possibility of divergence in all
response functions: CDW and SS if gi«0, CDW and
spin-density wave (SDW) if g„&0 and 2g2, —gi, &0, and
SS and triplet superconductivity if g i, & 0 and
2g2t g lt & 0'

If g» &0 (attractive}, 8, & 1 and hi~EF
I giH I

«EF in the limit
I giH I

«1. 6i is relevant in this case
and is the gap in the spin excitations. When
coD &b, «E~, the power exponent 0, —2 is always nega-
tive when 2g2H —

giH & —1 for all interesting cases in
which the renormalization approach is valid. N(co) is
then always divergent as coD~0. When Ep &&coD & 41,
the power exponent is 0, +8,—2. CDW correlations can
only be enhanced if 8, +8, —2 &0, which can only occur
if V & 0 (the attractive Hubbard case V =0 favors SS
response ). As mentioned previously, whenever coD/EF
is finite, we expect an enhancement of N (co) for
U —6V&0 from first-order perturbation theory. The re-
sulting phase diagram will thus be the following: The
cases (8, +8,—2&0, U —6V&0) and (8, +8,—2&0,
U —6V& 0) are illustrated by the dotted line in Fig. 5, the
case (8, +8, —2&0, U —6V&0} corresponds to the solid
lines labeled y &0, and the case (8, +8,—2&0,
U —6V&0) is described by the dashed-dotted line. The
quantum region would behave as discussed in the g1~ &0
case.

The arguments we have used in the static regime when
coD/EF~O are siinilar to those of Chui et al. , except
that we have examined a more general situation. They
had concluded as we have that a repulsive Coulomb in-
teraction should lead to an enhancement of the mean-field
Peierls transition when the power-law exponent for the
CDW response is negative. In this respect, a positive V
strengthens the CDW correlations while a negative V
weakens them.

2. Half filled band

The half-filled band case is by far the most complicated
because of the umklapp processes. In the incommensurate
case, the electron gas was not pinned to the lattice and it
reacted to a charge excitation in an optimal fashion (max-
imum possible response so as to minimize the energy}. In
the half-filled band case, the spin- —,

' electron gas is in tune
with the lattice, and umklapp processes are highly
relevant. Because of this, the charge response functions
associated with the MC or SSH models will not be the
same. In the repulsive Hubbard case the ground state
has gapless homopolar excitations, but its ionic excitations
have a gap (the Hubbard gap). The MC phonons couple
to the ionic excitations (piling more than one electron on a
given molecule}, while the SSH phonons couple to the

horn opolar excitations (the dimerization favors inter-
molecular hopping, and thus a charge buildup between the
molecules of a dimer). One thus expects the CDW
response function of the MC to be nondivergent, and that
of the SSH crystal to be divergent when U&0 and V=O
(and vice versa if U&0). This can be formulated in the
following way. We define, as did Kimura, the CDW
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response functions N +=—N+++N+, where N+~+~ is the
+2k+ ——m/a entrance-momentum to +2k+ exit-
momentum response functions. It is quite obvious from
this structure that N+ couples (responds) to a charge den-

sity of the form (e +e )-cos(2k~x), while N
couples to one of the form sin(2kFx). Therefore, N+
responds to a charge buildup on the molecules (at x =0,
for instance), while N responds to charge buildup be-

tween molecules (at x = ,
' n. /k—z———,

' a). Consequently, N+
is pertinent to the MC case, while N is to be used for the
SSH crystal. The work of Kimura reveals that for
ro/E~ &&1, one has

N-+(ro) -8+-(ru/Ep) +-,

where

0/7T YF.

FIG. 7. Qualitative behavior of the mean-field gap b as a
function of the Hubbard interaction U for the SSH and MC
models with a half-filled spin- 2 fermion band.

(y+ y )=.
5 3

(T& 2 )glH g3H &0t

( —»1)gta=g3a & o.
(19b)

It is assumed that the condition 2g2& —g» ~ —1 prevails
(weak coupling limit). It is thus confirmed that only N
diverges (the SSH case) when g&~&0 and only N+ (the
MC case) otherwise. Even though the exact value of y+ is
subject to controversy, the qualitative physics remains
unchanged. The behavior in Eq. (19) is presumed by some
to hold even when co is less than the Hubbard gap A~.
This gap is pertinent to CD% excitations when

2g2Ir —gtH & —
~ gsH ~

. This has been challenged by Em-
ery and Emery et al. , who claim that N(co) must be
constant (that is nonsingular) when ru & b,ir. On the other
hand, H. J. Schulz has calculated (private communication)
that N (co)a(t/U) ro

' when
~

t/U
~

&&1. We then pro-
pose that the charge response function flattens out some-
what for ro & hH but has a singular behavior at very small
frequencies.

We shall first examine the pure repulsive Hubbard case
(U&0 and V=O) for which there is a correlation gap b,&.
We speculate that X+—should then behave qualitatively as
shown in Fig. 6. Even though the power law is the same

for all U&0 and co & b,Ir, one should expect an increase in
the amplitude 8 of N, which is the strength of the
correlations, as U increases and a decrease in the ampli-
tude 8+ of N+, since the ionic response stiffens (first-
order perturbation theory predicts such a decrease in 8+
but leaves 8 unchanged). As mentioned at the end of
the last paragraph, %+~0 as U~ oo and X+ must de-
crease as U increases for co&3,H. The Hubbard gap for
small U/t is given by

b,H —Sm '( Ut)' exp( 2rrt/U) . — (20)

As long as ~D & AH, the COW correlations will be gradu-
ally enhanced for the SSH case (N ) and decreased for
the MC case (N+) as U increases (the enhancement is in
the amplitude and not the power-law exponent). As U
continues to increase b,~ will become larger than coD [ex-
ponentially in Eq. (20)], from which point on N de-

creases, as do the CDW correlations. Thus the mean-field
dimerization gap initially increases as U increases and
eventually decreases until the quantum crossover is
reached (when 6&coD). This is shown in Fig. 7. This
general behavior has been verified by Hirsch' (in his Figs.
1 and 4) and Mazumdar and Dixit. ' The classical-
quantum —crossover condition of Fig. 8 appears somewhat
similar. We thus predict a maximum in the 5( U) curve at
b, -b,Ir. This is quite interesting. If we use the values of
Hirsch' (in his Fig. 1); roD ——0.066, A, =0.29, a=0.25,

KvF
Xc quantum

I

I

~aH

FIG. 6. Qualitative behavior of the charge response functions
X+—as a function of frequency co and for various values of the
Hubbard repulsion U for a half-filled spin- 2 fermion band. 6&
is the Hubbard gap.

amplitude

U/77 VF

FIG. g. Qualitative behavior of the critical quantum-
classical —crossover condition for fixed coD as a function of the
Hubbard interaction U for a half-filled spin-2 fermion band.

h~ is the Hubbard gap.
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t =1, and b, =0.3 at the maximum, we get from Eq. (20)
with b,H =b, a value of U=2. 5, which is indeed extremely
close to his value of U at the maximum. It would then
seem that the criterion U/V 2t -3 of Mazumdar and Dix-
it' may be slightly inaccurate. In the quantum regime,
the situation is the following. The g;H scale towards the
values gilt~0, g2It~1, and giH~2. Oile cail theil safe-
ly assume that 0(g)H gg2~ Qg3~. On the other hand,

g~ ph =g3ph 4g2ph Q 0. Consequently, g;& Q g; ph and
g„~g„. In the SSH case where g, p„-o, one has g„~O.
Since g2&h &girth in the MC case, one can safely assume
that g2, &gi, for small U. The general behavior of g;, as a
function of U is illustrated in Fig. 9. From the above ar-
guments it is obvious that gi, —2g2, &

I gi, I
m all cases

for the SSH crystal and for most U/iruF for the MC
chain (except when gi, -0). The system has long-range
order in as much as gi, (0 and gi, —2g2, & lgi, I. The
correlation gap, which occurs in both CD% and SDW ex-
citations, is related to gi, . As U increases, Ig&, I

de-
creases from

I g, ~h I. Simultaneously, gi, becomes less
and less negative. At a critical value U„gi, ——0, from
wh1ch point on the chain has no long-range ol der and
dominant SDW divergence. ' This trend is illustrated in
Fig. 10. U, can be estimated from Eq. (11) and the condi-
tion

g«-giph+giH+2 I girth IN(~D)(g H+giH)

g 1 ph++g3H

where a (3 [indeed, giH (giH, gi pi,
——

girth, and
2

I gi &h I
N (coD ) & 1 from Eq. (10), since the chain is in the

quantum regime]. Note that Igi, I
~0 before gi, ~0,

which would imply some sort of ill-defined region when
the long-range order would disappear as U increases and
faintly reappear again as U gets closer to U, (the MC
model is even more complex, since g~, —2g2, can become
greater than

I gq, I
). Whether this behavior is real or not

is uncertain. It may just be an artifice of the method.
This regime should be explored by numerical techniques.
Aside from this peculiar behavior, which has not been il-
lustrated in Fig. l0, the general trend is as observed by
Hirsch (in his Fig. 3). He expected a transition to an un-
dimerized state at U, =4k, /x for the SSH model. We get
t»s v»ue if lgiphlN(~D)«I »«hus lgiihl
= Igi&i, I

=4k, /a. for the SSH case, and assuming

giH —gilt= U tliat ls fol' ilot too Iilllc11 renormahzatlon
(large coD). In the attractive Hubbard case (U&0), the

gag( MC)

gf

FIG. 10. Qualitative behavior of the amplitude of the long-
range order in the quantum regime of a half-filled spin- 2 fer-

mion band. The region close to U, is uncertain.

Hubbard gap is no longer relevant to the CDW response
function of the electron gas. Thus the responses of Eq.
(19) are "valid" at all frequencies to/E~ && 1. We then ex-

pect the type of behavior illustrated in Fig. 4, N+ being
divergent this time (y~u in Fig. 4) and N going to zero
as co~0 (y~ —U in Fig. 4). The smaller U, the larger
the coefficient 8+ and the smaller 8 in Eq. (19a). The
quantum-classical-amplitude crossover should thus appear
quahtatively as in Fig. 5, with y —+U for the MC case and

y~ —U for the SSH model. These results are shown in
Figs. 7 and 8 and extrapolate from the U&0 values. In
the quantum regime, g;It & 0 and thus g;, (0. From the
scaling laws for g;0 (giH~ —2, gzH —+0, and giH —+ —2),
one can conclude that g~H-g3~ &g2H &0. Consequently,

g„-g3«g2, as shown in Fig. 9 (extrapolating from the
U &0 region). We thus have g„—2g„( lg„l for ail
values of U and for both the SSH and MC models. The
quantum regime thus has long-range order which is stabi-
lized by an attractive interaction (the more so, the more
negative U is). This is shown in Fig. 10 and extrapolates
from the U&0 values.

We shall finally discuss the effect of the nearest-
neighbor interaction V. If U=O, then gi~ ——g3H ———2V
and g2~ ——2V. A positive Vimplies an attractive g~~ and,
as discussed above, a divergent N+, which in turn favors
the MC molecular distortion. On the other hand, a nega-
tive V means a divergent N and favors the dimerization
of the SSH model. Thus, quite generally, when U&0 we
expect a positive V to decrease X and increase X+ and
vice versa for negative V. As a matter of fact, whenever
V sign( U) &

I
U

I
/2, giH changes sign and it can be seen

from Eq. (19) that the roles are then reversed for N+ and
N . One can thus foresee a dramatic change in the na-
ture of the ground state when this occurs. This is con-
firmed by Dixit and Mazumdar. ' In the quantum re-
gime, the fact that g2H is affected differently than gitt or
g3& matters only inasmuch as gi, —2g2, can be made
large~ th»

I git I
This «q»res that g»

=U+2V~ U —2V or V&0. Whenever this occurs any
long-range order disappears, making way for a leading
divergence in the SS response function. '

FIG. 9. Qualitative behavior of g;, in the quantum region for
a half-filled spin- 2 fermion band as a function of the Hubbard

lnteiaction U.

VI. DISCUSSIGN

We have studied the low-energy properties of the
electron-phonon system with and without Coulomb in-
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teraction using a two-cutoff renormalization theory.
Within its range of applicability, that is, for weak cou-
pling (A, /veau~ and g;Hler&&1) and an appreciable
range of phonon frequencies (0(~D &Ez), we have been
able to reproduce all the results of previously done numer-
ical s1mulat1ons.

The characteristic feature of the electron-phonon sys-
tem is surely its two regimes. Ther'e is the "static" regiIDe
in which there is a well-defined amplitude order parame-
ter for the molecular displacements. This occurs if the
mean-field gap (or the pseudogap) is larger than the Debye
frequency. This amplitude order parameter is influenced
by the Coulomb interaction. A repulsive V increases it for
spinless fermions. For spin- —, fermions, a repulsive
Hubbard interaction will also increase it in incommensu-
rate cases when coD/EF~O, but decrease it if coD/Ez is
finite. The half-filled band case is somewhat sp(facial.

There are different behaviors for the SSH and MC
models. The molecules in the MC couple to the ionic
charge response of the electrons. It is generally subdued

by a repulsive interaction, which means a decrease in the
order parameter as g~H increases. The SSH chain couples
to the homopolar charge response of the electrons. It is
enhanced by increasing the Coulomb interaction until the
corr'elation gap becomes larger than the gap associated
with the order parameter. From there on the response
function decreases. The amplitude of the order parameter
docs thc sRIIlc.

ThcI'c 1s thc quantUIIl behavior 1n which thc clcctIon-
phonon coupling appears as an effective attractive interac-
tion between electrons, which is renormalized by any
Coulomb interaction, and which add to it. Depending on
the value of the net electron interaction, there can be
long-range order of a quantum nature in the molecular
displacement for the half-filled spin- —,

' fermion band case
(which could be generalized with some modifications to
any coIDIDcnsuratc case w1th Umklapp pI'occsscs, that ls

g3e&giH) This occurs if gi«0 and gi~ —~g2~& lg3t I

since there is then a gap in both spin and charge degrees
of freedom. This quantum order is sensitive to the sign of
the Coulomb interaction. A positive effective interaction
g~@——U —2V weakens the order and can even destroy it in
favor of a divergent spin response function if it gets larger
than a critical value (of order of A, /a. ). A sufficiently
negative value of V (or g2~) can also destroy it and favor a
singular SS response function.

From our analysis, we are in a position to discuss the
limitations of the standard treatments of the 1D low-
temperature electron-phonon system. In the case of the
pure Peierls system, a classical field (order-parameter) ap-
proach in terms of the Ginzburg-Landau (GL) free-energy
functional of the order parameter has been extensively
used as a starting point for the study of low-temperature
fluctuations. ' This approach presupposes the existence
of a well-defined static mean-field amplitude order param-
eter. As mentioned above for fermions with and without
spin, this corresponds to the classical regime when
5 & mD, namely that the phonon frequency must be small
cnoUgh to fUlf ill thc ad1abat1c condition. It follows that
the only relevant correlations come from the zem-sound
channel and 1n pr1nc1ple a I andau-type order parameter

can be used. In the half-filled band case, the order param-
ctcI Is IcR1 Rnd corresponds to thc stRtlc atomic dlsplRcc-
ment. For this case, the static GL free-energy functional
ca.n be obtained in the usual way. ' namely by a mean-
field decoupling of the electron-phonon interaction. In
the incommensurate case, phase fluctuations are impor-
tant27'~s for T&b, . When mD~O the GL free-energy
functional for the phase is classical and can be obtained in
the same way as for the half-filled band case. ' It also
predicts long-range order at T =O. In the case where the
phonon frequency coD is finite, quantum motion of the
phase becomes relevant and a static GL functional is no
longer valid at low temperature. At T =0, the zero-point
I11otlon of thc phRsc dcst1oys long-I'Rngc order1ng. This 1s
the consequence of the Goldstone mode connected with
translational invariance of the incommensurate charge
modulation. ' A quantum generalization of the GL func-
tional for the Peierls quantum phase fluctuations has been
proposed phenomenologically by Fukuyama, ' and its mi-
croscopic justification has been obtained by Takano. '

These approaches are consistent with a small perturbation
around the classical mean-field amplitude gap h.

In the quantum regime when ma y 6, nonadiabatic ef-
fects are relevant. A Landau order parameter with a
well-defined classical amplitude does not exist so that the
static GL formulation and its quantum extension become
ambiguous. Rigorous functional-integral techniques (FI)
have shown that if the atomic displacements are quan-
tum, this introduces an additional frequency-dependent
classical field which is related to the nonadiabaticity of
the electron-phonon system. For example, in the com-
mensurate case the nonadiabatic classical field is purely
imaginary, while for the incommensurate case a real and
an imaginary component are added. It follows that the in-
terference between the zero sound and the Cooper chan-
nels (correlations which occur in the quantum regime
coD» b, ) is strongly related to the appearance of supple-
mentary fields in the FI formulation. As far as the quan-
tum long-range order1ng at T =0 1s concerned for coa & 5
and a half-filled band, only the interference between the
zero sound and the Cooper channels can account for the
gaps in both charge and spin degrees of freedom.
These should be connected in a nontrivial way to both
kinds of fields, in contrast to the classical case.

It has been shown that the integration of the phonon
quantum degrees of freedom can eliminate the suppleIDen-
tary nonordering fields by introducing an effective retard-
ed electron-electmn interaction However. , for such func-
tionals, standard approximations which are commonly
used in higher dimensions, ' and for which only one chan-
nel of correlations is retained, cannot be trusted ' ' when

IIl sUch CRscs, 1t 1S not clear how to I'ccovcI', by
the FI method, the quantum behavior predicted at low
temperature by the renormalization-group * method (see
Sec. IV) and confirmed by simulations. ' ' Although a
10 FI formulation can be rigorously constructed in vari-
ous situations, no controlled approximation exists at the
present time for the correlation channel mixing.

In the rcgiIDC T ~ mD ~ 6, thc Pc1erls system 1s
equ1valent to the Ferm1-gas model w1th a s1ngle cut-off
energy (=coa). The difficulties encountered by a FI
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method for a Peierls-extended Hubbard inodel in the
quantum regime (see Sec. V) will of course be the same if
not worse. For the classical regime when coD &b„ the
absence of channel mixing for T & b, indicates adiabaticity
and allows one to use tractable approximations for the FI
method. However, the mean-field gap expression in Eq.
(17) for 4 is obviously not BCS-like when electron-
electron interactions are present. The power-law behavior
is the signature of quasiparticle confinement for
A~T~~Ez in contrast to the pure Peierls case. For
T & 6 and a half-filled band, a static GL free-energy func-
tional can be constructed with a single real adiabatic order
parameter, except that the GL coefficients must be renor-
malized by Coulomb interactions. ' It follows that the
phonon softening will be enhanced compared to the pure
Peierls case ' although long-range order can only occur
at T=O. For the incommensurate case with coD+0,
zero-point motion of the phase should destroy the T =0
long-range ordering, as in the pure Peierls case.

The repercussion of the above results on the type of
long-range ordering at finite temperature in quasi 1D s-ys-

tems is of major importance. Among the various mecha-
nisms for interchain coupling which allow the propaga-
tion of correlations in the transverse direction, the two
most popular are the kinetic and the potential types of
coupling 3i 5r10~ 1 1~20~27& 33

We shall discuss the kinetic coupling since it is the most
interesting Rnd CIlcompasscs thc potcnt181 coupl1ng 1Q 11m-

iting cases. It describes the possibility of single electrons
hopping from one chain to another. The amplitude for
this process is connected to the transverse hopping in-
tegral ti. Quasi-one-dimensionality is usually character-
ized by ti /t~~ && 1 where t~~ is the intrachain (1D) hopping
integral. A large anisotropy allows us to treat transverse
electronic motion as a small perturbation and therefore a
large temperature range with 1D electronic properties
should exist. ' ' However, at low temperature one can
anticipate a dimensionality crossover (1D to 3D)."2 The
various possibilities of correlation for the electron-phonon
system will of course affect the crossover in a variety of
ways. ' I.et us survey these possibilities.

In the pure Peierls system the nature of the dimen-
sionality crossover is strongly linked to the existence of a
classical regime and the magnitude of 4 [see Eq. (14)j
with respect to ti. More precisely, if b, & ti, the dominant
transverse motion at low temperatur'e will involve tmo-
particle tunneling: one electron and one hole which
can be considered as bound with an energy 2A as in the
BCS theory. Th1s mechanism dominates One-electron
hopping because of the cost in energy to break a bound
pair of particles. In such cases the effective transverse
coupling V will be proportional to t j, and the 1D~3D
crossover will be due to the propagation (tunneling) of 2k+
electron-hole pairs in the transverse direction. For ~D —+0
it will be classical. From the scaling argument of Barisic
and Uzelac, " a mean-field theory for the transverse cou-
pling gives T„=(V) '~i" with P=2 and also
T, ~T„-(V )' . For 0&coD&b, quantum phase fluc-
tuations are present. ' Because of the adiabaticity, the ra-
tio of the electmnic band mass m to the CDW effective
mass m* is very small (m /m* «1), the characteristic en-

ergy co~ for quantum phase oscillations is small and the
effects on the crossover will be weak. Therefore, one still
has T, ccT„-(V )'~ . When cori is small (cori &&T„), the
propagation of quantum effects on neighboring chains can
bc Qcglcctcd. A static appfox1IIlat1on CRQ then bc just1-
fied for the description of 3D correlations. This can be
achieved by 3D GL free-energy functionals. ' '

If t~~ &&ti &&6 the situation is different. Electron-hole
Pairs are not stable at T-tj and interchain single-Particle
hopping will dominate. The 1D~3D crossover is dom-
1natcd by onc-electron pfoccsscs and 1s dcteITQlncd. when
the 3D single-electron motion becomes coherent, namely
at T =T„=t,." The possibility of a 3D phase transi-
tion is now linked to the existence of a nonvanishing 3D
potential coupling. If we assume that the phonons are 3D,
or if we have interchain backward scattering, the Peierls
transition will be anisotropic but BCS-like."

In the quantum regime where coa &b„effective two-
particle processes in the transverse directions are still pos-
sible in the presence of a quantum gap. As we have seen,
this can occur in the following cases. In the incommensu-
rate case and for electrons with spin (g, ~„&0 and

gz~h &0) we have a gap b, &coD in the spin degrees of
freedom with a power-law divergence in the CDW and
possibly for singlet superconductivity. ' In the half-
filled band case and for electrons with spin we can have
quantum gaps in both charge and spin degrees of freedom
(b„&0, 6~&0). Consequently, if ti (maxth„A~I, 3D
CD% long-range ordering occurs by electron-hole tunnel-
ing ( V cc ti ). Quantum effects are important for T &con,
and the ID~3D crossover exponent f is no longer classi-
cal /&2. The power-law exponent y of 1D CDW correla-
tions is highly nonuniversal [see Eqs. (16) and (18)]. By
scaling arguments we can show that T, —T„-(V )' r
with g=y & 2 in the quantum regime.

The situation changes drastically in the presence of
ti & tb,„A~I or with spinless electrons when there is no
gap 1Q thc quantum regime. Thc dlmenslona11ty closs-
over will be dominated by one-electron transfer. However,
in the quantum regime quantum correlations exist in the
absence of a gap, and these must affect the one-particle
1D~3D crossover. As a matter of fact, scaling argu-
ments for the Tomonaga-Luttinger model show that
T, &AT„-ti~" ', where a is the exponent of the one-
particle correlation function (the Green function). The
crossover exponent 1( is nonuniversal, /=1 —a, since cc

depends on the interaction. tz acts as the symmetry-
breaking parameter. This result for the Tomonaga-
Luttinger model can be conjectured for other models. ' In
the quantum regime the characteristic energy for 1D fluc-
tuations co&, which depends on the interactions, is in gen-
eral not small in this nonadiabatic limit. Consequently,
the propagation of quantum correlations in the transuerse
direction becomes important whenever ~~ ~~ T . Again,
this can be achlcvcd by two- of s1nglc-paft1clc 1ntcrchaln
processes. The 3D long-range order at finite temperature
is static, however. So this shows the possibility of a
quantum-classical crossover for the quasi-1D correlations.
From the work of Ref. 10, for the case where V -(ti)
we have ht*:(T' —T, )/T, —(T, /—co~)r, where T' is the
qUantUIIl-class1cal —CI'ossovcf tcIIlpcI'atufc and thc cI'oss-
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over exponent becomes $(2 ——1/y, which is again
nonuniversal. It is now the temperature which acts as the
symmetry-breaking parameter. ' The existence of such a
crossover puts strong restrictions on the validity of the
usual static 3D GL order-parameter functional, namely
that th.e static GI. order-parameter description is only
valid for ht & ht', and the GL parameters must be renor-
malized compared to the usual static description. '

The above discussion for the pure Peierls case with arbi-
trary phonon frequency (coD & EF ) can be readily extended
to the case where Coulomb interactions are added. The
limitations of the FI method in 1D vs 3D and the cross-
over behavior for quasi-1D solids with kinetic and poten-
tial interchain couplings follow essentially the same lines.
As we have seen, the existence of correlations, their nature
(quantum or classical), and their magnitude versus

I coD, ti I have strong influence on 1D and quasi-1D classi-
cal and quantum properties. It must be noted, however,
that the presence of 1D Coulomb interactions rules out
the possibility of a BCS-type dimerization gap 6 in the
classical regime (co& &5). This results from the confine-
ment of quasiparticle states which occur for T &Ez and a
short-range Coulomb interaction. '

Another interesting feature of the quasi-1D electron-
phonon system with strong nonadiabatic effects is the pos-
sible competition between two types of long-range order-
ing. That is particularly true in the presence of
Coulomb lnteractlon when cog) Q 5, although lt can occur

to some extent in the pure Peierls case. For example, for
electrons with spin and U&0, V+0 in the incommensu-
rate case, one can have the situation where g~, —2g2, -0,
g,«0, and gz«0 for coD & h. This corresponds to nearly
equally divergent 1l3 CD& and 10 singlet superconduc-
tivity response functions. In the presence of a kinetic
coupling tz with the condition t~ &&h„V~ -(tz) for
both types of instabilities. Then, one can easily find for
each type of correlation a 1D~3D crossover temperature

( Vcnw) and T ( Vss) and in princi-
ple two quantum-classical —crossover temperatures Atcow
-(T, /coi2) and b, tss -(Ts /co(2) ". In practical
cases an exact degeneracy is difficult to satisfy. Small ad-
ditional 1D effects (e.g., Coulomb screening effects
and impurities ) can make A,cDw&i, ss and small inter-
chain potential couplings (backward scattering, 3D pho-
nons, etc )Ca.n easily make VcDw+ Vss and mduce only
one type of long-range ordering. Nevertheless, it is in-
teresting to note that on a smaller 3D scale, quantum
nonadiabatic effects allow different types of correlations
to coexist.
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