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Calculated electrical conductivity and thermopower of silver-palladium alloys
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The electronic structures of Ag„Pd& „alloys were calculated by using a charge self-consistent
version of the Korringa-Kohn-Rostoker coherent-potential approximation. The results of these cal-
culations were then used to calculate the low-temperature electrical resistivity and the diffusion
thermopower of the alloys. Excellent agreement with experiment was obtained for the magnitude
and composition variation of the resistivity and the thermopower. The calculation used no adjust-
able parameters. The only experimental inputs were the atomic numbers of silver and palladium
and the alloy lattice spacings.

I. INTRODUCTION conductivity is calculated from

The silver-palladium alloy system occupies a special
place in the history of alloy theory and band theory. It
was in the context of a study of this system that Mott, in
1935, introduced the rigid band m-odel to describe the
electronic structure of alloys and the s-d model to describe
the electronic structure of transition metals. ' These
models have been especially durable because they provide
simple pictures that relate directly to experiments on real
materials.

The present paper presents the results of first-principles
calculations of the conductivity and thermopower of
Ag~Pd~ „alloys. In these calculations the s-d and rigid-
band models have been replaced by the self-consistent-
field Korringa-Kohn-Rostoker coherent-potential-
approximation (SCF KKR CPA). The results of the cal-
culations support some of Mott's early ideas. It is found
that the energy bands near the Fermi energy maintain
their integrity in these alloys so that a common band
model can be used to discuss transport. In addition, one
band which crosses the Fermi energy has a relatively high
group velocity while the group velocities of the other
bands are much lower. These bands correspond, respec-
tively, to the s and d electrons in Mott's s-d model.

The disagreements, especially in detail, between the
present results and the early models are also quite signifi-
cant. We find, for example, that the fast electrons (the s
electrons of the s-d model) have predominantly d charac-
ter in the palladium-rich alloys. As might be expected,
the common bands of the alloy differ considerably from
rigid bands based either on palladium or silver. Our ex-
planation for the striking asymmetry in the resistivity-
versus-concentration curves is also different from that of
Mott.

In Sec. II of this paper we describe the calculations.
Section III contains a discussion of the results. A prelimi-
nary account of this work has appeared previously.

II. CALCULATION OF THE ELECTRICAL
CONDUCTIVITY OF Ag Pdi ALLOYS

The calculations described in this section are based on a
very simple version of transport theory. The electrical

dSk0'= Uk+k ~

3(2~)' 'F &Uk

where the integral is over the alloy Fermi surface, and Uk

and rk are, respectively, the electronic velocities and life-
times. The use of such a formula assumes at the very
least that alloy energy bands are well defined. The dis-
cerning reader will also notice that Eq. (1) neglects the
"scattering-in" term of the Boltzmann equation, or, in
Green's-function language, the "vertex corrections. " It
will be shown that these are valid approximations for the
calculation of the transport properties of Ag„Pdi „al-
loys. They are probably valid in many other transition-
metal alloy systems as well.

The most important step in calculating transport prop-
erties is the obtainment of an adequate approximation for
the electronic structure of the system. The calculations
reported here are based on a muffin-tin model of the alloy.
In this model the crystal potential is imagined to consist
of an array of nonoverlapping spherical potentials. These
potentials are arranged periodically in space (e.g., on a fcc
lattice), but the type of potential on a given site is random.
A given site may be occupied by a silver potential (with
probability x) or a palladium potential (with probability
1 —x). The muffin-tin model provides a much more flexi-
ble and realistic description of alloys than the tight-
binding model with only diagonal disorder which has been
used in most previous alloy calculations.

The electronic structure associated with a muffin-tin al-

loy Hamiltonian can be calculated approximately by
means of the KKR CPA. This technique combines the
ideas of the KKR method of band theory and the CPA
technique for determining approximately the electronic
structure of alloys. The KKR method allows one to cal-
culate the electronic structure of a periodic muffin-tin
Hamiltonian, while the CPA gives a prescription for re-
placing the random-alloy Hamiltonian with an approxi-
mate periodic one. The computational aspects of applying
the KKR CPA to realistic systems have been described by
Stocks et al. KKR CPA calculations have also been per-
formed by Bansil and co-workers.

The ability to calculate the electronic structure associat-
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ed with a given set of atomic potentials is of little use
without a means of generating the appropriate atomic po-
tcnt181s. Recently, 1t has become possible to construct
charge self-consistent potentials within the KKR CPA. ~

Starting with ad hoc guesses for the silver and palladium
potentials in the alloy, the KKR CPA equations can be
solved and used to determine the charge density on a
silver or palladium site in the alloy. These charge densi-
ties are then used to generate new silver and palladium po-
tentials using the local-density approximation. If the new
potentials differ from the original ones the KKR CPA is
used again, and the process is continued until charge self-
consistency is achieved.

From the KKR CPA one can calculate the alloy density
of states, the local density of states for a silver or palladi-
um site, and, of course, the charge density on a silver or
palladium site. The aspect of the electronic structure
most I'clcvan't to transport~ however~ 1S thc Bloch spectral
density A&(k, e). The correct formula for calculating this
quantity within the KKR-CPA was derived recently by
Faulkner and Stocks. ' The Bloch spectral density for a
perfectly periodic system would be a sum of 5 functions
located at those values of e and k which determine the
dispersion relation for the crystal,

As(k, e) = g 5(e P(k—)) . (2)

When the crystal is disordered by alloying, the peaks in
the spectral function are broadened, and the spectral den-

sity takes on a form similar to

According to Eq. (3), the effect of disorder on the elec-
tronic structure is the shifting and broadening of the ener-

gy bands by amounts A„(k) and I „(k), respectively.

Plots of As( k, 6) as a functton of energy for varIous values

of k are shown in Ref. 2. Figure 1 shows As(k, e) as a
function of k for three concentrations. For each alloy the
energy is fixed at the alloy Fermi energy. It is clear from
Fig. 1 that the sheet centered at I maintains its integrity
throughout the concentration range. The other sheets are
less well defined, but they carry relatively little current
(none for x & 0.5). At each energy and for each direction

in k space the peaks in As(k, e) can be located. These

determine the alloy band structure e„(k }=a„(k )+&„(k)
from which the group velocities can be determined,

v„(k)=Vke„(k). Similarly, the width of each peak
I „(k) determines the lifetime of the state with energy e
and momentum k, r„(k}=A'/I „(k). Thus the spectral
function provides the information needed to calculate the
electrical conductivity from Eq. (1).

Thus the first step in calculating the conductivity from
the results of the SCF KKR CPA was to evaluate the
Bloch spectral function at the alloy Fermi energy along

rays in k space emanating from the I' point (as in Fig. 1).
The peaks in the spectral function along each ray were
then located numerically and fit by means of a nonlinear
least-squares procedure to the function

FIG. 1. Fermi-energy Bloch spectral functions in the (110)
and (100) planes for Ag„PdI alloys. Panels (a)—(c) are for the
(110) plane and silver concentrations of 0.2, 0.5, and 0.8. Pane4
(d)—(f}are for the (100) plane and the same silver concentrations
as (a)—(c).

f(k)=a+bk+c/[(k —ko) +y ] .

The adjustable parameters ko and y give, respectively, the
position of the peak and the width of the peak, both mea-

sulcd along thc ray 1Q k space. If th1s ploccdufc 1s repeat-
ed at nearby energies, sufficient information can be ob-

tained to construct e( k ), A'Uk, and ~k, which can be used to
evaluate Eq. (1).

It is also possible to calculate o(e) using only the infor-
IDatlon contalncd 1Q thc spectral dcQslty cvalUatcd at onc
energy. By recognizing that Uk~@ ——Ik, the mean free path,
Eq. (1) can be written as

2Qo(e)= J dSI, lk, (5)
3(2'�)'fi

but y from Eq. (4) is just the projection of the mean free
path along the ray. Thus if n is the normal to the surface,
and k is a unit vector along the search ray, lk=y/k n.
Similarly, the element of surface area subtended by a solid

angle dQk is dSk =k dQklk n. Thus Eq. (5) is
cqu1valcnt, to
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k dQk
(6)Vk

3IrI(2m. )'

the point 1 was definedA set of rays emanatmg .rom p d
n in Fi . 2(a). The mesh is in t eby the mesh shown in ig.

plane. The intervals 0&k„&1 and 0& z & in is
sublntcfvals. In Flg. 2, ng =, UaI'c dlv1dcd 1nto Ng . n = U

the calculatIons n, gran ed from 1 to
01nt can bc labeled by two 1ntcgcI's Pl an n w

The directions, defined by connect-
t d fine the rays used in t e1ng I to thcsc mesh poln s, c

tcgfat1on,

2 2 2)1/2k{m,n)=(m, n, n, )/(m +n +n,

b the eak pos1-h 11 F rmi surface is then defined y p
m n or each ray, i.e., k(m, n)=k(m, n) (m,

The normal vectors to tIIc su

k(m, n), since

n(m, n)=N/i% i,

N=[k(m+ l,n) —k(m —l, n )]X [k(m, n+1
—k(m, n —1)j. (9)

Tli 11 described Rbovc works ell for the 1"-C 1TlCS

most of thecentered sheet of fast electrons which carry mo
h A Pd alloy wc also calculated theculICnt. Fof t C go 2 g 8

ried b thc flat, bands ccfltci'cd Rbolit poiIits XCUI'I'cnt carried y t c a
O'. For this calculationand the line joining points X and 8'. or is ca

to a mesh in the plane de-rays emanating from pomt X
fined by the points k=(0,0,0), (1,0,1), aand (1,1,1), as
shown in Fig. 2(b), were used.

III. RESULTS AND DISCUSSION

A. Resistivity

The dectrica1 resistiv1ty calculat
~ ~ ~ 0

ed as described in t e
hwn in Fi . 3. In our opinion t epreceding section is shown I 1g.

fiGlent ls excc11cnt cons1 cfing

~ of E . (6), but mainly because the results in e .integra o q. , u
'

ults in e .
COIlontain a uniform overestimate o ~ ue

erin the reslstlvi yat~on o ef th numerical constants ent
'

g
Ref. 3 is affect-formula. No other result or conclusion o Re .
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ed by this error.
For most of the alloys only the current carried by the

I -centered sheet was calculated. For silver concentrations
greater than or equal to 0.5 this is the only sheet, but for
the palladium-rich alloys there is a large density of states
associated with flat bands near the X point and in the vi-
cinity of the line connecting the X and 8' points. Al-
though these states carry the preponderance of the density
of states for the palladium-rich alloys, their contribution
to the current is quite modest because their velocities are
so low. This is illustrated in Fig. 3 for the Ago 2Pdo s al-
loy. The arrow shows the decrease in the resistivity due to
the inclusion of the extra current carried by the slow elec-
trons. Their contribution rapidly goes to zero as the con-
centration increases because both the number of states and
their velocity goes to zero as the Fermi energy rises to the
top of the d bands. The Fermi energy passes through the
top of the d-band complex at approximately x =0.5.

Two essential approximations are made when the con-
ductivity is calculated from Eqs. (1) or (6). The first ap-
proximation is the assumption that a well-defined alloy
Fermi surface exists. It is clear from Fig. 1 that this is a
valid approximation for these alloys. The peaks that de-
fine the states are especially well defined for the I'-
centered sheet. They are somewhat less well defined for
the other states, but this does not cause a large error in the
conductivity, because the total contribution of these states
1s so small.

The second approximation implicit in Eq. (1) is the
neglect of vertex corrections or, equivalently, the
scattering-in term of the Boltzrnann equation. This ap-
proximation can be justified for the palladium-rich alloys
when they are described by the muffin-tin Hamiltonian
used here. Consider the Boltzmann equation"

gk= —evk'&

This ansatz which is sometimes called the lowest-order
variational approximation' is identical to Eq. (13) except
that the k dependence of r is neglected and 7 may be inter-
preted as a variational parameter chosen so as to maxi-
mize the current. We now substitute Eq. (15) into the
Boltzmann equation (10), this time keeping both terms on
the rhs of Eq. (10), and we obtain

Bf df
Uk = QPkk(Uk —Uk~)

BEk
(16)

where we have assumed the applied field to be in the x
direction. Multiplying both sides of Eq. (16) by Uk„, sum-
ming over k, and solving for 1/r, we obtain

out (' in

Out

1

j

f dSk
Uk Sk

f dSk

Uk

(17)

8
] =2e g vkvk'Krk ~

~&k

from which Eq. (1) follows on the assumptions of cubic
symmetry, and that —Bfk/Bek =5(ek —ep).

In order to estimate the relative magnitude of the
scattering-in and scattering-out terms let us assume the
followmg form for gk..

In this equation fk is the Fermi function, 8' is the apphed
electric field, A' V'krak is the Fermi velocity, Pt,k is the
probability for an electron to scatter between states k and
k, and gk is the deviation function which describes the
departure of the electron distribution from the Fermi
function. Once Eq. (10) has been solved for gk, the
current can be calculated from

j =o'@ = —2e g vkgk
k

The first term on the right-hand side (rhs) of Eq. (10) is
often called the "scattering-out" term because gkgk, Pkk.
gives the rate at which electrons are scattered out of state
k. The second term is called the scattering-in term be-
cause gk, Pkk gk gives the rate of scattering into state k.
The scattering-out term is easily evaluated in terms of the
electron lifetime since

QPkk'=1«k . (12)
k'

If the scattering-in term can be neglected in Eq. (10), we
have [using Eq. (12)j

3
gk= —e vk'8 rk

BEk

g Pkk vk' vk
BEk

dEk

where n is the number of impurity atoms.
If this potential fIuctuation has a long range and varies

slowly, forward scattering will dominate, and the
scattering-in contribution to the total scattering rate will
almost cancel the scattering-out contribution. Examples
of this situation are long-wavelength phonons and lattice
defects which extend over many lattice sites. On the other
hand, if the potential fluctuation is restricted to a region
which is small compared to ihe distance over which the

Clearly, if the scattering described by Pkk is primarily
"forward" scattering, Pkk -5kk ~k, we have
(1/r)'"-(I/r)'"' On the other hand, if the scattering is
completely isotropic so that I'kk is independent of k and
k', (1/r)'"=0. Whichever of these two limits is closer to
reality will vary from system to system. If b, V is the
(weak) potential fluctuation caused by an impurity atom, '

I'kk can be approximated by

Pkk =
( (k

i
AVi k')

i 5(Ek —Ek ),
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~

k)= gi'CI (k)RI(r)F( (r) .
l, m

For this type of Hamiltonian Eq. (20) becomes

Pkk =(2rrn/fi) g g CI (k)CI (k)CI (k ')C~ (k ')
l, m 1', m'

(21)

phase of the wave function changes appreciably, (1lr)'"
will be small. We believe that the latter case occurs in the
palladium- rich alloys. These alloys have a high Fermi-
energy state density which rapidly screens out potential
fluctuations. In addition, most of the valence charge den-

sity is associated with the d states which are particularly
tightly bound in silver and palladium. In any event, the
single-site CPA precludes potential fluctuations that ex-
tend beyond a single signer-Seitz cell.

The scattering-in term vanishes identically in the
single-band tight-binding model which is used for most
CPA calculations, ' and Brouers and Verdyayev ' suggest
that it is also negligible for their multiband tight-binding
model. For Hamiltonians more realistic than tight bind-

ing the scattering-in term is generally nonzero. The CPA
calculations described in this paper are based on a
muffin-tin Hamiltonian with KKR-type wave functions,

The justification given above for the neglect of the
scattering-in term in the palladium-rich alloys is con-
tingent upon the assumption of a muffin-tin type of Ham-
iltonian. The critical assumption is that an impurity po-
tential perturbs only one muffin tin. In reality, however,
the potential fluctuation due to an impurity atom extends
wel 1 beyond its %igner- Seitz cell . In addition to perturb-
ing the potential in neighboring cells, the impurity atom
will set up a relatively long-range strain field. These
small, long-ranged potential fluctuations cause substantial
forward scattering. For this reason it would be a mistake
to use the lifetime calculated from the KKR CPA to esti-
mate the impurity-induced scattering rates observed in
de Haas —van Alphen experiments (Dingle temperatures).
A substantial amount of forward scattering is missing
from the KKR CPA inverse lifetimes with the conse-
quence that the Dingle temperatures are underestimated.
The KKR CPA lifetimes work well for calculating the
electrical resistivity, however, because the forward scatter-
ing does not enter that quantity.

In order to illustrate this point, the averages of r ' over
the Fermi surface were used to calculate Dingle tempera-
tures for the Agp 2Pdp s and Agp sPdp 2 alloys using the
formula

where

X6 Vj b V( 6( ek —ek ), (22) A'(r ')
2m(1+ A, )ks

(25)

b, V, = J dr r'Z, '(r)b, V(r) . (23)

The scattering-in term, T'"=Q„,Pkk gk, will probably be

quite small in the transition metals because the Fermi-
energy wave functions have predominantly I =2 charac-
ter. This is especially true of palladium and the
palladium-rich Ag„Pd& „alloys. If the wave-function
character is entirely 1 =2 or even a combination of 1 =2
and 0, T'" will vanish exactly in this approximation be-

cause the sum

g C(~ ( k '
)CI ~ ( k ')gk

k'

vanishes on account of the odd parity of gk and the even

parity of the product Cl~(k)CI (k) when 1 and 1' are ei-

ther both even or both odd. It is clear from Ref. 2 that
the Fermi-energy density of states of the palladium-rich
alloys has almost entirely I =2 character.

In the silver-rich alloys the Fermi energy density of
states has a significant 1 = 1 component, and consequently
the scattering-in term is more important. The arrow in
Fig. 3 for the Agp sPdp 2 alloy indicates an estimate for the
reduction in the resistivity due to inclusion of the
scattering-in term. The estimate is based on a formula ap-
propriate for a low concentration of scatterers in a noble
or simple metal '

A/rk ——2m.ng ( (k
~

hV
~

k')
~

5(EF ek ) . —(26)

Since the Fermi-energy density of states is given by

N( eF ) =+5(eF ek ), —

For the Agp qPdp s alloy the calculated Dingle temperature
is approximately 7.4 K/at. %, 25% less than the experi-
mental value of 10 K/at. % reported by Ernest et al. ,

'7

and for the Agp sPdp 2 alloy the calculated Dingle tem-

perature is 9 K/at. %, less than one-third the value (-30
K/at. %) reported by Sang and Myers. ' The values of
1 +A, , the estimated mass enhancements, used in the above
calculations of XD were 1.5 for the 80-at. % palladium-
rich alloy and 1.2 for the silver-rich alloy.

One of the most interesting features of the resistivity of
Ag„Pd& „alloys is the asymmetry of the resistivity-
versus-composition curve (Fig. 3). Mott's explanation for
this asymmetry in terms of the s-d and rigid band mode-ls

was an important early success of these models, which un-

doubtedly contributed to their rapid acceptance. Ironical-

ly, although the basic s-d and rigid-band models seem to
be qualitatively valid for Ag„Pd~ „alloys, it appears
from our calculations that Mott's explanation for the
asymmetry is not correct. The Mott explanation is simple
and reasonable. From Eq. (20) the scattering rate should
be given by

Eq. (26) may be written as
(24)

R/rk =2mn ((b, v) )N(er) .g(21 + 1 )sin (br1~ )
1

(27)

Since the density of states is much higher for the
palladium-rich alloys, one would certainly expect from
Eq. (27) that, for the same concentration of impurities, the

where kg~ ——gI —g~ g. For the phase shifts appropriate
'to Agp sPdp p we obtain 0.63 for the ratio, Eq. (24).

g (1+ 1 )sin ( b, r) I +, april)—
( 1/r)'"' —( 1/r)'"

( 1/r)oUt
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scattering rates would be higher for palladium-rich alloys
than for silver-rich ones. Our calculations (Fig. 2 of Ref.
3) do not show this effect, however. The average scatter-
ing rate for Agp gPdp p is just as high as that for
Agp pPdp g. We find that the asymmetry in the resistivity
curve coines primarily from the higher Fermi velocity of
the s electrons in silver, and secondarily from the greater
importance of vertex corrections in the silver-rich alloys.

The fallacy in Mott's argument lies in the use of Eq.
(20) for the scattering probability. The scattering by the
potential fluctuation is sufficiently strong that its effect
on the wave functions must be included. This is accom-
plished according to the theory of substitutional impuri-
ties' by replacing 5V by the proper t matrix in Eq. (20),

27M 2Pkk'
I

Tkk'
l

@ek ek') ~ (28)

where Tkk is given (using the KKR formalism) by

Tkk =AC( (k)Ci (k')Si
l, m

1
Si~ —— b. cotrl i /[1+ b, cot(rli )ri~ ],

(29)

(30)

5 coty, =coty& —coty,",

f d q[t ' 6'(q, e)]-
~sz

(31)

Here, b, cotil& is the difference between the cotangents of
the phase shift of the impurity and that of the host, and
Vi is the Brillouin-zone (BZ) integral of the inverse of the
KKR matrix which is diagonal in the angular momentum
indices for cubic systems if I &2. The form of Eq. (29) in-
sures that our previous conclusions concerning the small-
ness of the scattering-in term of the Boltzmann equation
remain valid. On the other hand, the scattering rate cal-
culated from Eq. (29),

function in equilibrium.
The second contribution to the thermopower arises

from the fact that electrons diffusing in a thermal gra-
dient will carry a small electrical current if the electronic
structure of the inetal is energy dependent in the vicinity
of the Fermi energy. If the total electric current is zero
(because the circuit is open) there must be an induced elec-
tric field to oppose the electrical current caused by the
thermal gradient. This diffussion thermopower is given
b 21

n k T 1
d

do(e)
3 e o(eF) de 6F

(35)

S s 4 ~(1 dk) (1 dy) (37)

The second term on the rhs of Eq. (37) is dominant. For
x &0.5, yk is largely determined by the rate of scattering
from the fast (s) sheet to the slow (d) sheets. As the d

We have evaluated the diffusion thermopower using Eq.
(35) with o(e} determined by Eq. (6}. The results are
shown in Fig. 4, where they are compared with the experi-
mental results of Guenault. The most obvious feature in
the thermopower is the peak at x=0.5. This peak orig-
inates in the rapid energy dependence of the electron
scattering rate at the top of the d-band complex. From
Eq. (6) the thermopower can be written as

k ' 2 1

S ir2 kii (k.n )2 Pk k de ) k de

3 e I dQp k2

(k.n)
(36)

or

A'/~k = n Im T—kk = —n+C(~ (k)1m' (33) 200

is no longer necessarily proportional to the density of final
states. Only if

l
b, cot(ili)r~

l
&&1 will Eqs. (33) and (26)

be equivalent.

B. Diffusion thermopower

If a temperature gradient is set up in a conductor it will
generally be accompanied by an induced electric field 8'.
The ratio of this field to the applied thermal gradient is
ca11ed the thermopower,

380

360

(40—

(20—
Cu

c )00—
M -80—

g
d T/dx

(34)

There are two basic causes of this induced electric field.
In relatively pure systems in which the phonons have a
relatively long mean free path, a nonequilibrium distribu-
tion of phonons will carry part of the thermal current.
These phonons may then impart some of their momentum
to the electrons via the electron-phonon interaction. This
"phonon-drag" effect is not very important in concentrat-
ed Ag„Pdi „alloys because there is sufficient phonon-
impurity scattering to maintain the phonon distribution

-40—

-20—

0
Pd

I

0.2 0.4 0.6
I

0.8 Ag

FIG. 4. Calculated (solid circles) and experimental (open cir-
cles) values of the diffusion thermopower for Ag„Pd~ „alloys.
The line through the experimental points is a guide for the eye.



CALCULATED EI.ECTRICAL CONDUCTIVITY AND. . . OF Ag„Pd, „ALLOYS

sheets disappear at x=0.5 there is an abrupt decrease in

yk and hence a large peak in SIT.

IV. CONCLUSIONS

The KKR CPA appears to be able to generate the elec-
tronic structure of alloys sufficiently well to allow the cal-
culation of transport properties from first principles. It is

highly desirable that the calculations be done with charge
self-consistent potentials. An earlier resistivity calcula-
tion carried out with non-self-consistent potentials gave
resistivities that were too large by about 30%.

The vertex corrections are probably small in the KKR
CPA for transition-metal alloys. This result should sim-
plify transport calculations in transition-metal alloys. The
surprisingly good results reported here for the thermo-
power indicate that the CPA represents the top of the d
band well for this alloy system.
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