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Size-effect data are presented for gallium single-crystal wires oriented for current flow' along the
b axis. The enhancement of the temperature-dependent resistivity is deduced with the use of
straightforward assumptions concerning the common high d/Ib behavior of all theoretical enhance-
ment functions. Comparison is made with the theoretical curves of Sambles et al. , wherein an an-

gularly dependent specularity parameter is employed.

INTRODUCTION

Interest in the effects of boundary scattering on electron
transport properties in metals has had a long history re-
plete with a number of examples of misinterpretation of
theoretical predictions and experimental results (cf.
Neighbor and Newbower'). Perhaps the most widely
misinterpreted statement in the theoretical literature is
that attributed to Dingle in his work on boundary scatter-
ing for the case of thin wires, where it is asserted that in
the case of totally diffuse scattering, over the entire range
of variation in the bulk mean free path to dimension ratio
Ib Id, the total resistivity of a boundary limited wire never
deviates by more than 5% from the Nordheim-rule rela-
tion

Pd =Pb+Pb4 ~"

where p4 is the resistivity of the sample of lateral dimen-
sion d and pb is the bulk resistivity.

Although the statement is perfectly correct as it stands,
predictions based on the relation in Eq. (1) cannot be used
to extract meaningful information about the temperature-
dependent part of the resistivity in the limit where lb )d.
The reason is that although the total resistivity is closely
described by Eq. (1), the preponderant contribution is due
to residual scattering. Hence, under readily attainable
conditions, the temperature-dependent part of the resis-
tivity can easily account for only 5% of the total or less,
and therefore fall completely within the margin of
disagreement between Nordheim's rule and the exact
theory as originally quoted by Dingle.

Unfortunately, this fact has passed unnoticed by many
experimental investigators who have sought to make
"corrections" for the size effect in pure samples so that
the resulting "bulk" temperature dependence could be ex-
tracted. Experimental evidence that an additional sys-
tematic contribution to the temperature-dependent part of

the resistivity in thin wires can be attributed to boundary
scattering was first obtained by Andrew in mercury and
tin, Olsen in indium, and Reich and Forsvoll in tin; and
in more detail by Boughton and Yaqub, and by Houghton
et al. in work on thermal and electrical transport in pure
single-crystal gallium wires. The nature of the size-
dependent contribution is observed to take the form of an
enhanced contribution to the temperature-dependent part
of the resistivity at and below temperatures where the bulk
mean free path /b is comparable to the wire's dimension d.
In the case of high-purity gallium, where lt, is estimated to
be on the order of several centimeters at absolute zero, this
condition can be readily achieved for reasonably sized

samples in the liquid-helium temperature range. A de-
tailed understanding of the influence of boundary scatter-
ing and other phenomena associated with the condition
where the ratio of mean free path to dimension is large,
such as ballistic carrier transport, has recently become
especially important in the design of microphysical struc-
tures.

A study of the temperature-dependent part of the resis-
tivity for a series of size-limited wires of varying lateral
dimension has been carried out on gallium single crystals
oriented along the b axis. The experimental data are used
to generate an empirically determined estimate of the
enhancement of the temperature-dependent resistivity due
to boundary scattering over the Nordheim-rule expression.
Comparison is made with the theory of Dingle and with
other modifications which incorporate more sophisticated
treatment of the specularity of boundary scattering, such
as the thin-film theory of Soffer as extended by Sambles
et al. to wires.

The si.ze effect in wires was first treated in detail
theoretically by Dingle. The calculation was carried out
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under the simplifying assumptions of (1) the relaxation
time approximation and (2) a spherical Fermi surface.
The assumption of a circular cross section was made
along with the inclusion of a "polish" factor iu, which is
independent of scattering angle, to accommodate the pos-
sibility of specular reflection. It is convenient for compar-
ison purposes to represent Dingle's theory by the follow-

ing expression:

d Pblb
Pd =Pb+6 ~Plb' d

(2)
0.6—

p = 0.5
where the enhancement function G(d/Ib, p) depends on
the mean free path to diameter ratio lb/d and on the pol-
ish parameter p. Plots of G(d/lb) for the cases of totally
diffuse boundary scattering (p =0) and for p =0.5 are il-
lustrated in Fig. 1(a).

The temperature-dependent part of the resistivity can be
presented in terms of a difference in the value of the func-
tion G at values of its argument corresponding to the
mean free path at the temperature of interest and at
T=OK:

Ape =pd(T) —pd(0),
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0
log (d/Ib)

bp~= Apb(T)+ G
lb( T)
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lb(0)

Pb Ib
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Any theory which produces an enhancement that varies
with lb ( T) thus predicts a contribution to the
temperature-dependent part of the resistivity due to boun-
dary scattering.

In Dingle's theory, the enhancement effect is relatively
small and in fact decreases with increasing polish, never
exceeding approximately a 20% change. Clearly, the
commonly used approximation that Nordheim's rule is
valid implies that the function 6 is a constant and conse-
quently no contribution to Apd can be expected in that
case. Several variations of Dingle's theory have been put
forward, each elaborating on one of the simplifying as-
sumptions listed above. MacDonald and Sarginson' con-
sidered wires of square cross section with results that
differ from those of Dingle by only a scaling factor. The
effect of alternative Fermi surface topology in the intense
size-effect limit (lb ~d) was treated by Houghton and
Neighbor. " Recently, Sambles et al. adapted to round
wires the treatment of angularly dependent specular
scattering originally applied by Soffer to the thin-film
case. A plot of the enhancement function G(d/Ib), ob-
tained by Sambles et al. , is shown in Fig. 1(b) for various
values of their "roughness" parameter H: le/, „wrhee-
h =rms asperity height and A,, is the Fermi wavelength of
the electrons. The above authors point out that since 6
now varies over a considerable range, relatively large con-
tributions to the temperature-dependent part of the resis-
tivity [sometimes referred to as size-induced deviations
from Matthiessen's rule (SIDMR)] are predicted. In con-
trast to Dingle's treatment, in most realistic cases this
theory predicts an increasing enhancement as the rough-
ness parameter is reduced. In what follows, the enhance-
ment functions predicted by these models will be com-
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FIG. 1. (a) The function G(dllb) plotted vs log~o(d/lb) ac-
cording to the theory of Dingle for p=0 and p=0.5. (b) The
function G(d /lq ) plotted vs log&0(d/lq ) according to the theory
of Sambles et al. for H = 10, 1.0, and 0.1.

pared with those obtained empirically from experimental
data on gallium single crystals. Since sufficiently exten-
sive calculations have been carried out only for round
wires and the cross-sectional shape of the wire is of negli-
gible importance when compared with the infiuence of
roughness, this distinction will be ignored in what follows.

The samples used in the present study were fabricated
with square cross section and mold grown by seeding from
the super-cooled melt using well-known techniques. '

Gallium expands upon solidification, so that the surface
characteristics of the mold material are faithfully repro-
duced on the sample surface. For the larger samples the
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mold channels were constructed using highly po»shed
Plexiglas spacers. Channel walls for the smaller samples
were cut from thin sheets of Mylar, so the possibility ex-
ists that the surface polish was not uniform throughout
the study. Potential probes are grown as an integral part
of the crystal specimen to avoid the introduction of im-
purities and damage to the specimen when electrical con-
'tacts are made. The stock used is 99.9999+% pure galh-
um provided by Alcoa. All crystals were confirmed to be
oriented to within + —,

' of the b [010] axis of the
orthorhombic lattice by Laue back-reflection x-ray tech-
niques. In all, specimens of five different cross-sectional
sizes ranging from 0.250 to 1.26 mm square were mea-
sured. The sample dimensions were determined by means
of micrometer calipers and a traveling microscope when
necessary. To avoid strain due to differential thermal
contraction, the samples were attached to a single-crystal-
gallium backing plate oriented in the same direction.

Electrical resistivity measurements were made over the
temperature range of 1.2 to 7.2 K by means of a self-
balancing superconducting I.indeck bridge circuit with a
rf superconducting quantum interference device (SQUID)
null detector. The sample was supported in a vacuum
space on a temperature-controlled holder. The experimen-
tal set-up is similar to that employed by Boughton et al. ,
and the reader is referred to that paper for further details.
The relative accuracy in the measurement of the absolute
resistance approaches 0.1%. The geometrical details of
the samples under study along with the corresponding
residual resistivity are summarized in Table I. Residual
resistivities are obtained by extrapolation of a plot of
pq(T) vs T from 1.2 K and above to absolute zero. The
error associated with this procedure is also estimated in
Table I.

RESULTS

TABLE I. Lateral dimensions and residual resistivity of the
samples studied.

Sample Mold surface

Plexiglas
Plexiglas
Mylar
Mylar
Mylar

I.ateral dimension
(nm)

1.261
0.749
0.500
0.341
0.265

po
(pQ cm)

56.0+0.1

119.0+0.2
153.8+0.3
206.0+0.5
230.5+0.5

The electrical resistivity of each of the samples studied
exhibits y. rather characteristic temperature dependence.
It is well established that dilute gallium based alloys fol-
low an approximate T temperature dependence in the
low-temperature limit. When plotted against T, the
temperature-dependent part of the resistivity hp for the
size-limited samples in this study exhibits enhancement
due to boundary scattering. A plot of Ap vs T for all
five specimens is shown in Fig. 2. The effect of the
enhancement due to boundary scattering is manifested
below about 5 K by the reversal in the curvature of the
plot as the temperature is reduced. For smaller sample di-
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FIG. 2. Temperature-dependent part of the resistivity Ap vs
T for all samples.

mension, the inflection occurs at a higher temperature (cf.
arrows in Fig. 2). This behavior is consistent with the re-
sults obtained with dilute alloys where the inflection point
migrates to lower temperatures as the residual bulk mean
free path is reduced. An empirical correspondence be-
tween the ratio lb/d and the position of the enhancement
inflection can therefore be demonstrated. The question
still exists, however, as to whether the bu. lk resistivity is
indeed mell described by a T power-law dependence, or
that this behavior is particular to the contribution to the
temperature-dependent part of the resistivity due to im-
purity scattering. In order to extract the quantitative
behavior of the enhancement function, it is first necessary
to correct for the contribution of the temperature-
dependent bulk resistivity. Although it can be regarded as
an approximate procedure, the following method has been
adopted. In general terms, a common feature of all
enhancement functions is the asymptotic approach to a
constant value in the limit that d ~&lb, that is, as the tem-
perature increases for fixed d. This property implies that
at higher temperatures boundary scattering can contribute
a constant term of either sign and of variable magnitude
to the resistivity in addition to the residual contribution.
The fact that in the high-temperature limit the size-effect
contribution becomes constant, moreover, implies that the
observed temperature dependence of size-limited samples
should reflect that of the bulk metal in this regime. A
plot of loglo(bp) vs log, o(T ) is shown in Fig. 3 for the
largest sample measured in this study. It is evident that
above a T value of nearly 100 K (T=4.6 K) the slope
of the plot steepens, and in fact approaches a value which
closely corresponds to a T pomer-law dependence. The
best estimate of the magnitude of the contribution is
Apbl=2. 72X10 ' T Qcm, as obtained from the data
for the largest sample.

After this term is subtracted from the resistivity for
each sample, it is possible to test for additional contribu-
tions from the bulk. Let us assume that the temperature-
dcpclldcllt pal't, of tllc rcslstlvlty fol' a salllplc of slzc d Is
given by
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This result suggests that the T term observed in previous
alloy studies is due solely to the influence of impurity
scattering, and furthermore that the almost naive assump-
tloll of R Bloch-type T dcpclldcllcc appears to adequately
describe 'tllc behavior of t11c bulk I'cslstlvlty for tllc pul'c
metal, even though this power law is never quite attained
ln impurity-dominated specimens Rt higher temperatures.

The behavior of the enhancement function produced by
boundary scattering can then be determined by plotting
the function

1A I L l I I l t l I I I I l I I I I I I

log (T )
FIG. 3. Log)0(hp) vs log)0(T') for the 1.261-mrn-diameter

sample.
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If the additional bulk term bpb2 is proportional to cl T",
then, a plot of CI(T):I|Id/T" vs —T " should yield an in-

tercept equal to c2, the coefficient of the additional bulk
term. It should be noted that the size-dependent term in
Eq. (4) is implicitly temperature dependent through the
bulk mean free path factor, lb(T). Since a cubic power-
law dependence is expected on other grounds, a plot of
Pd/T vs T was made and is displayed in Fig. 4. To
within experimental error, the common intercept c2 in Eq.
(4) is determined to be zero for all samples measured.

vs d /is. In ordel' to obtain the necessary values of 56, an
Rcclll ate dctcl'1111Ilatloll of the material constant pblb must
be made. Previous determinations using residual resistivi-
ty plots by Cochran and Yaqub' and by Houghton' yield
values of 8.2&&10 ' Qcm and 7.3X10 ' Qcm,
respectively, for b-axis gallium. These studies, however,
did not take into account the possibility that 6(d/lb)
might be a variable function and thus take on values that
are significantly different than unity. It is pointed out by
SamMcs and Pfc1st that this dctc~lnatlon can bc rcac4-
ly carried out using higher-temperature data. It is made
feasible in the regime where d/lb » 1 by the fact that all
metal surfaces should correspond to high values of rough-
ness H (or polish @=0) in this limit. The typical plot of
hpd(T) vs d ' at some high temperature where d » lb
can therefore be used to determine the product ps'. In
such a case the enhancement function takes on the unique
value 0.75. In thc plcscnt study, however, thc clcctron
mean free path is so long, even at the highest temperatures
attained, that the largest value of d/ls obtained for any
salTlplc ln thc prcscnt study llcs bet%'ccn l and 10. It ls
nevertheless still possible to take advantage of the com-
monality of the enhancement functions for roughness
values exceeding 1.0. In the decade 1&d/lb(10 the
function 6(d/ls) when plotted versus loglo(d/lb) has an
approximate slope of —0.02 per decade for H & 1.0.

The variation of the enhancement function 6(d/ls)
with sample size in this region is relatively small and can
be corrected for. Let dl be the size of the largest sample.
It is assumed that the enhancement function can be ex-
panded to flI'st order foI' fixed Ib as

6 —=6 +[6'(~)]„d I

lb lb

=6(irl)+ [6'(ilute )]„——1

where a.=d/lb. The resulting correction to the enhanced
rcsistlvlty 1S
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FIG. 4. The quantity 4(T)=Pq(T)/T3 plotted vs T ' for all
samples. Legend: O—1.261 mm; H—0.749 mm; II—0.500
mm; 6—0.341 mm, ' 0.265 mm diameteI.

For the given parameters of gallium and given the
be'havior of the enhancement function of Dingle and Sam-
Mes et aI. , the slope of a pd vs d plot in this region un-
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FIG. 5. Plot of pd vs d ' for all samples at T=6.3 K.
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FIG. 6. Plot of AG(d/lb) vs log&o(d/lb) for all samples t,'same
legend as in Fig. 2).

derestimates the pblb product by approximately 9% and
the intercept overestimates the value of pb(T) by about
2%. Since for realistic values of the roughness (polish) all
enhancement functions have essentially the same slope,
the accuracy of the correction for this variation is not cru-
cial.

The pd data for the fixed temperature of T=6.3 K are
plotted versus d ' in Fig. 5. This particular temperature
was chosen since it is the highest available to interpolate
reliably for all samples. By means of a least-squares
analysis, the slope is determined to be S=8.34 pQcrn,
and the intercept I=284.4 pQ crn. In order to obtain ac-
curate values of pb Ib and pb ( T' ), the following iteration
process was carried out. A preliminary value of pblb is
obtained by assuming the asymptotic value for the slope
of pd vs d ' as 0.75 pblb. The approximate mean free
path lb at this temperature is then obtained by dividing by
the value of pb(T') obtained from the intercept. For the
largest sample (d =0.1261 cm), the value of ~ is evaluated
and the corresponding value of the enhancement function
G(a) obtained. The quantity S is then set equal to
G(a)pblb and a new more refined value of pbtb is obtained.
The procedure is repeated until convergence is achieved.

The corrected material parameters obtained in this way
are pblb ——10.2+0.5 pO cm; ~~ ——d~/lb ——3.8 at T=6.3 K;
and, G(x, ) =0.89 at this temperature. By using the form
of pb =AT obtained earlier in Eq. (4), the bulk mean free
path can be determined at any temperature and the ratio
K =d/Ib evaluated.

The resulting plots of b, G vs log&o(ir) for all five sam-
ples are exhibited in Fig. 6. It is clear that in samples 2
and 5 the high-temperature data do not reasonably fit any
known enhancement function. The error associated with
the data in this limit is quite large, approaching +30%.
The indication is that the correction for the bulk tempera-
ture dependence is slightly in error for these two samples.
It is found that the subtraction of an additional T term,
on the order of Apb2 ——3 X 10 ' T Q crn, which is
presumably caused by a slightly increased amount of im-
purity scattering, results in reducing these data to a form

similar to the data for the other samples. Rather than in-
troduce an extraneous adjustable parameter into the
analysis at this point, however, it is better to consider only
the data below d /Ib —1 where the bulk correction becomes
small in evaluating the fit to existing enhancement predic-
tions for these two samples.

The remainder of the samples, however, appear to con-
form qualitatively rather nicely to the predictions of
theory over the entire range of variation in log(ir). The
data for sample 1, the largest in the present study, carry
the greatest accuracy since the residual contribution that
is subtracted is smallest. From the data for this sample,
several conclusions can be drawn. The closest fit to
theory appears to be the curve obtained by Sambles et al.
for roughness values in the range 0.464 &H & 1.0. In Fig.
7(a), the experimental data for sample 1 are plotted along
with several previously published theoretical curves so
that the degree of correspondence can be judged. It is
clear both from the magnitude of variation and from the
curvature of the empirical AG plot for values of d/Ib & 1

that the simple nonangularly dependent "polish" parame-
ter of Dingle's theory is inadequate to describe the data.
The data for samples 3 and 4 in Fig. 7(b) nearly coincide
and correspond to a roughness H in the range of 2 to 5.
Again, even though the magnitude of variation along the
abscissa is comparable, the downward curvature of the
plots is in disparity with Dingle's curves for any value of
the polish parameter.

It is also worthwhile to consider the data obtained by
Morelli' on a 2.5-mm-square b-axis sample, even though
the range of temperature variation in the measurements
did not go beyond 4.2 K. The reduced data for this crys-
tal are presented in Fig. 7(c) using the same material pa-
rameters derived in this study. Comparison is made with
the H=0.464 and H=0.215 plots of Sambles et al. ,
where it can be seen that there is a close correlation with
the theoretical curves, and so a value of H in this range is
indicated. For samples number 2 and 5, the lower-
temperature data appear to fit well into the pattern
described by samples 1 and 3 and 4, respectively.
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FIG. 7. Comparison of empirically derived enhancement

function AG(d/lb) for (a) 0—1.261 mm; (b) 8—0.500 mm and

6—0.341 mm; and {c)0—2. 5 mm diameter (cf. Ref. 16).

The data for single-crystal b-axis gallium wires compare
favoraMy with the theoretical curves of Sambles et al. if
the roughness is regarded as an adjustable parameter. It is
apparent that the roughness decreases with increasing size,
varying from approximately 5 down to 0.5 for various

samples in the present study. As mentioned earlier, there
is reason to believe that the method of sample preparation
could possibly lead to surfaces of higher roughness for the
smaller samples. Using a value for the electron wave-

length A,, of 0.378 nm for gallium, these values of H cor-
respond to a variation in the rms asperity factor of from
h=2 nm for the "roughest*' surfaces (smaller samples)
down to A =0.2 nm for the largest sample.

It is somewhat surprising that the rms asperities are so
much smaller than the wavelength of light. because even

though the Plexiglas mold spacers are "highly polished, "
no special pains were taken to produce much more than a
shiny mirrorlike appearance on the milled surfaces. Thus,
although agreement with theory is good with only one ad-
justable parameter, some doubt must still be cast upon the
validity of the results. The Soffer model is unquestion-
ably a much more realistic treatment of the surface
scattering problem than the Fuchs-Dingle polish-factor
treatments. However, it must also be kept in mind that
there remains one serious shortcoming in all current size-
effect theories that treat cylindrical wires. The assump-
tion of the relaxation time approximation for electron-
phonon scat terj.ng 1s a seAous overslmpliflcatlon.
Ehrlich' has applied the electron "diffusion" method of
Klemens and Jackson' to the thin-film problem. The re-
sults of that study demonstrate that the SIDMR are much
larger than in Fuch s relaxation-time-approximation treat-
ment, especially in the region of a = 1. It appears
worthwhile at this stage in the development of the subject
for the application of the electron diffusion model to be
made to the case of thin wires. Judging from the results
of the treatment of thin films, it is qualitatively apparent
that fairly large enhancement functions can be obtained,
even for zero polish. The likelihood is great that similarly
large enhancements can be expected for thin wires.
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