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Quenched-impurity influence on quantum critical behavior
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The effects of short-range-correlated impurities on the critical behavior of some quantum models with a

free-energy spectrum —k (0 & (T(2) are investigated by using the renormalization-group approach via

the replica trick. At zero temperature, two nonsimultaneous expansion parameters a~ = d~
—d (d~ = a. or

2
a.) and e =2(r —d are involved in terms of which an unusual phase transition is predicted for d & 2(r.

Recently, a number of investigations have appeared for
quantum systems in the presence of quenched random
fields which couple linearly to the order parameter. '~ At
present, an analogous study about the influence on quan-

tum critical behavior of quenched impurities described by a
random field which couples quadratically to the order
parameter is absent (see, however, Ref. 5). In this Com-
munication we consider only the last problem on the basis
of a quantum generalized model appropriate to a description
of the interacting Bose gas, ' ~ ' the X-Yspin model in a
transverse field, "' " and the structural phase transitions
near the displacive limit. ' '8 Our approach is based on a
renormalization-group (RG) treatment with the use of the

replica trick." Of course, an analogous investigation can
be realized for other quantum models. " Here we limit
ourselves to short-range-correlated quenched impurities. A
detailed study also including the long-range case will be
presented elsewhere.

%e take for our discussion the functional representation
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where (p(x ) is the random field which describes the
quenched impurities, Z [@}is the (grand canonical) partition
function for a given [@) configuration, and P [|tp, @} is the
quantum generalized dimensionless functional
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In (2), (p(k) is the Fourier transform of (p(x) and standard
notations have been used. '4 s (2 (7's The function f(0(()
(0((=2rrtT; I =0, +I, +2, . . . ) and the definition of the
parameters r0 and u0 depend on the particular system under
study. " Here we consider the two possibilities:
f(o(() = —ie(( for bosonized systemss (e.g. , Bose gas and

X-I' model in a transverse field) and F(o(() =o((2 for the
structural phase transitions. ' '8 The differences in the de-
finitions of the parameters are not relevant for our investi-

gation.
We now assume that (P(k) is a Gaussian random variable

l

satisfying the average relations

[@(k)],=0, [(p(k)(p(k')l =&05-, (3)

where, for definition, h0 is a non-negative quantity and the
square bracket [ ],„ indicates an average over possible
impurity configurations. Then, by using the replica trick,
the original problem is reduced to an "effective" one
characterized by a functional A,rr((p )) of m replications

[P;n = I, . . . , m } of the field p of the form

~rr([p )) =~rr ([p )) +~k}([(p )) +~fr)([(p )), (4)
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witli II = (k, Oii).
The expressions {4)-(7) clearly show that the effective

action A,ff fo1 thc quantum problems dUc to thc pl'cscncc of
quenched impurities, is translationally invariant in the space
but presents an anisotropy in the "timelike" direction. A
similar situation has been studied by Boyanovsky and Car-
dy~ for n-component classical magnets with perfect correla-
tions in the disorder along ed-dimensional "lines" of impur-
ities and no correlations in the other directions. As we shall
see, for this peculiarity, the quantum systems under study

appear to have a very strange behavior at T =0 according to
the predictions of the RG approach.

The quantum RG procedure, 7 9'22o ~here also the fre-
qucnclcs are to bc scaled Rs coi = b ct)i ~ T = b T (b ) 1 is
the spatial rescaling factor and z is the dynamical critical ex-
ponent), can now be applied to the "effective problem" and
the RG equations will be obtained taking m 0 in the final
results.

The T-dependent RQ differential equations to second or-
der 1n thc COUpllng parameters aI'c

—= or + — kduFi(r, T) Kd-df Pl +2
dl 4 1+I

= [(2o —z) —d]u —— u [(n +6)F2(r, T) +2F3(r, T) ]+6Kd-
dl (I+.)' '

dA Pl +2 Q2

dl
=(2o —d) b — K~utsF2(r, T) +4Kd

2 (1+r)'

where Kd=2' 4' +'/F{d/2) In . {8) we have assumed

q =2 —o- for the exponent which enters the rescaling of the
fields [i' } and z is given by the equations

e(o —s) l
P
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I

for bosonized systems and structural phase transitions,
respectively. The exponents q and z have been determined
as usual by imposing that in 4 pff( [i[i~}) the coefficients of
k" and of the term 1n ~,' are identical to those ln the orlgl-
nal effective action. The functions F;(r, T) (i =1,2, 3) are
given by

(e"+'tr 1) '—
, f((oi) = —I'Oii
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2T 8T 2T

—'(1 +r) 'coth — (1 +r), f(~I) = —topi
F3(rT) = ' 2T

F,(r, T), f((ui) =fot' . (12)

Of course, the physical region in the parameter space is de-
fined by u «0 and 5 «0.

For T %0, since T(l) ~ oo by iteration of the RG
transformation, in terms of the ncw coupling parameter
u = uT, Eqs. (8) reduce, in any case, to the ones for the cor-
responding classical n-vector model with quenched impuri-
ties appropriate to a discussion of the static properties to
f11st order 1n 6 =2 G —d. However, 1n oUI' quantum
scheme, there is the additional possibility of having infor-
mation also abou. t the critical dynamics. For instance, for
thc Bose gRs, fi'oI11 (9), it follows thRI.

(13)

at the fixed point. This is just the result derived in Refs. 22
and 24 for a classical system with quenched random impuri-
ties and nonconserved order parameter.

We now restrict ourselves to the quantum limit T =0.
Bosonized systems In this case,. Eqs. (8) reduce to

dQ— —= [(2~—z) —d] u —= + 6K,
u' uh

dl 4 1+r (1+r)'
d4 Q2

dl
= (2o.—d) 6 +4K' (1+r)'

(14)

whcI'c thc number n of order-parameter components ls ab-
sent. A peculiarity of Eqs. (14) is that, due to the anisotro-
py in the temporal direction, two alternative RG expansion
pRIRI11ctci's e&=(2o —z) —d R11d e=2o' d appear ill 'tllc

problem. This gives the possibility of having information
about the T =0 behavior near the two borderline dimen-
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sions d~'=20- —z and d'=2o- to first order in e~ and e,
respectively.

If one uses e, as the expansion parameter, Eqs. (14) have
the Gaussian fixed point (GFP) r'=u'=b, '=0 and the
pure fixed point (PFP) r'=0, u'=4e~/Eq, b'=0. In both
cases we have, from (9), z=a- so that e~=o. —d and
d~'=a-. The corresponding eigenvalues of the linearized
RG equations are ()t„' '=o, A. „' '=e„h.5to'=e, +o.) and
(X =o, X = eq, XIt =—eq+rr) for ~e~~ && 1. From
these it follows that (i) the GFP is "doubly" unstable with
respect to u and 5 perturbations for d & o- and "simply"
unstable with respect to b for d ) o", and that (ii) the PFP
is simply unstable with respect to 5 perturbation for d & m-

and doubly unstable with respect to u and 6 for d & o-.

Thus, even if the PFP and the GFP are unstable near
d = o., they are characterized by the same degree of unsta-
bility with respect to 6 perturbation for d & o- and d & o-,

respectively.
If we assume e=2o- —d as expansion parameter, two

fixed points of Eqs. (14) are found: the GFP with eigen-
values (X,'o =o., X„'o'=e —o., Xp'=e) and the random
fixed point (RFP) r'= —le/4a, u~=0, 5'= —e/4' with
eigenvalues [)t,t"' = o —e/4, )~„'"'= —( o-+ e/4),
= —e]. Thus, (iii) the GFP is simply unstable with respect
to 5 for d & 2o- and stable for d )2a", (iv) the RFP is un-

physical because it has a negative value of 6' for & &0,
whereas for e & 0 it lies in the physical region of parameter
space, but it is unstable. Therefore this fixed point should
be rejected and only the Gaussian one is to be taken into
account.

Structural phase transitions The (.T =0) RG equations are

dr n +2 u

dl
—=(rr + Eg

8 (1+r)'i2 1+r
—,——Eg

du = [(2o.—z) —d] u Eg——n+8 u uA- +6Eg-
dl 16 (1+r)' ' (1+r)'

(15)
Note that, in contrast to the bosonized case, n now enters
the equations. Owing to the presence of two possible but
unsimultaneous expansion parameters e~ and e also in the

structural case, it is easy to see that the only acceptable
fixed points of Eqs. (15) are the GFP and the PFP

r' = —(2/o. ) [(n + 2)/(n + 8) ]e, ,

u'= [16/Kg(n + 8)]eq, g'=0,
leql =

I 2
o. —d) « 1 with eigenvalues () „tol= o,

l = e„h.g = e, + o./2) and [Z„tpl = o (—pg + 2)/
(n + 8)e„ ) „"'= e—„ )«"= (4 —n)/(n + 8)e, + ~/2],
respectively; the GFP with eigenvalues ( h. „t l = o.,

=e —o./2, A. q =e) and the unphysical RFP (the same
as for bosonized systems) for ~e~ && 1. It is now apparent
that all the statements (i)-(iv) for the bosonized case are
valid also for the structural one with d~'= o- replaced by

3 1

d» =
2

o. (z =
2

o.). We incidentally note that, surprisingly,
whereas at T ~0 two RFP's exist, in the quantum limit
T 0 only the unphysical RFP survives.

We now draw some physical conclusion from the previous
T=0 RG analysis. It turns out that the randomness does
not create stable fixed points for any of the studied quan-
tum models at T =-0 when d & 20-, as it should be whenev-
er the transition is second order. ' Thus we predict that the
transition, associated with two different fixed points for
d & d~' and d~' & d & 2o- characterized by the same degree
of instability, is not a sharp second-order transition. Only
for d )2o- is the behavior of random quantum systems
governed by a stable GFP and we should have an ordinary
Gaussian second-order transition with p = I/X,'o' = I/tr,
q=2 —o., and z=cr or o./2. It must be stressed that the
runaway for d &2o- in the parameter space carries out of
the range where our approximations are valid and RG-
independent calculations are needed to identify the nature
of the transition. Superficially, due to the lack of stable
fixed points, one might be tempted to conclude that, for
d & 2', the T =0 transition should be of first order. How-

ever, as pointed out by Aharony" and Lubensky for clas-
sical systems, the runaway for random systems is of a fun-
damentally different nature than the runaway for the pure
systems. Therefore, one should rather expect that the ran-
domness induces a crossover from the pure second-order
quantum transition to a "smeared or rounded" transition. '
Of course, in contrast with the pure situation, any dimen-
sional crossover' ' "for T ~ 0 is now absent.
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