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Nonuniqueness of H2 3 and H2 field-temperature transition lines in spin-glasses
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the H-T plane are obtained for constant 7. These lines follow the relation TH —To~ H" where v ——ex-
3

cept for H~ 0 which shows a crossover to v =2. Thus a power law similar to that derived from mean-

field models of spin-glasses is obtained, based strictly on a superpararnagnetic relaxation-time approach.

This questions the conclusion that experiInental observations of H-T lines are solely the result of a mean-

field phase transition.

Much theoretical work has been devoted to the descrip-
tion of the transition from the paramagnetic to the frozen
spin-glass state and to the nature of this frozen state. Origi-

nally, the frozen state was described either in terms of a
broad spectrum of relaxation time' analogous to the Keel
picture of superparamagnetism or within the concept of a
phase transition based on the Edwards-Anderson (EA)
model. 2 The former description has lost much of its appeal
because the gradual freezing process predicts larger time
(relaxation) effects than experimentany observed, and as a

phenomenological model it is not an especially challenging
theoretical approach. The latter model, however, resulted in

a new type of transition which provided considerable
theoretical stimuli. This model has been extended to infi-

nite range by Sherrington and Kirkpatrick (SK)' and has re-

quired several years of extensive calculations to obtain vi-

able solutions.
de Almeida and Thouless4 sho~ed that in the presence of

a magnetic field, the SK model for classical Ising spins exhi-
bited an instability for purely random interactions which has
been subsequently in.ter preted as a phase transition.
Toulouse and Gabays have extended this calculation for an
e-component spin system, resulting in the so-called AT line
of the following form:

1 —T„(H)/T„(0) = [(m+1)( +2)/8]'~'h'~',

where h = gp, &SH//AT»(0), T» is the transition tempera-

ture, and m is the spin dimensionality (m =1 for the Ising

case and m =3 for the Heisenberg case). In the course of
their calculation, Toulouse and Gabay found another transi-

tion line corresponding to the onset of a freezing in the

transverse degrees of freedom of the spins. The equation of
this transition line (the GT line) is given by

TGr(0) h' m'+4m+2
T„(0) 4 ( +2)

where h and m have identical meanings as for Eq. (1). Ob-

viously, in zero field TGr(0) = T&r(0) and the notion of
transverse freezing for an Ising system is to be excluded.
Consequently, the prediction of these two transition lines in

the 0-T plane has created a widespread experimental search
for such behavior, even though the precise experimental de-

finitions of TGT and TqT are uncertain. 6

In several recent experimental papers, evidence has been
presented supporting the existence of either the AT line
(h'~3 dependence) or the GT line (h' dependence); howev-

er, to d8tc, no single experiment h8s bccn Rblc to obsclvc
both field dependences. The first evidence for the h2/'

behavior was from dc magnetization results, ' but the ex-
perimental value of the prefactor in Eq. (1) was approxi-

mately seven times larger than the theoretical prediction. A

similar field dependence was observed in an insulating

spin-glass Euo 4Sro 6S "'2 but with a strong dependence

upon the time scale t of the measurement. Again the ob-

served prefactor was 5-9 times larger. More recently, the
onset of strong irreversibilities in torque measurements" on
CuMA and AuFC have also shown a field-temperature
dependence which follows the AT behavior of h2~3. Previ-

ously, an h2 behavior has been suggested from the magnetic

field dependences of the heat capacity in CuMA, ' with the
coefficient of h2 being 2.5 smaller than the theoretical value.

The apparent success of observing these field dependences
has given much suppoI't to thc validity of thc SK model ln

explaining the spin-glass properties and the reality of a

phase transition.
This may be surprising since several calculations' on

spin-glass models with short-range interactions predict a

lo~er critical dimension of 4, thus no phase transition in the
real world of three dimensions. To provide a possible ex-

planation for this apparent success, Klnzcl RAd Binder

have shown by Monte Carlo simulations of an Ising-spin
nearest-neighbor EA model that several experimental

features could be determined without the existence of a

phase traAsltlon. IA particular, IrrcvcI'slblc bchavloI' on thc
time scale t sets in for a magnetic field following an AT line,

although no static freezing temperature existed. Simultane-

ously, Young' investigated the temperature and field

dependence of the spatial correlations and relaxation times

by a similar Monte Carlo simulation of a two-dimensional

EA model. His results also showed the following. (i) There
is no phase transition in zero field but an average relaxation
time r and correlation range ( that increase smoothly with

temperature. (ii) In a field the energy barrier height
(E= T lnr) and the correlation length tend to finite values

as T~ 0. (iii) Lines of constant r in the 0 Tplane seem-
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to vary by a similar power law as the AT line of Eq. (1).
Thus the concept of relaxation times reappears in both
simulations without the necessity of a phase transition.

In light of these computer simulations, we felt it would be
instructive to return to the original superparamagnetic
relaxation-time approach of independent thermal activation
over energy barriers in order to establish whether "transi-
tion" lines similar to those of Eqs. (1) and (2) exist. The
effect of a magnetic field on the superparamagnetic relaxa-
tion time 7 was calculated by Brown' in 1963 for a high-
energy-barrier approximation as

'= C~' (I —/t') [(1+h) exp[ —n(1+ h)']

+ (1—h) exp [ —n (1 —h) 2]], (3)

ln(x.C)=&s &07rr 3z

0.5 1.0

For a constant 7 one can determine an H-T relationship

exp(E/To —E/Trr) = 1 — (p H/AT—H)2

where To and TH are characteristic "freezing" temperatures
in zero-field and an applied field, respectively, for an obser-
vation time t —7. Since TH- To, an expansion of the ex-
ponential results in

The preceding result was determined in the limit

p, H « E and we further wish to find the H-T relationship
for constant v for higher fields. '9 Since a simple analytical
expression was not derivable, a numerical calculation of Eq.
(3) was performed. The results for a constant r are plotted
as H/' vs T for Fig. 1, where E is a constant (=10 K) for
all temperatures. Note the reasonable agreement with an
H /3 behavior over a wide range of magnetic fields and the
crossover to an H behavior as H 0. If a temperature-

106 3 2= (Q tC

0 0.5

FIG. 1. Points in the H-T plane for constant lnv and a given
magnetic field according to Eq. (3) with a constant energy barrier E.
The dashed lines show the lower-field extension of a straight-line fit
to the H~~ behavior.

where C is a numerical constant, n = E/ks T, h = p, H/2E, E
is the energy barrier in zero field, and p, is the super-
paramagnetic moment. Expanding Eq. (3) to order H and
replacing the preexponential factor with a constant for sim-

plicity, one obtains

r = ro exp(E/ks T) [1—
2

(p, H/ks T)'+ ], p, H ((E

(4)

FIG. 2. Points in the H-T plane for constant ln~ according to Eq.
(3) with an energy barrier E/ks= —2+9 5/T (see. Ref. 17). The

dashed lines show the extension of a straight-line fit to the H ~

behavior.

dependent E is included such as of the form g+ b/T sug-
gested by Young's simulations, " the results (see Fig. 2) still
show an H ' dependence until the lower fields where again
an H dependence predominates. In fact, these latter
results appear to be in very good qualitative agreement with
Fig. 4 of Young's work. '7 From the slope of the H /' lines,
a coefficient of the H /' term can be deduced and compared
with that of the AT line. For 2 & lnv & 10 in Fig. 1, a ratio
of 0.31 to 0.14 (p/gps)'/3 is determined. For Eua4Sr06S
with strong ferromagnetic clustering, the superparamagnet-
ic moment p, —gp, ~SN so that —20-40 Eu'+ spins would
be correlated in a cluster. This value seems quite reason-
able for the above Eu concentration.

Since most experimental observations show an H ' tran-
sition line, real spin-glasses tend to have a strong Ising-like
character. The same H/' behavior observed in the experi-
ments can be deduced (i) from an Ising (as well as Heisen-
berg) mean-field approach with a thermodynamic phase
transition, (ii) from computer simulations with Ising spins
which use the same EA interactions but allow for the
dynamics or relaxation of the system (no phase transition),
and now (iii) from a completely dynamical calculation based
on the relaxation of superparamagnetic particles with uniaxi-
al anisotropy which are also Ising-like. In addition, a
number of dynamical experiments" ' exhibit a low-field
crossover exactly as that found from our superparamagnetic
model calculation.

Thus we have demonstrated that the H-T dependence
determined from the mean-field model of spin-glasses are
by no means unique. Similar power laws can be determined
from the magnetic-field-dependent superparamagnetic relax-
ation time for a constant v which can even result in better
quantitative agreement with the experimental values, al-
though some arbitrariness is realized in the determination of
E and 7. Obviously, a simple relaxation picture without in-
teractions does not quantitatively nor qualitatively describe
all of the spin-glass freezing properties, nor do we suggest it
should. However, relaxation effects and their field depen-
dences, as well as corresponding observation times, are im-
portant experimental properties of spin-glasses. Indeed
these relaxation effects may be the physical basis for the ex-
istence of AT- and GT-type transition lines. Furthermore,
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careful examination of the experimental data and of possible
alternative models is necessitated before asserting that a
measurement is more supportive of the mean-field model
and a phase transition.

In conclusion, we have shown that an h crossing over
to an h' field-temperature line can be derived from a purely
dynamical (superparamagnetic) treatment without any phase
transition. Hence observing such behavior in spin-glasses
cannot be used as proof for the validity of the mean-field
theory and its corresponding spin-glass phase transition.
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