Nonuniqueness of $H^{2/3}$ and H^2 field-temperature transition lines in spin-glasses

L. E. Wenger

Department of Physics, Wayne State University, Detroit, Michigan 48202

J. A. Mydosh

Kamerlingh Onnes Laboratorium, Rijksuniversiteit te Leiden, Postbus 9506, 2300-RA Leiden, The Netherlands (Received 23 December 1983)

Including the magnetic field dependence on the superparamagnetic relaxation time τ , "transition" lines in the *H*-*T* plane are obtained for constant τ . These lines follow the relation $T_H - T_0 \propto H^{\nu}$ where $\nu \sim \frac{2}{3}$ except for $H \rightarrow 0$ which shows a crossover to $\nu = 2$. Thus a power law similar to that derived from meanfield models of spin-glasses is obtained, based strictly on a superparamagnetic relaxation-time approach. This questions the conclusion that experimental observations of *H*-*T* lines are solely the result of a meanfield phase transition.

Much theoretical work has been devoted to the description of the transition from the paramagnetic to the frozen spin-glass state and to the nature of this frozen state. Originally, the frozen state was described either in terms of a broad spectrum of relaxation time¹ analogous to the Néel picture of superparamagnetism or within the concept of a phase transition based on the Edwards-Anderson (EA) model.² The former description has lost much of its appeal because the gradual freezing process predicts larger time (relaxation) effects than experimentally observed, and as a phenomenological model it is not an especially challenging theoretical approach. The latter model, however, resulted in a new type of transition which provided considerable theoretical stimuli. This model has been extended to infinite range by Sherrington and Kirkpatrick (SK)³ and has required several years of extensive calculations to obtain viable solutions.

de Almeida and Thouless⁴ showed that in the presence of a magnetic field, the SK model for classical Ising spins exhibited an instability for purely random interactions which has been subsequently interpreted as a phase transition. Toulouse and Gabay⁵ have extended this calculation for an *m*-component spin system, resulting in the so-called AT line of the following form:

$$1 - T_{AT}(H)/T_{AT}(0) = [(m+1)(m+2)/8]^{1/3}h^{2/3} , \qquad (1)$$

where $h = g\mu_B SH/k_B T_{AT}(0)$, T_{AT} is the transition temperature, and *m* is the spin dimensionality (m=1 for the Ising case and m=3 for the Heisenberg case). In the course of their calculation, Toulouse and Gabay found another transition line corresponding to the onset of a freezing in the transverse degrees of freedom of the spins. The equation of this transition line (the *GT* line) is given by

$$1 - \frac{T_{GT}(H)}{T_{GT}(0)} = \frac{h^2}{4} \frac{m^2 + 4m + 2}{(m+2)^2} , \qquad (2)$$

where *h* and *m* have identical meanings as for Eq. (1). Obviously, in zero field $T_{GT}(0) = T_{AT}(0)$ and the notion of transverse freezing for an Ising system is to be excluded. Consequently, the prediction of these two transition lines in the *H*-*T* plane has created a widespread experimental search for such behavior, even though the precise experimental de-

finitions of T_{GT} and T_{AT} are uncertain.⁶

In several recent experimental papers, evidence has been presented supporting the existence of either the AT line $(h^{2/3}$ dependence) or the GT line $(h^2$ dependence); however, to date, no single experiment has been able to observe both field dependences. The first evidence for the $h^{2/3}$ behavior was from dc magnetization results,⁷⁻¹⁰ but the experimental value of the prefactor in Eq. (1) was approximately seven times larger than the theoretical prediction. A similar field dependence was observed in an insulating spin-glass $Eu_{0.4}Sr_{0.6}S$,^{11,12} but with a strong dependence upon the time scale t_m of the measurement. Again the observed prefactor was 5-9 times larger. More recently, the onset of strong irreversibilities in torque measurements¹³ on CuMn and AuFe have also shown a field-temperature dependence which follows the AT behavior of $h^{2/3}$. Previously, an h^2 behavior has been suggested from the magnetic field dependences of the heat capacity in CuMn,¹⁴ with the coefficient of h^2 being 2.5 smaller than the theoretical value. The apparent success of observing these field dependences has given much support to the validity of the SK model in explaining the spin-glass properties and the reality of a phase transition.

This may be surprising since several calculations¹⁵ on spin-glass models with short-range interactions predict a lower critical dimension of 4, thus no phase transition in the real world of three dimensions. To provide a possible explanation for this apparent success, Kinzel and Binder¹⁶ have shown by Monte Carlo simulations of an Ising-spin nearest-neighbor EA model that several experimental features could be determined without the existence of a phase transition. In particular, irreversible behavior on the time scale t sets in for a magnetic field following an AT line, although no static freezing temperature existed. Simultaneously, Young¹⁷ investigated the temperature and field dependence of the spatial correlations and relaxation times by a similar Monte Carlo simulation of a two-dimensional EA model. His results also showed the following. (i) There is no phase transition in zero field but an average relaxation time τ and correlation range ξ that increase smoothly with temperature. (ii) In a field the energy barrier height $(E = T \ln \tau)$ and the correlation length tend to finite values as $T \rightarrow 0$. (iii) Lines of constant τ in the H-T plane seem

to vary by a similar power law as the AT line of Eq. (1). Thus the concept of relaxation times reappears in both simulations without the necessity of a phase transition.

In light of these computer simulations, we felt it would be instructive to return to the original superparamagnetic relaxation-time approach of independent thermal activation over energy barriers in order to establish whether "transition" lines similar to those of Eqs. (1) and (2) exist. The effect of a magnetic field on the superparamagnetic relaxation time τ was calculated by Brown¹⁸ in 1963 for a highenergy-barrier approximation as

$$\tau^{-1} = C \alpha^{3/2} (1 - h^2) \{ (1 + h) \exp[-\alpha (1 + h)^2] + (1 - h) \exp[-\alpha (1 - h)^2] \} , \quad (3)$$

where C is a numerical constant, $\alpha = E/k_BT$, $h = \mu H/2E$, E is the energy barrier in zero field, and μ is the superparamagnetic moment. Expanding Eq. (3) to order H^2 and replacing the preexponential factor with a constant for simplicity, one obtains

$$\tau = \tau_0 \exp(E/k_B T) [1 - \frac{1}{2} (\mu H/k_B T)^2 + \cdots], \quad \mu H \ll E \quad .$$
(4)

For a constant τ one can determine an *H*-*T* relationship

$$\exp(E/T_0 - E/T_H) = 1 - \frac{1}{2} (\mu H/k_B T_H)^2$$
,

where T_0 and T_H are characteristic "freezing" temperatures in zero-field and an applied field, respectively, for an observation time $t_m \sim \tau$. Since $T_H \sim T_0$, an expansion of the exponential results in

$$1 - T_H / T_0 = \frac{\mu^2}{2Ek_B T_0} H^2$$

The preceding result was determined in the limit $\mu H \ll E$ and we further wish to find the H-T relationship for constant τ for higher fields.¹⁹ Since a simple analytical expression was not derivable, a numerical calculation of Eq. (3) was performed. The results for a constant τ are plotted as $H^{2/3}$ vs T for Fig. 1, where E is a constant (=10 K) for all temperatures. Note the reasonable agreement with an $H^{2/3}$ behavior over a wide range of magnetic fields and the crossover to an H^2 behavior as $H \rightarrow 0$. If a temperature-

FIG. 1. Points in the H-T plane for constant $\ln \tau$ and a given magnetic field according to Eq. (3) with a constant energy barrier E. The dashed lines show the lower-field extension of a straight-line fit to the $H^{2/3}$ behavior.

FIG. 2. Points in the H-T plane for constant $\ln \tau$ according to Eq. (3) with an energy barrier $E/k_B = -2+9.5/T$ (see Ref. 17). The dashed lines show the extension of a straight-line fit to the $H^{2/3}$ behavior.

dependent *E* is included such as of the form a + b/T suggested by Young's simulations,¹⁷ the results (see Fig. 2) still show an $H^{2/3}$ dependence until the lower fields where again an H^2 dependence predominates. In fact, these latter results appear to be in very good qualitative agreement with Fig. 4 of Young's work.¹⁷ From the slope of the $H^{2/3}$ lines, a coefficient of the $H^{2/3}$ term can be deduced and compared with that of the AT line. For $2 < \ln \tau < 10$ in Fig. 1, a ratio of 0.31 to 0.14 $(\mu/g\mu_B)^{2/3}$ is determined. For Eu_{0.4}Sr_{0.6}S with strong ferromagnetic clustering,²⁰ the superparamagnetic moment $\mu \sim g\mu_B SN$ so that $\sim 20-40$ Eu³⁺ spins would be correlated in a cluster. This value seems quite reasonable for the above Eu concentration.

Since most experimental observations show an $H^{2/3}$ transition line, real spin-glasses tend to have a strong Ising-like character. The same $H^{2/3}$ behavior observed in the experiments can be deduced (i) from an Ising (as well as Heisenberg) mean-field approach with a thermodynamic phase transition, (ii) from computer simulations with Ising spins which use the same EA interactions but allow for the dynamics or relaxation of the system (no phase transition), and *now* (iii) from a completely dynamical calculation based on the relaxation of superparamagnetic particles with uniaxial anisotropy which are also Ising-like. In addition, a number of dynamical experiments^{11, 12} exhibit a low-field crossover exactly as that found from our superparamagnetic model calculation.

Thus we have demonstrated that the H-T dependence determined from the mean-field model of spin-glasses are by no means *unique*. Similar power laws can be determined from the magnetic-field-dependent superparamagnetic relaxation time for a constant τ which can even result in better quantitative agreement with the experimental values, although some arbitrariness is realized in the determination of E and τ . Obviously, a simple relaxation picture without interactions does *not* quantitatively nor qualitatively describe all of the spin-glass freezing properties, nor do we suggest it should. However, relaxation effects and their field dependences, as well as corresponding observation times, are important experimental properties of spin-glasses. Indeed these relaxation effects may be the physical basis for the existence of AT- and GT-type transition lines. Furthermore, careful examination of the experimental data and of possible alternative models is necessitated before asserting that a measurement is more supportive of the mean-field model and a phase transition.

In conclusion, we have shown that an $h^{2/3}$ crossing over to an h^2 field-temperature line can be derived from a purely dynamical (superparamagnetic) treatment without any phase transition. Hence observing such behavior in spin-glasses cannot be used as proof for the validity of the mean-field theory and its corresponding spin-glass phase transition.

- ¹J. L. Tholence and R. Tournier, J. Phys. (Paris) Colloq. <u>35</u>, C4-229 (1974).
- ²S. F. Edwards and P. W. Anderson, J. Phys. F 5, 965 (1975).
- ³D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. <u>35</u>, 1792 (1975).
- ⁴J. R. L. de Almeida and D. J. Thouless, J. Phys. A <u>11</u>, 983 (1978).
- ⁵G. Toulouse and M. Gabay, J. Phys. (Paris) Lett. <u>42</u>, L103 (1981);
 M. Gabay and G. Toulouse, Phys. Rev. Lett. <u>47</u>, 201 (1981);
 G. Toulouse, M. Gabay, T. C. Lubensky, and J. Vannimenus, J. Phys. (Paris) Lett. <u>43</u>, L109 (1982).
- ⁶D. Cragg, D. Sherrington, and M. Gabay, Phys. Rev. Lett. <u>49</u>, 158 (1982); M. Gabay, T. Garel, and C. de Dominicis, J. Phys. C <u>15</u>, 7165 (1982). These papers suggest that the *GT* line represents a true phase transition where some form of transverse irreversibility sets in while the *AT* line is a crossover from weak to strong irreversibility.
- ⁷P. Monod and H. Bouchiat, J. Phys. (Paris) Lett. <u>43</u>, L45 (1982).
- ⁸R. V. Chamberlin, M. Hardiman, L. A. Turkevich, and R. Orbach, Phys. Rev. B <u>25</u>, 6720 (1982).
- ⁹Y. Yeshurun and H. Sompolinsky, Phys. Rev. B <u>26</u>, 1487 (1982).
- ¹⁰M. B. Salamon and J. L. Tholence, J. Appl. Phys. <u>53</u>, 7684 (1982).

We wish to acknowledge the numerous discussions with several participants of the Heidelberg Colloquium on Spin-Glasses²¹ and Dr. J. Souletie who remarked about the existence of the H^2 dependence for a superparamagnet. One of us (L.E.W.) wishes to acknowledge the support of the Netherlands-America Fulbright Commission during his sabbatical year in Leiden. This research was supported by the National Science Foundation under Grant No. DMR-79-21298) and the Nederlandse Stichting voor Fundamenteel Onderzoek der Materie (FOM).

- ¹¹N. Bontemps, J. Rajchenbach, and R. Orbach, J. Phys. (Paris) Lett. <u>44</u>, L47 (1983).
- ¹²J. A. Hamida, C. Paulsen, S. J. Williamson, and H. Maletta (unpublished).
- ¹³I. A. Campbell, D. Arvantis, and A. Fert, Phys. Rev. Lett. <u>51</u>, 57 (1983).
- ¹⁴W. E. Fogle, J. D. Boyer, R. A. Fisher, and N. E. Phillips, Phys. Rev. Lett. <u>50</u>, 1815 (1983).
- ¹⁵I. Morgenstern and K. Binder, Phys. Rev. B <u>22</u>, 288 (1980);
 R. Fisch and A. B. Harris, Phys. Rev. Lett. <u>38</u>, 785 (1977); A. J. Bray and M. A. Moore, J. Phys. C 12, 79 (1979).
- ¹⁶W. Kinzel and K. Binder, Phys. Rev. Lett. <u>50</u>, 1509 (1983).
- ¹⁷A. P. Young, Phys. Rev. Lett. <u>50</u>, 917 (1983).
- ¹⁸W. F. Brown, Jr., Phys. Rev. <u>130</u>, 1677 (1963). The highenergy-barrier approximation is $E(1-\mu H/2E)^2 >> k_B T$.
- ¹⁹The high-energy-barrier approximation is valid to the limits: $E/k_B T \ge 2$ and $\mu H/2E \le 0.4$. See A. Aharoni, Phys. Rev. <u>177</u>, 793 (1969).
- ²⁰J. F. Dillon, Jr., J. Magn. Magn. Mater. <u>31-34</u>, 1 (1983).
- ²¹Proceedings of the Heidelberg Colloqium on Spin-Glasses, Lecture Notes in Physics, Vol. 192, edited by J. L. van Hemmen and I. Morgenstern (Springer-Verlag, Heidelberg, 1983).