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Correlated Einstein model for the equilibrium properties of solids
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The correlated Einstein model (CEM) is a new approach to the problem of determining the equi-

librium properties of anharmonic solids. It is based on the use of the zeroth-order term in an expan-
sion for the average of a product of one- and two-particle functions, where the average is a classical
canonical average for a system of independent Einstein oscillators. The parameters that character-
ize the oscillators are chosen so that the first- and second-order terms in the expansion vanish. A
diagrammatic representation of the expansion is given. Explicit formulas for determining the
Helmholtz free energy of a monatomic cubic crystal are given and are evaluated both for a
Lennard-Jones and a 1/r ' potential. The results obtained are compared with available Monte Car-
lo values. The CEM ls found to be at least as accuIate as the uncorrelated-pairs approximation, the
cell-cluster method, the simple cell model, and improved self-consistent phonon theory.

I. INTRODUCTION
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This paper introduces a new method for calculating the
equilibrium properties of anharmonic solids. The method
is based on the exact result
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are the true and approximate Helmholtz free energies,
which arc given by
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V ls volllIIlc, T is tclllpcl atllrc, kit ls 8oltzmann s coll-
stant, and p= I/ktt T. When both 40 and 4 are sums of
two-particle functions, so that

%herc thc Rngulal brackets indicate a classicRI cquilibriuITl
average for a system of X independent Einstein oscillators.
x; is the displacement of particle i from lattice site i
(i =1, . . . , X), and the fJ(xJ ) and fkt(xk, xt ) are arbitrary
one- and two-particle functions. The derivation of Eq.
(1.1), which makes critical use of Fourier transforms and
the special properties of harmonic averages, is given in
Sec. II. Also given are the definitions of the differential
operators 2 ( V') and R ( V), which operate on the particle
variables x; before the averages are performed. A ( V ) is a
suln of elementary operators each of which acts on a pair
of two-particle functions. The interrelations or connec-
tions between pairs of functions made by these elementary
operators correct for the correlations between different
two-particle functions that are neglected in the product of
averages on the right-hand side of Eq. (1.1). Similarly, the
elementary operators that make up JI ( V') correct for the
neglected correlations between one-particle functions and
two-particle functions.

The above new and somervhat abstract result can be ap-
plied to the task of determining the equilibrium properties
of a system whose true potential energy 4 is not of the
Einstein type by using the relationship

F=S, P 'lnie ')—, . - (1.2)

40 is an approximate potential-energy function. I' and I'0

and similarly for 4, it follows that

I'" =I'o p'» jg e—xp[ p(dkt Pkt)]- —
k, l 0

An Einstein model connects each particle to a lattice
site by a spring, and the associated potential energy is
most naturally written as a sum of one-particle functions.
However, a sum of one-particle functions can always be
rc%'rItten as a sum of two-part1cle functIons, so that thc
potential energy of a collection of Einstein oscillators can
always be assumed to have the form given by Eq. (1.5).
By letting

fkt(xk xt) =exp[ P(gkt Pk—t)j—
the average in Eq. (1.6) becomes the same as the average
on the left-hand side of Eq. (1.1). These comments sug-
gest tllat tllc oIlc-pal'tlclc fllIlctioils 111 Eq. (1.1) collld bc
ignored, or equivalently that one could set all fj(xj )=1.
It is found, however, that it is not always desirable to do

The correlated Einstein model (CEM) is obtained by ex-
panding Eq. (1.1) in a Taylor series of powers of the artifi-
cially introduced parameter A, and keeping only the
zeroth-order term. The parameters in the Einstein
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potential-energy function 4o are then chosen so that all
first- and second-order terms in the resulting series vanish.
This choice sets the average and mean-square displace-
ments of the ith Einstein oscillator (i.e., & x; &o and
&x;x; &0) equal to averages that are modulated by the
Boltzmann factors exp[ —P(P;J —P,J )]. When the zeroth-
order term in the expansion is substituted into Eq. (1.6),
one obtains

~rt= gf(xJ) gf(xk xi)
j k~ 0

k&1

(2.1)

It is left implicit that the functions f(xk, xi) for different
variables xk and x~ are in general different, and similarly
for the f ( x1 ). For k ) l, we define

side of Eq. (1.1) and omit the subscripts on fj(xj) and
fki(xk xi):

f(xk, xi) =f (xi, xk) . (2.2)

This is the CEM approximation for the free energy. It is
accurate through second order. Effectively, it replaces the
average of a product of two-particle functions by a prod-
uct of their averages. Correlations are accounted for by
the choice of 40 and by the averages of
exP[ —P(Ai —0kt)]

We call the series obtained by expanding in powers of A,

the correlated parti-cles expansion (CPE). The parameter A,

orders the terms in the expansion according to the number
of elementary connections between pairs of functions that
are in the term. A useful property of the expansion is that
the maximum dimensionality of the integrals that require
numerical integration is 3, independent of the order of the
term considered. To help understand the expansion we in-
troduce a set of diagrams in Sec. II that can be put in
one-to-one correspondence with the terms in the expan-
s10n.

The CPE is similar to the first type of correlated-pairs
expansion described in an earlier paper. The main differ-
ence is that the earlier expansion required that the approx-
imate potential-energy function be harmonic, not that it
be of the Einstein type. Since an Einstein model is a spe-
cial case of a harmonic model, the CPE is in a sense less
general than the earlier expansion. The advantage of the
CPE is that it is simpler and therefore easier to apply.

The parameters in 40 must be chosen self-consistently.
This is described in Sec. III, and the formulas needed to
calculate the equilibrium properties of a monatomic crys-
tal with cubic symmetry are given. In Sec. IV the predic-
tions of the CEM are compared with Monte Carlo (MC)
results. Both a Lennard-Jones and a simple 1lr' poten-
tial are considered. For the latter potential we find that
nontrivial one-particle functions [i.e., fj(xj )&1] must be
included in Eq. (1.1) in order to obtain self-consistency.
The predictions of the CEM are found to be quite accu-
rate. For the Lennard-Jones solid a comparison is made
with the predictions of the uncorrelated-pairs approxima-
tion (UPA) (Ref. 2), the cell-cluster method (CCM) (Ref.
3), the simple cell model (CM) (Ref. 3), and improved
self-consistent phonon theory (ISC) (Ref. 4). The advan-
tages and disadvantages of the different approximations
are discussed in Sec. V.

II. CPE

A. Exact result

We begin the proof of the exact result given by Eq. (1.1)
with some comments on notation. For convenience we let
A~ designate the average of the product on the left-hand

Since only functions f(xk, xi) with k &1 occur in Eq.
(2.1), this involves no loss of generality.

Angular brackets with subscript zero indicate harmonic
averages of functions of the particle variables of the form

f d x[e 'F(x~, . . . , xz)]
1 ~ ~ ~ x+) &0 f d3N 0

(2.3)

where

4o= g( —,
' x; K; x; —I;.x;) . (2.4)

These averages are unaffected by the addition of an arbi-

trary constant to 4o. The force constant tensor K; is a
symmetric matrix with positive eigenvalues. The vector
I; represents a constant force that determines the mean
value of the variable x;. In particular, it follows from
Eqs. (2.3) and (2.4) that

(2.5)

,)(r &
r (2.6)

where a and y label different spatial components
(a,y = 1,2, 3) and 5;J is a Kronecker 5 function.

Fourier transforms will be designated by tildes, so that
the inverse transformations are given by

f(xj)=(2n) f d sjje " "f(sJJ) (2.7)

f(x x ) (2~)—3 f d3s f d3s e' kl "k+ Ik "l~

Xf(skt St ) . (2.8)

The first subscript on the transform variables ski indi-
cates the particle variable xk that has been replaced, while
the second subscript indicates the function f (xk, xt) that
has been transformed. The repeated subscripts on s Jj in-
dicate that a one-particle function has been transformed.

The first step in the proof is to introduce the inverse
transformations into the average A~. After combining
the product of the exponentials exp(i s Jk xJ ) into a single
exponential, one obtains
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Ag = 2& d s exP l sjk'xj
J,k

X gf(s,, ) g f(s, s )

j k, l
(2.9)

where M =3% . Note that there are E independent
transform or integration variables st, while there are
only X independent particle variables x;. The transforma-
tion of the X one-particle functions f(xj ) gives 3X of the
integration variables, while the transformation of the
X(X—I)/2 two-particle functions f(xk, xt) gives the
remairung 3X(X—1) integration variables.

We now use the exponential averaging theorem for har-
monic RvcI'ages, wlIIcll Is clucIR1 to tllc theory of flic
Debye-Wailer factor. It states that

(2.10)

where I. is any real linear function of the normal coordi-
nates, i.e., the coordinates that diagonalize 40. When 40
1IRs tllc Elnstcln form glvcn by Eq. (2.4), It, ls diagonal Ill

the x s as given, so that the particle variables are essen-

tially the normal coordinates. Equation (2.10) is a special
property of harmonic averages that is valid both classical-

ly and quantum mechanically. For the classical averages
considered here the proof of Eq. (2.10) is a straightfor-
ward exercise in completing the square and changing vari-
ables in integrals of exponentials of quadratic forms

The average in Eq. (2.9) can be simplified to have the
form &e' )0 by changing the order in which the integrat-
ing and averaging is done. By applying Eq. (2.10} to the
resulting average, one obtains

cxp i g s k xJ ——exp —
2 kIIT g sjk'KJ 8 Jt +I g 8 Jk & xj )0

j,k jkl jk
(2.11)

(2.12)

where the symbols R ( s ) and A ( s ) have the following meaning:

R ( s )=ktt T g' stj K j . s Jk,
j,k

where the single, double, and triple sums are unrestricted and where Eq. (2.6) has been used. By rearranging the triple

sum in Eq. (2.11) and again using the exponential averaging theorem (in reverse) it follows that

~ ~

~

J,k 0 J k, l
k&l

3 ( s ) =ktt T Q g 'i' s p, K 1 s tt .
j k, l

k&l

(2.14)

Thc primed double sum over j and k in Eq. (2.13) excludes terms with j=k, and the superscripted double sum over k

and I in Eq. (2.14) excludes terms with either k =j or I =-j. USIng the above results In Eq (2 9}gtves

(2.15}

Ve'''' =i se' ''" (2.16)

(2.17)

j,k

RJ.k ——kg TV JJ- K.J
.V'Jk,

A(V')= g g 'J'AikI,
j k, l

k&1

(2.18)

(2.19)

(2.20)

and require that all gradient operations must be performed
before aueragtng. Wltll this, all of the dependence On thc
transform variables can be set inside the angular brackets.
Then by taking the inverse Fourier transform one obtains
the exact result

(2.21)

Q. Exps11810I1

Thc CPE ls obtained by cxpandlng thc exact result
given by Eq. (2.17) in powers of a parameter A, that is in

+

AJkl ——kg TV Jk.KJ: V'jl .

When j&k, the operator V'tk operates on the variable xJ
in the function f(xj,xk), while V'JJ operates on the xj in

the function f (xi). (If desired, one can avoid the require-

ment tlIRt' t'llc gradients bc performed before thc Rvcl'RgIIlg

is done by introducing another set of variables for the gra-

dients to operate on, as was done in an earlier paper. }
Equation (2.17) is equivalent to Eq. (1.1).

Note that the elementary operator AjkI acts on a pair of
two"particle functlolls tl1at have oIlc partlclc ln coII1I11on,

so that A kl introduces a relationship between three parti-
cles. The elementary operator Rjk introduces a relation-

ship between two particles; for it to be significant a non-

trivial one-particle function must be associated with parti-
ClC J.
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troduced as a multiplier of the operator R(V')+A(V').
We refer to the number of factors of A, in a term, which
equals the number of factors of Aik) and Rik, as the order
of the term. The expansion is an expansion in the number
of elementary relationships, or connections. The totality
of all such elementary connections exactly corrects for the
correlations neglected when the average of the product A tt
is approximated by the product of averages on the right-
hand side of Eq. (2.17).

It follows from Eqs. (2.18) and (2.20) that
I

&k[i((&)+&(&)1 II«ekni k 'I'I II(j)ek~jk(
j',k' j k, l

k~l

(2.22)

where the primed product excludes factors with j'=k'
and the superscripted product excludes factors with either
k =j or l =j. By expanding in powers of A, and changing
the order in which products and sums are taken, one ob-
tains

gg m(j', k)

k(n( v)+~( v)]
kt) m (J' «k )

H II"'
j k, 1

kpi

)n(i, k, l)

n(j k l)

Pg(« ~ ~ p ~ ~ «j ( « ~ ~ p ~ ~ ~ p ~ ~ «)ll

(g )m(j', k ) '(g )n(jk l)

m rrv~
m(j', k )! ',.' '„', n(j, k, l)!

kpl

where there are l(l(l(l —1) sums from zero to infinity over the different indices m(j', k') and where there are
X(N —1)(j)('—2)/2 sums from zero to infinity over the different indices n (j,k, l). The order of a term is given by p,
which is

p= g'm(j', k')+ g g(i)n(j, k, l) .
j k, l

k(l

By inserting Eq. (2.23) into Eq. (2.17), one obtains the CPE

3„=II„(1+A,S, +A, 'S2+ )

Here Sz is the sum of all terms proportional to V, and Iiq is the product of averages defined by

II& —II (f(xi) &0 II (f(xk, x() &o .
k, l

kpl

Each term in the CPE has the form

)m(j ', k') (g )n(j, k, l)

II& ., k, m j,k! .
k& n j,k, l!

kg1 Nl (5

(2.24)

(2.25)

(2.27)

Note that all averages (f(x; ) &o and (f ( x,x„)&o that are not operated on by a 8'k or 2 k) cancel with the correspond-

1ng avclagc occurring 1n Hg.
It is not difficult to determine the form of the low-order terms in the CPE. For example, the collection of all terms of

order p = I 1s

, (&jf(xj)&o K, ' (Vjf(xj, xk)&o (.) (V f(xj,x„)&,K, '.(Vjf(xj, x()&

j,k Xj 0 Xj~ Xk 0 j k I Xj~Xk 0 Xj~x( O
kpl

(2.28)

The second subscript on the gradients has now been omit-
ted slncc lt ls clear which function ls opclatcd on.

C. Diagrams

Because of the complexity of the higher-order terms in

the CPE, it is helpful to represent them by diagrams. Al-

though the appropriate diagrams are visually similar to
those used in the Ursell-Mayer type of cluster expansion,

they are conceptually quite different.

A diagram contains points, circles, and bonds. Each
point ls identified by an integer from 1 thI'ough X and
represents one of the particles in the system. A point may
have a small circle dI'awn around it. A circle represents
the average of a one-particle function that is operated on
by at least one gradient operator. A bond is a line drawn
between two points. A small gap must be left between the.
ends of the bond and the points. Bonds represent averages
of two-particle functions. The number of bonds between a
pair of points equals the number of gradient operators



that act on the two-particle function. It is convenient (but
not necessary) to omit those points that are not associated
with any circle or bond.

The concept of a connection is essential. Each bond
must be connected either to a circle or to another bond at
one and only one of its ends. A connection represents an
opcrRtor Rjk ol' Apl. Thc total lllllllbcr of collllcctlolls lll

a diagram equals the order p of the term represented by
the diagram. The unconnected end of a bond is referred
to as its free end.

A bond that is connected to a circle around point j and
that has its free end at point k is associated with Rjk. A
bond connected to a circle is referred to as a ray, and Rjk
is referred to as a ray operator. Every circle must have at
least one ray. A circle and RH of the rays connected to it
is referred to as a star. The diagram in Fig. 1(a) contains
one star and the star has one ray. It represents the term

kII& &
V' f(x )&0 K '.

& V~f(x, x„)&0
(2.29)

&f(x )&0&f(x,x„)&o

A bond between points j and k that is connected at

point j to a bond between points j and I is associated with
Ajkl. The pair of connected bonds will be referred to as an
ange, and Ajkh %'ill bc called RQ Qtlgle Op8MtoI'. Slncc Ajkl
only occurs in Eq. (2.21) with k&l the free ends of the
two bonds that form an angle must be at different points.
The diagram in Fig. 1(b) contains one angle; it represents
the term

k, T & V,f{x,, x, ) &,.K .
& V,f(x, ,x„)},

(2.30)
&f(xj,x;) &0&f(xj, xk) &0

Note that both gradient operators in each ray or angle
operator operate on the same particle variable, which is
the variable associated with the point where the connec-
t1on occurs.

Consider the set W of all distinct diagrams that can be
drawn with Jig Q 0 stRIs and ng w 0 Rnglcs. That thcI'c 1s a
one-to-one correspondence between the diagrams in &
and the terms in the CPE follows from the fact that the
above descriptions of angles, stars, rays, connections, etc.,
suggests a prescription for associating a distinct diagram
w1th each term and v1cc vcIsR. For exaIIlplc, thc term

k~T AT &V'Jf(x, x )&OKJ
'

&V&V'kf(x, xk)&OKk' &V~f(xk)&o

is represented by the diagram in Fig. 2(a).
%hen the distinction between a diagram and the term it

represents is ignored, it follows that S~, the sum of all
terms of order p, is given by the sum of all diagrams in &
that contaIQ p conncct1ons.

A. True potential energy; lattice sites

We consider systems with a true potential energy of the

D. Generalizations

Exact results with the general form of Eq. {2.17) can be
proved without either the restriction that 40 is of the Ein-
stein type or the restriction that the functions being aver-
aged in All are one- and two-particle functions. What is
necessary is that the average is a harmonic average and
that each function in the product of functions being aver-
aged has a finite number of variables with the variables
being linear functions of the normal coordinates of the ap-
proximate potential energy. However, when either or both
of these restrictions is removed, the operator analogous to
R (V)+A(V) becomes more complex and the expansion
analogous to the CPE contains terms that are not
represented by the diagraIDS described above.

For example, if the approximate potential energy
4o w'Rs harIHOQIc but coQtalned tcrIQs p1 oport1onR1 to
x; x~@ with i&j, a normal-mode transformation would be
required, and the operator analogous to R( V')+A( V )
would connect averages &f{x~)&0 and &f(xj,xk)&0 that
are not connected in the CPE. If three-particle functionsf(x;,xj, xk) were included in the product All their
Fourier transforms would be needed, and in analogy to the
proof of Eq. (2.17) one would need transform variables
s,p, with three subscripts. A diagrammatic representation
of the p so th t its ld q y bol
'to Icplcscllt 'th'c Rv'cl'Rgc of a tllI'cc-pRrtlclc fullctloll.

4= gP;.(/R;+x; —R —x /), (3.1)
l,j

I QJ

where R; is the position of the ith lattice site relative to a
colnmon origin. There is often a natural choice for the N
vectors R;, but in principle they are arbitrary. Presum-
ably, this arbitrariness can be removed by requiring that

(3.2)

for all i. Note that to specify the point where the poten-
tial energy of the ith Einstein oscil/ator is Rt R Imnimum
one must specify both R; and I;. It follows from Eq.
(2.5) tllRt I'cqlllrlllg tllRt I =0 ls equivalent to rcqulIlllg
that R; be chosen so that the Einstein-oscillator value for
the average displacements & x; &0 is zero.

FIG. 1. Diagrams of first-order terms.
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1 -+ -+ —+ -+
x 'k" 'x —""'x"r si (3.7)

(a) p=2
Um

(b) p=2

Equations (3.3) and (3.4) will be referred to as self-
consistency conditions, since they must be satisfied for the
subtracted-out potentials P,z and g; to exactly cancel the
added-in potential 40 that is implied by the angular
brackets in Eqs. (1.6) and (1.2).

By substituting Eqs. (3.1) and (3.5) into Eq. (1.2) for the
Helmholtz free energy, one obtains

(c) p=2 (d) p=2 0~dkt=dtt( I
Rk+Xk &t—» —

I
) 4kt .— (3.9)

The average in Eq. (3.8) can be expanded in a CPE by let-
ting

f(xj)=ePf) (3.10)

(e) p=4

FIG. 2. Some diagrams of terms of order p that are zeroed by
the zeroing conditions.

(3.11)

Then, by neglecting all terms in the CPE of order p &0,
one obtains

K;= gk~t,
J

(3.3)

Note that for generality the constants k;; and y;;, which
are one-particle constants, have been included. Ideally
they will not be needed. By substituting Eqs. (3.3) and

(3.4) into Eq. (2.4) for 40 and rearranging terms, one ob-
tains

@0= Xd,'J+ g0,
l,j k

1 (J

(3.5)

where for i ~j
ijk,j =Tx;'k,~'xt+ l xj'kjt xj —ytj'xt —yj xj. , (3.6)

B. Choice of two-particle functions; free energy

The CEM expression for F is obtained by approximat-
ing the average on the right-hand side of Eq. (1.6) with the
zeroth-order term in the CPE and choosing the constants

E; and I'; in the Einstein potential 40 so that all first-
and second-order terms vanish. Since the true potential 4
appears in the exact expression for F, Eq. (1.3), the ap-
proximate potential 40 must in a sense be "added in" and
"subtracted out."

Ideally, the subtracting out can be done entirely through
the two-particle functions. To do so one must replace the
single sum in Eq. (2.4) for 4o by a double sum, which we

do by expressing K; and I; as sums of two-particle con-
stants:

k, l
k(E

(3.12)

This is the basic formula for the free energy in the CEM.
Note that if

k;;=0

(3.13)

the one-particle quantities k;;, y;;, QJ, (exp(PQ ))o, etc. ,
would not need to be considered.

C. Zeroing conditions

The sums S, and Sz in Eq. (2.25) contain all first- and
second-order terms in the CPE. Most of the terms in Sl
and S2 can be made to vanish by causing the following
two-particle averages to vanish:

(V', e
' "J),=O, (3.14)

-+ PQP „
(V';V, e ' jo—0 (3.15)

Eqlla'tlons (3.14) alld (3.15) will be 1'eferred to as zeroing
conditions. They are to be satisfied both with i gj and
with i &j. Note that hp, j —b,pj;; see Eq. (2.2). All of the-
gradients in the above operate on the variable x; and

7;7; is equivalent to 8 /Bx; Bxg.
The i' (i' —1) vector conditions (3.14) and the

i' (N —1) tensor conditions (3.15) are to be satisfied by the
choice of the X(X—1) vectors y" and the N(ili —1) ten-

IJ

sors k,i with i Qj Since the y;J.'s and k,j's occur both ex-
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plicitly in AP;~ and implicitly in the averaging (because of
the self-consistency conditions), satisfying the zeroing
conditions is a problem of the familiar self-consistent
type. The zeroing conditions are to be satisfied with the

one-particle constants y;; and k;; as small as possible.
Ideally Eqs. (3.13) can be satisfied, so that one-particle
quantities are not needed.

If a diagram contains a single bond, that is, if there are
two points i and j with exactly one bond between them,
then the term in the CPE represented by the diagram con-
tains either the factor ( V;exp( —Phg, z))0 or the factor
( VJexp( —Phg;J ) )o. Similarly, if a diagram contains a
double bond between i and j and the free ends of both
bonds are at~oint j, then the term represented contains
the factor (V;V;exp( Pb, g;~))—o. Satisfying the zeroing
conditions causes all such factors to vanish. Hence satis-
fying the zeroing conditions causes all terms to vanish
that are represented either by a diagram with one or more
single bonds or by a diagram with one or more double
bonds with free ends at the same point.

For example, the diagrams in Figs. 1 and 2 represent
terms that vanish when the zeroing conditions are satis-
fied. Also, any diagram that contains at least one cluster
with either a single bond or a double bond with free ends
at the same point represents a term that vanishes, and this
is independent of the number or complexity of any other
clusters in the diagram.

The diagrams in Fig. 3 represent some terms of low or-
der that are not zeroed when conditions (3.14) and (3.15)
are satisfied. The diagram in Fig. 3(a) represents the only
type of terms of order p =2 or 1 that cannot be zeroed by
the zeroing conditions. For the CEM approximation for
F to be accurate through order p =2, all terms of the type
represented by Fig. 3(a) must vanish for reasons other
than the zeroing conditions. Such terms do vanish either
when Eqs. (3.13) are satisfied or when

(3.16)

When Eqs. (3.13) are satisfied, one need not even consider
diagrams with circles since they represent averages of
one-particle functions. When Eqs. (3.16) are satisfied, the
factors ( V;exp(PQ; ) )0 and ( VJexp(PQJ ) )0 represented by
the circles in Fig. 3(a) vanish, since each factor reduces to
the integral of an odd function over a symmetric interval
[see Eq. (3.20)].

D. Phase-function averages

The macroscopic potential energy, the potential contri-
bution to the pressure, and other properties of interest are
given by averages of sums of two-particle phase functions.
These averages have the form

(3.17)

m&n

where the averaging is done with the true potential energy
When 4O and 4 are given by Eqs. (3.5) and (3.1), it

follows that

(a) p=2

(d) p=5

FIG. 3. Some diagrams of terms of order p that are not

zeroed by the zeroing conditions.

(3.18)

p1tl II
(3.19)

m&n

When Eqs. (3.13) are satisfied, so that one-particle
quantities need not be considered, the above approxirna-
tion is accurate through second order. Note that when ap-
proximating the average in Eq. (3.18) involving p „ the
zeroing conditions do not zero terms that are represented
by diagrams with a single or double bond between the
specific points m and n. Nevertheless, there is no way
that one can draw a diagram with one or two angles (but
no stars) that does not have at least a single or a double
bond between points other than m and n. Because of these
additional bonds, all first- and second-order terms vanish
when Eqs. (3.13) are satisfied.

When one-particle terms are included, the CPE of Eq.
(3.18) will contain terms of both first and second order
that are not zeroed by the zeroing conditions. Examples
of such terms are represented by the diagrams in
Figs. 1(a) and 2(b). The difficulty is that the
factors (V p „exp( fag „))o and (V V—' p „
Xexp( —PAP „))0 that are represented by the bonds in
Figs. 1(a) and 2(b) are not zeroed by conditions (3.14) and

k&1

A CEM approximation for (P2) can be obtained by ap-
proxirnating the averages on the right-hand side of Eq.
(3.18) with the zeroth-order term in a CPE and by choos-

ing the constants k,j and y,z so that the self-consistency
and zeroing conditions are satisfied. The zeroth-order
term in the CPE approximates the average of a product by
the product of the averages. When all averages that occur
in both a numerator and denominator are cancelled, one
obtains
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(3.15). (The same argument applies when the labels m and
n are exchanged in the diagrams. ) When Eqs. (3.16) are
satisfied, all terms of the type represented by Fig. 1(a) will
vanish, but some terms of the type represented by Fig. 2(b)
will not vanish. Thus when Eqs. (3.16} are satisfied the
CEM approximation for phase-function averages is only
accurate through first order.

(f(x;))o——e; f d x;e ' ' 'f(x;),
where

(3.20)

I;=0 [see Eq. (3.2)]. It then follows from Eqs. (2.3) and
(2.4) that the harmonic average of a general one-particle
function is given by

E. Explicit formulas c;=[IIK;II/(2mkiiT)')' ' (3.21)

Since it greatly simplifies the formulas to be given, we
assume here that the lattice sites have been chosen so that

and
~
~K;

~ ~

is the determinant of K;. The harmonic aver-
age of a general two-particle function is given by

By performing an integration by parts, the zeroing condition given by Eq. (3.14) can be simplified as follows:

=PK; (x;e ") =0 . (3.23)

Since K; is assumed to have nonzero eigenvalues and since (exp( —PVP;~ ) )o is nonzero, this is equivalent to

=0. (3.24)

If the assumption I;=0 had not been made, the term on the right-hand side of Eq. (3.24) would have been K; ' I;,
which equals (x;)o.

The zeroing condition given by Eq. (3.15) can be simplified as follows:

(
82

e " = —P([(K;) r P(K;—x;) (K( x;) ]r e ") =0.
BXI BXI 0

(3.25)

Multiplying by (K, ')" (K, ')r and summing over a and

y, this can be rearranged as

=P '(K, ')"' . (3.26)
(e ")0

F. Interpretation of zeroing conditions

The zeroing conditions can be interpreted as a require-
ment that the Einstein oscillator values for the average
and mean-square displacements of a particle equal the
corresponding CEM values. The zeroing conditions, Eqs.
(3.14) and (3.15), reduce to Eqs. (3.24) and (3.26), which
can be rewritten with the aid of Eqs. (2.5) and (2.6) and
I;=0 as

averages of two-particle phase functions. See Eq. (3.19).
Although x; and xI'x;" are one-particle functions, it is
reasonable to interpret these averages as "CEM averages"
or equivalently as averages "evaluated through second or-
der in the CPE."

Since there are only two constants I'; and K; for each
particle i in the Einstein potential 4O, it may seem surpris-
ing that Eqs. (3.27} and (3.28) can be satisfied for every
choice of i and j except i =j. The additional degrees of
freedom that are needed come from the arbitrariness in
the manner in which a sum of one-particle functions can
be rewritten as a sum of two-particle functions.

G. Cubic monatomic crystals

(x;)o—— (3.27)

and

xI'xi 0 ——

(e ")o
(3.28)

The modulated averages on the right-hand side of the
above have the same form as the CEM approximation for

So far the development of the CEM has only assumed
that the system being studied. is a solid. That is, that the
probability of a particle migrating through the system is
negligible, so that the particles can be associated with sites
that are fixed in space. It has not been required either
that the system has the symmetry of a crystal of that the
particles are identical. Here we restrict ourselves to sys-
tems of identical particles whose average positions form a
cubic Bravais lattice.

These restrictions allow one to assume that
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(3 29) where

and

K;=EI, (3.30)
and

~XjX ~ k XX (3.42)

kii ——kI (3.31)

where I is the unit tensor (matrix) and the constant E and
k are the same for all particles. One can also assume that
for i@j

and

Y&J
='YJ.

&

(——0&0& Y(J) (3.32)

kXX
EJ 0 0

k,J
——

kJE
—— k33

EJ

0 0

0

k"
EJ

(3.33)

where kz kfz~&k——
&J

in the coordinate system with the z
axis parallel to the lattice vector R; —RJ.

The self-consistency condition (3.3) can be simplified by
taking the trace, which gives

KEJ E kgJ ~ (3.43)

Note that only three-dimensional integrals need to be
evaluated. For a fcc crystal with interactions between
nearest neighbors only, Eqs. (3.37) and (3.38) need to be
satisfied for only one bond, because of the high symmetry
of the structure. Also, Eq. (3.41) needs to be evaluated
only once. In the Appendix Eqs. (3.37), (3.38), and (3.41)
are expressed in terms of one-dimensional integrals.

When the crystal is not cubic and monatomic, a
transformation more complicated than Eqs. (3.35) and
(3.36) is needed to reduce the averages to three-
dimensional integrals. Nevertheless, the possibility of
reducing the integrals requiring numerical integration to
three-dimensional integrals depends on the fact that each
average associated with the bond between i and j contains
a product of a polynomial, a Gaussian, and a general
function of r =x; —xj. With two-particle potentials this
will be true for terms of all orders in the CPE.

K=k+ —,
' g(2k~ +kj ) .

J
J+g

(3.34)
IV. NUMERICAL TESTS

and

t =(x;+xj)/2 (3.35)

The self-consistency condition (3.4) is automatically satis-
fied by assumptions (3.29) and (3.32).

The zeroing conditions (3.23) and (3.25) can be simpli-
fied by changing variables from x; and xJ to t and r,
where

The CEM was tested by comparing the predictions it
makes with MC results for two different systems.
Presumably, the MC results are exact except for statistical
errors. The numerical procedures used to obtain the CEM
values in Tables I and II have been sufficiently tested so
that we are confident they are accurate through the num-
ber of significant figures given.

A. Lennard-Jones potential
I =x —x

E J

and then performing the t integration. This gives

3 +( )
—pf(1/4)r K; ~ r+ y," r jP
~ ~I~

i~I~
~
~ ~

I~I~
I~ ~~ ~

0d rre ~e

and

(3.36)

(3.37)

We first considered a model for a fcc crystal in which a
I.ennard-Jones potential acts between nearest neighbors
only. The true two-particle potential is

12 ' 6

p(r) =4E 0 0
(4.1)

I' r

pp(p)
—P[(1/4) r K," r + y," r ] (3.38)

where

and
K,J

——Kg —k

p= ~R; —R, +r
~

.

(3.39)

(3 40)

3/2

4m

E
' 1/2

@XX ~ZZ
ij ij

J' d3 ~(p) —p(()/4) r K; r + y, ~ r ]

(3.41)

The two-particle averages needed in Eq. (3.12) are given
by

It was found that the self-consistency and zeroing condi-

tions could be satisfied with k;;=0 and y;;=0 [see Eq.
(3.13)], so that one-particle quantities need not be con-

sidered. [k;; =0 implies that k =0 in Eq. (3.32).]
Predictions for the pressure P, the average potential en-

ergy (4) = U —,
'

Nkz T, the consta—nt volume heat capaci-
ty CV, the isothermal bulk modulus BT, the linear coeffi-
cient of thermal expansion a, and the Gruneisen parame-
ter y =3aBTB/C~ were obtained by numerically differen-
tiating the free energy F as given by Eq. (3.12). P and
(4) were also obtained by using Eq. (3.19) and the ap-
propriate two-particle phase functions. The values of P
and (@) obtained by the two methods are equal to the
number of significant figures given in the table.

The results for the temperature T=0.48265m/ks and
lattice constant a=1.65169o are given in Table I. A
model for solid xenon is obtained by setting e/kz ——331.5
K and o =3.847 A. With these values the above tempera-
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TABLE I. Results for a Lennard-Jones potential at T=0.482 65 e/k& and a = 1.651 69cr.

(e) lNk, T

CEM

—10.528

UPA

—10.607 —10.621

ISC

—10.583+0.003'
—10.59 +0.01'

I'V/%kg T 0.383 0.701 0.390 0.402+0.015'
0.358+0 02b

2.782 (4.2%)
(0.1%)

2.791 (4.5%)
(0.4%)

2.646 (—0.9%)
( —4.8%)

2.621 (—1.8%)
(—5.7%)

2.62 (—1.9%)
(—5.8%}

2.67 +0.03'
2.78 ~0.05b

BTV/NkgT 42. 31 (—2.1%) 40.69 (—5.9%)
(7.3%) (3.2%)

-38.7 (—10.5%)
( —1.9%)

41.o (—s.2%)
(4.0%)

43.24 +0.99'
39 43

2.806 (—1.5%)
(—5.5%)

2.978 (4.5%)
(o.3%)

2.876(0.9%)
(3.2%)

3.oo1 (s.3%)
(1.0%}

2.70 (—5.3%)
( —9.1%)

2.85 +0.03'
2.97 +0 05

30,'T 0. 1845 (4.8%) 0.2042 (16.0%)
(—11.7%) (—2.3%)

0.173 (—1.7%)
(—17.2%)

0.176'
O.2O9b

'Cowley, in Ref. 5.
Klein, in Ref. 6.

ture and lattice constant become 160 K and 6.35406 A,
respectively. The experimental melting temperature of xe-
non is 161 K.

Also included in Table I are the predictions of the UPA
obtained by Hardy and Jones, the predictions of the
CCM, and the CM obtained by %estera and Cowley, the
predictions of improved self-consistent phonon theory
(ISC) obtained by Goldman, Horton, and Klein, and the
MC predictions of Cowley and of Klein and Hoover.
The percentages given indicate the difference between the
various approximate values and the MC value given on
the saine line in the table. The recent results of Cowley
are likely to be the more accurate of the two sets of MC
values. The information in the table does not indicate that
any one of the approximations is strongly superior to the
others, although it could be argued that the CCM, UPA,
and CEM values are slightly more accurate than the CM
and ISC values.

' 12

P(r) =e
,

r
(4.2)

(4.3)

In principle this interaction extends to all neighbors, but it
is only significant for near neighbors. The CEM values

for PV/Nkii T that are given in Table II were obtained by
numerically differentiating the free energy F. The signifi-
cance of the dimensionless parameter (crlRo) (elk& T)'i
is discussed in Ref. 7.

For the soft-core potential the self-consistency and

zeroing conditions could not be satisfied with y;; =0 and

k;; =0, so that one-particle terms had to be included in Eq.
(3.12) for F. The values of y,z and k,j were determined by
satisfying the self-consistency and zeroing conditions with

y;;= I;=0 and with the ratio

B. Soft-core potential

For our second test we compared the predictions of the
CEM with the high-quality MC results of Hoover et al.
for a fcc crystal with the soft-core potential given by

minimized. The constants E and k are defined by Eqs.
(3.28) and (3.29). It was found that only pairs of particles

up through third neighbors had to be treated exactly in or-

der to obtain predictions that are accurate to the number

of significant figures given.

TABLE II. Results for I'V/Xk~ T for a soft-core potential. Ro is the nearest-neighbor distance.

( 0 /R 0 ) ( 6/kg T)

0.74
0.80
0.844
0.90
1.00
1.20

CEM

13.47 ( —3.2%%uo)

16.32 ( —1.2%%uo}

22.52 ( —0. 1%)
31.01 (0.1%)

57.21 (O. 1%)

correlated
cell

16.53 (0.1%)

22.56
30.98
57.15

16.12 ( —2.4%)

22.34 ( —0.9%)
30.85 ( —0.5%)
57.09 ( —0.1%)

MC

13.91
16.51

Melting
22.55
30.99
57.16
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We also calculated PV/Nk~ T with the aid of Eq. (3.19)
and the appropriate two-particle phase function. The re-
sults obtained were significantly less accurate than those
obtained by differentiating F. This is not surprising since
the phase-function approach is only good through first or-
der when one-particle terms are included (see Sec. III D).

The results in the table indicate that the CEM gives ac-
curate predictions up to and beyond the melting tempera-
ture (where the crystal phase becomes metastable) and that
its accuracy improves as the temperature decreases. The
simple cell-model values and the correlated-ceO values in
Table II are those of Hoover et al. The CEM values are
slightly more accurate than the cell-model values and
slightly less accurate than the correlated-cell values.

V. DISCUSSIQN

The comparison with MC results in Sec. IV indicates
that accurate predictions of the equilibrium properties of
solids at temperatures up through the melting point can be
obtained with the CEM. The comparison is purely classi-
cal. It should be possible to account for quantum effects
at intermediate temperatures by using an expansion in
powers of A. Nevertheless, the CEM cannot be expected
to be accurate at the low temperatures where the vibra-
tional behavior of solids is dominated by the long-
wavelength acoustic modes.

The data in Table I do not indicate that any of the five
approximations considered is strongly superior to the oth-
ers. However, all five are much more accurate at high
temperatures than either the quasiharmonic approxima-
tion with or without perturbation-theory corrections or
the self-consistent phonon approximation without the
corrections included in ISC. An idea of the error that re-
sults when these latter approximations are used can be
seen in the work of Klein, Goldman, and Horton.

The advantage of the CEM over the UPA, the CCM,
and ISC is its relative simplicity. Unlike the UPA and
ISC, the CEM does not require a transformation to nor-
mal coordinates. Such transformations lead to involved
computations for complex solids, but they do make it pos-
sible to treat low-temperature quantum effects correctly.
Also, with the CEM and two-particle potentials, integrals
of no more than three dimensions need to be evaluated nu-

merically. The six-dimensional real-space integrals of the

CCM and the complex k-space integrations of ISC are
avoided.

Besides greater accuracy, the advantage of the CEM
over the cell model is that corrections to it are simpler.
For example, the CCM is a cell model plus low-order
corrections obtained with an Ursell-Mayer-type cluster ex-
pansion. The difficulty with such expansions is that in-

creasing the size of the clusters considered increases the
dimensionality of the integrals to be evaluated. With the
CEM and two-particle potentials, integrals of only three
dimensions are needed independent of the order of the
corrections.

It should be mentioned, however, that if higher-order
terms are to be added to the CEM, the logarithm of the
quantity on the right-hand side of Eq. (1.1) should be ex-
panded in powers of A, , not the quantity itself. This allows

APPENDIX

The integrals in Sec. IIIG can be reduced to one-
dimensional integrals by changing to the spherical coordi-
nates

R+ r =p =(p, 8,$), (A 1)

where R=R; —RJ. After performing the angle integra-
tions, Eq. (3.37) reduces to

f dppe ~ '~'(2pQ) —RQO)=0, (A2)

whereR = ~R~ and

I(p)=(f&(p)+ ,'KJ(p R)—+yij(p—R) . —

The functions Q„'(p) are defined by

(A3)

—s(y+s hy/2)2

dy(y —sy )"e+'~, (A4)
sy —hy/2(&y)"

where n =0, 1, or 2 and

(A5)

1/2

( , K;R —y;),— (A6)

hy = (P
~
K;J K;~"

~
)
'~

p . — (A7)

The Q„' is related to Dawson's integral when s =+1 and
to the error function when s = —1. On many computers
Dawson's integral and the error function are internal sub-
routines. '

Similarly, Eq. (3.38) reduces to the following two equa-
tions:

problems with the A' dependence of the added terms to be
avoided.

The CEM values in Table II are slightly less accurate
than the correlated-cell values of Hoover et a/. However,
to the best of our knowledge the approximation used to
obtain these values has not been developed into a generally
applicable method with known expressions for higher-
order corrections.

Finally, the work of Fixman' and of Cowley and Bark-
er" should be mentioned. Both of these papers, like the
present one, use approximations involving the self-
consistent determination of parameters in a theory that
emphasizes particle coordinates, not normal-mode coordi-
nates.
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Equation (3.41) reduces to

—tt~y, , pE' 1

g~xx (
~zz

~

~zz ~xx
~

)1/2

(A9) X J dppe ~ 't'Qo . (A10)
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