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Nearest-neighbor Ising model with a uniaxial incommensurate phase and a Lifshitz point
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The anisotropic triangular nearest-neighbor Ising model, with antiferromagnetic interactions, is

studied. The phase diagram, as a function of temperature and field, has a complex structure. Two
commensuxate ordered phases are found. The transition to one is Ising-type. The second is reached

from the disordered phase in one of two ways: either via an intermediate uniaxial incommensurate

phase —which is reached at high temperatures by a Kosterlitz-Thouless transition and at low tern-

peratures undergoes an incommensurate-commensurate transition —or by a single continuous transi-

tion. The latter transition is in the same universality class as the chiral three-state Potts model, with

thermal cxponcnt w1th1n 4'% of that of the thrcc-state Potts model. These two trans1tlon regimes

are found to be separated by a Lifshitz point. The phase diagram and critical behavior were deter-

mined by analytical (symmetry analysis and free-fermion approximation) as well as numerical

(phenomenological renormalization-group and Monte Carlo) methods.

I. INTRODUCTION

Considerable progress was made in recent years in our
theoretical understanding of the phase structure and na-
ture of transitions in a variety of two-dimensional models.
Some of the tnost recent, important developments range
from rigorous solutions, ' through analytic results (be-
lieved to be exact), establishment of connections between
the critical manifold of various models and the Gaussian
model, to development of powerful numerical approxima-
tion schemes. '

In parallel, dramatic progress in experimental tech-
niques allowed detailed comparison of theory and experi-
ments ' (especially on adsorbed monolayers). Connec-
tions between theoretical models and physical systems
were established on the basis of symmetry arguments. '

In this paper, we present detailed investigations of a
particularly simple two-dimensional model, which has a
complex and rich phase structure. By studying this
model, one hopes to resolve some important open ques-
tions of critical phenomena in two dimensions.

A class of models that was extensively studied has com-
peting ground states (as some parameter is varied). Such
is the case for the anisotropic next-nearest-neighbor Ising
(ANNNI) model, ' ' the chiral Potts (CP) model, ' '
and a lattice-gas model (H/Fe), describing adsorption of
H on Fe(110).' In all three cases, the transition tempera-
ture vanishes at a special degeneracy point; all three exhib-
it incommensurate phases (and, therefore, commensurate-
incommensurate transitions) and, possibly, Lifshitz
points. ' We believe that, the model we consider exhibits
these features and is simpler (in terms of the interactions
and/or the basic variable) than the models mentioned
above. First, we mention briefly some of the theoretical
problems onc 1Tlay hope to I'csolvc by cxtcns1vc stud1cs of
ouI' model.

The first problem, as posed originally by Ostlund, ' '

can be stated in terms of the CP model. For vanishing
chirality, the critical behavior is determined by the three-
state Potts fixed point. If chirality is introduced, one may
ask whcthcI' thc Icspcctlvc oper atoI' 1s I'clcvant oI 1I'-

relevant. If relevant, does the system cross over to a new
fixed point with different exponents'? Will there be a line
of transition points, separating the disordered and ordered
phases, controlled by such a new fixed point7

Even though the chiral operator was found to be
relevant, a most recent calculation by den Nijs 0 gave the
value —,

' for the crossover —it is by no means clear that the

new stable fixed point is characterized by different ex-

ponents.
Alternatively, the question can be phrased in terms of

the symmetry arguments that were widely used to identify
the universality classes of various transitions. ' Almost
all classification schemes were restricted to cases for
which the Lifshitz condition is satisfied. This condition
states that the ordered state is characterized by a Fourier
expansion with wave vector ko, such that the coefficient
of the second-order (in the order parameter) term in the
Landau-Ginzburg (LG) free energy has a minimum (as a
function of k) at ko. That is, terms linear in k —ko, and
quadratic in the order parameter are ruled out on the basis
of symmetry. When this condition is not satisfied, mean-

field theory allows a continuous transition only if the k
vector varies continuously in the ordered phase, i.e., it is
incommensurate. If the transition is to a state with

commensurate ko, for which the Lifshitz condition is not
satisfied, mean-field theory implies that ko is stabilized by
a term higher than quadratic in the order parameter, and
therefore the transition must be first order.

If this statement were correct in two dimensions, it
would imply that transitions from disordered to (a) the
commensurate phases of the CP model, ' (b) the (2)
phase of the ANNNI model, ' ' as well as (c) the 3)&1
phase of the H/Fe model' must either occur via an inter-
mediate incommensurate phase, or be first order.
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However, the prediction that a transition, if governed

by third- or higher-order terms in the LG Hamiltonian,
must be first order, is based on mean-field theory, and is
known to be violated in two dimensions. Thus one would
expect that a single, continuous transition would be possi-
ble. This raises two questions. The first concerns the
relevance of the Lifshitz (or chiral) term, and the fixed
point to which the system crosses over, as stated above.

A second question concerns the manner in which the
transition from disordered to commensurate state changes
its nature; if for some values of a parameter p &p, it
proceeds via an intermediate incommensurate phase, and
for p &p, a single continuous transition occurs, one may
have' ' ' ' ' a Lifshitz point at p =p„whose proper-
ties in two dimensions are not yet known.

In the case of the ANNNI model, evidence for a
Lifshitz point has been found, ' but statements to the con-
trary have also been made. In the case of the CP model,
existence of a Lifshitz point was suggested' and its loca-
tion estimated using different numerical methods. ' '

However, recent analytical calculations, done in the limit
of vanishing dislocation density„ indicate the absence of a
Lifshitz point. If such is the case, the transition from
disordered to commensurate phase must proceed via an in-
termediate floating phase, except at an isolated point of
three-state Potts character.

In either case, such a floating phase is predicted to be
reached from the disordered phase via a Kosterlitz-
Thouless transition. As the temperature is lowered, a
commensurate-incommensurate transition about whose
properties a variety of predictions have recently been
given, will occur. Thus one may hope to confirm, by
studying our model, the predictions concerning both the
disordered-incommensurate and incommensurate-com-
mensurate transitions.

The techniques used in this work are symmetry
analysis, ' free-fermion approximation, '" the phenomeno-
logical renormalization-group method, and Monte Carlo
simulation. Symmetry analysis confirms that at one of
the commensurate phases the Lifshitz condition is not
satisfied. Disregarding the Lifshitz term leads to the LG
Hamiltonian of the three-state Potts model. Thus we es-
tablish the connection to the CP and H/Fe models.

The free-fermion approximation (exact at low tempera-
tures near the degeneracy point) establishes the existence
of a floating phase. ' The phenom enological renor-
malization-group (transfer-matrix) method yields a phase
diagram, identifies regions where evidence for a floating
phase are found, indicates the existence of a Lifshitz
point, and provides estimates for critical exponents. Fi-
nally, Monte Carlo simulations are used to calculate
specific-heat curves. Also, by calculating how the suscep-
tibility and X(q) scale with size, further evidence for the
floating phase and the existence of a Lifshitz point is ob-
tained.

The model is introduced in Sec. II, which also contains
the symmetry analysis. The free-fermion approximation
is presented in Sec. III. Phenom enological renor-
malization-group results and Monte Carlo simulations are
discussed in Secs. IV and V, respectively. In Sec. VI our
findings are summarized and discussed.

II. THE MODEL AND ITS SYMMETRY

Z= g exp[ A /T—],
IsI

(2.2)

and we use the normalization J=1, with H/J denoting
the (dimensionless) ratio of the field and the nearest-
neighbor coupling, and T/J denoting the (dimensionless)
temperature. For H =0, the model is exactly soluble,
and has a transition given by cosh(4J/T, )=exp(4aJ/T, )

(T, /J=1. 55 for a=0.4). For H&0, Verhagen ' has
solved the model on a special (disorder) line, given by

H exp( 4u J/T) cosh —(2J/T) —1
srnh

T exp( 4J/T) exp—(4aJ/T) —1

On this line the model has no transition, ' it lies entirely in
the disordered phase. For T~O, one obtains from (2.3)

H/J =(H/J)" =4(1—a) . (2.4)

Lin and Wu noted recently that precisely at this value
of H/J the ground state changes. For H/J g (H/J)* the

I
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FIG. 1. (a) Centered rectangular lattice. Along directions 1
~ ~ ~ M ~and 2 the interaction is J; along 3 it is o.J. (b) First Brillouin

zone. (c) ko characterizes structure I; (d) kl and k2 characterize
structure II. Note that k

&
and k2 are not at the zone corners.

{c)

We consider the antiferromagnetic Ising model on an
anisotropic triangular lattice in an external field [anisotro-
pic triangular nearest-neighbor Ising (ATNNI) model].
By uniaxial distortion, the triangular lattice becomes cen-
tered rectangular [see Fig. 1(a)]; such a lattice of adsorp-
tion sites is provided by the (110) face of a bcc crystal.
The Hamiltonian can be written as (S;=+1)

4 =Jg g S;S,.+s+aS;S - (H/J—)S;, (2.1)
5=1,2

A A A
with J & 0, 0 & n & 1, and the directions 1,2, 3 as indicated
in Fig. 1(a).

The partition sum is given by
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T, /J = (1/a) [(H/J), —2(2+a)],
a = ——,

'
lnZ, = ——,

'
ln[ —,

'
( l 1+5' 5)]-—1.20,

(2.5)

thus the nature of the transition at the upper degeneracy

ground state is the 2&&1 structure I of Fig. 1(c), while for
(H/J)* &H/J & 2(2+a) it is the structure II of Fig. 1(d).
Note that for a triangular lattice, II is the V 3Xv 3 struc-
ture. For H/J &2(2+a), the ground state is S;=+1.
Lin and Wu calculated the boundary of phase I by the in-
terface method and proposed a schematic phase diagram
in the entire H, T plane [Fig. 2(a)]. Subsequently, Doczi-
Reger and Heinmer extended the work of Lin and Wu.
They noted that at the special value (H/J)* the ground
state is highly degenerate, which drives the transition tem-
perature to zero; they also calculated the boundary of
phase II by the interface method and proposed the phase
diagram of Fig. 2(b). Our phase diagram is presented in
Fig. 2. Thus the present model, with Ising variables (as
opposed to the three states of the CP model) and nearest-
neighbor interactions only (as opposed to the ANNNI and
H/Fe models) exhibits all the interesting features men-
tioned in Sec. I; it has competing ground states, a disorder
line, and disordered phase extending to T =0. We find a
floating phase, a commensurate-incommensurate transi-
tion, and a Lifshitz point, beyond which phase II is
reached in a single transition of CP character (see below).

Additional exact information is provided by the hard
hexagon model. ' Near the point H/J =2(2+a) the
model reduces to the hard hexagon model whose critical
fugacity Z, determines the exact slope of the phase boun-

dary as

point is expected to be three-state Potts. %e now turn to
analyze the symmetry of the model, and construct the LG
Hamiltonian associated with its transitions.

The symmetry group is C2mm. The lattice and the
first Brillouin zone are shown in Figs. 1(a) and 1(b). At
the reciprocal-lattice vector ko ——(2ir/a, 0) the Lifshitz
condition is satisfied; exp(i ko r ) belongs to a one-
dimensional representation, gives rise to the structure I of
Fig. 1(c), and the transition to this structure is in the Ising
universality class. ' The structure of II of Fig. 1(d) be-
longs to a two-dimensional representation; of the six
reciprocal-lattice vectors [denoted by closed circles in Fig.
1(b)] only two are independent. Note that the closed cir-
cles are not at the zone corners.

One may choose ki 2
——+(2m la, 2'/3b) as the star that

spans a two-dimensional representation. At these wave
vectors the Lifshitz condition is not satisfied; therefore,
incan-field theory would predict a continuous transition to
an incommensurate structure characterized by wave vec-

tors + k =(2n./a, 2mq/3b) with 0 &q & 1. The LG Hamil-
tonian for the transition to such a state contains only
terms of the form (g-g -)", and therefore an xy-type

k —k
transition is expected. 25 However, for the commensurate

(q = 1) case, a third-order invariant of the form
+1( is allowed, and disregarding the Lifshitz term

k —k

(and higher-order k-dependent invariants) one obtains the
LG Hamiltonian of the three-state Potts model.

Thus mean-field theory would predict either a continu-
ous transition to an incommensurate structure, followed

by an incommensurate-commensurate transition at which

the k vector "locks in" at the value +k~, or a direct,

l. 5

I,O

0.5

0

FIG. 2. Phase diagram for the ATNNI model (2.1) with a =0.4. Closed circles —using Eq. (4.4) with strips of widths 8,10. Trian-

gles, specific-heat maxima from Monte Carlo on 24)&24 systems. Dashed lines, low-temperature boundary separating phase II from

the incommensurate phase [Eq. (3.13)]; solid line, boundaries determined by the interface method. Indications for incommensurate

phase were found in the shaded region. Solid and dotted-dashed lines near H/J =4.8 have the asymptotic slope as determined from

the hard hexagon model and the interface method, respectively. Schematic phase diagrams, as obtained in (a) Ref. 32 and (b) Ref. 34.
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first-order transition to structure II. This latter transition
could be continuous in two dimensions. In the mean-field
description, this transition is dominated by the third-order
(umklapp) terms, and the fact that the minimum of the
term quadratic in the order parameter is not at k& plays
no role whatsoever. If fluctuations (known to be impor-
tant in two dimensions) do not alter this picture, and the
transition is still governed by the third-order terms, one
would expect the single transition to be in the three-state
Potts universality class, in spite of the Lifshitz term.
Even if the latter is relevant (in the renormalization-group
sense) as shown by den Nijs, the system could still exhib-
it critical behavior which is also three-state Potts-type [as
is the case for an Ising antiferromagnet in a (relevant) uni-
form field, which exhibits Ising-to-Ising crossover, and
the liquid-gas transition with the (redundant) P operator].
The questions, whether the ATNNI model does or does
not have both kinds of behavior (intermediate floating
phase and a direct transition) and if so, what is the nature
of the direct transition, where is the I.ifshitz point, etc. ,
can possibly be resolved only through detailed numerical
investigations.

III. FREE-FERMION APPROXIMATION

l2 + + + + + +
+ + +

II — — — + + +
+ + + + + +

IO
+ + + + + +

+ + + + + +
8 + + + + + +

+ + + + + +
+ + + + + +

+ + + + + +
+ + + + + +

+ + + + + +
+ + + + + +
++++++

2 + + + + + +
+ +++++

I 2 3 4 5 6

p=6

p-4

p-2

"x

ny(P) ((p)

— —=8

Nx=6, Ny =l2

FIG. 3. Notation used in the free-fermion approximation. A
lattice with X„=6 and %~=12, with p =1,2, . . . , 6 interfaces,
characterized by n»(p) and the reduced wall coordinate g(p).
Densest packing of walls (2&p (5) yields phase II; p =—6 wall
has a single-step excitation.

E~ =E„J[(H/J)' H/J] . —(3.1)

In order to study the statistical mechanics of interfaces
near the degeneracy point (H/J)* and for T=O, we
characterize the position of a smooth wall or antiwall by

Recently, Villain and 8ak' analyzed the

ANNULI

model near its degeneracy point using a free-fermion ap-
proximation. They have shown that a region of incom-
mensurate phase exists near the boundary of the (2)
phase. In this section we adapt their method to treat the
ATNNI model.

For H/J =4(1 a)=(H/J)*—the ground state of the
ATNNI model is highly degenerate, whereas for
H/J &4(1—a) the ground state is doubly degenerate.
The configuration I of Fig 1(c) ha. s the same energy as the
configuration I' obtained from I by reversing all spins.
The degeneracy at (H/J)* is caused by competition be-
tween the interactions and the external field. The interac-
tions cause an energetic cost for any interface I/I' of
bE'""=4K„J(1—tz) (see Fig. 3 for definition of lV„).
This cost can be compensated only by lowering of the en-

ergy due to the external field. This is possible only if the
interface creates a region with a high density of + spins,
which are preferred by the field, as is shown in Fig. 3. So
one can identify two kinds of interfaces. To set up nota-
tion, we assign integer-valued coordinates (n„,n») to the
sites of + spins in I, and half-integer (n~+ —,,n„+ —, ) to
sites with —.A wall separates I (for small n ) from I'
(for large n») and passes between n» and n»+ —,; an an
tiwall separates I' (for small n») from I (for large n» ) and
passes between n~ ——,

' and n~. At the degeneracy point
(H/J)*, all structures of any alternating wall-antiwall se-
quence are degenerate with I and I'; the energetic cost per
one smooth wali (or antiwall) is

the integer coordinate above which it passes. The inter-
faces of a configuration of v alternating walls and an-
tiwalls can be sequentially numbered by indices
@=1,2, . . . , v, such that for odd p we have a wall, for
even p an antiwall with n„(p) &n»(p —1). Besides we
must have

g» =X»(p) =— (3.3)

(the square brackets denote integer part) in terms of which
the restrictions (3.2) take the form

kp+t —
4» &1 (3.4)

In order to study the excitations of a smooth interface, we
will consider single-step changes of n» (p)~n» (p) +1
whose energetic cost is 4J (for a ~O. S). These single-step
changes are the dominant excitations at low temperatures.
By using the Villain-Bak formalism, ' the partition sum
Z(v) corresponding to v interfaces is given by

Z(v) =E,"exp( —PvE„)C(v), (3.S)

where E~ is given by (3.1), C(v) reflects boundary effects
that can be neglected in the thermodynamic limit, and Eo
is the largest eigenvalue of the transfer matrix e —&~ with
A a free-fermion Hamiltonian

n»(2p + 1)—n»(2p) & 2, n„(2p) —n»(2p —1) & 1 . (3.2)

The densest possible wall-antiwall sequence yields struc-
ture II which can be seen by comparing the region
S (n» &9 in Fig. 3 with Fig. 1(d). In this case the wall
density is q=v/lV»= —, . We can define a reduced inter-
face coordinate
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(3.6)

(3.7)

where y=e denotes the Boltzmann weight associated
with a single-wall excltatlon.

The ground state of (3.6) is

~0) = g C„'~ vie),

whether this region ends at a finite-temperature Lifshitz
point or not cannot be resolved by this analysis which is
based on an expansion near the T =0 degeneracy point.
Therefore, we addressed this question by two numerical
methods: a phenomenological renormalization-group
method and Monte Carlo simulation.

IV. PHENOMENOLOGICAL RENORMALIZATION
GROUP

Since the largest value that ( can take is

g„(max) =N»—

the spacing in k space is Ak =2m. /(N» —v/2) which leads
to

kf ~v(N» —v/2)

(using v=2kf ibk). So finally, we obt»n

(3.9)

Eo(v) =exp (N„—v/2) sin
KV

N» —v/2
(3.10)

Now the expression for 2 (q), where q =v/N„ is the in-

terface density, has to be minimized witli iespect to q,

Z(q)=exp 2yN„N» - sin —q&
1 —q/2 . mq

1 —q/2

(3.1 1)

(2) H/J (H/J)*&3e —~/PJ,
(3) 2e 'I —/PJ -~H/J (H/J)'—&3e 'I /PJ -.

(3.13)

In regions (1) and (2), the commensurate phases I (q=0,
i.e., no walls) and II (q= —', , i.e., densest-wall configura-

tion) are stable against interface formation. In region (3)
an incommensurate phase appears, in which q varies
smoothly between 0 and —', and is given by the solution of

A = [(H/J)" H/J]j, — (3.12
2y

minimizing (3.11),yields three distinct regions as follows:

(1) (H/J)* —H/J &2e 'f /PJ, -

'=in(Ac/
i

A, i i
) . (4.1)

For the case of a single relevant (temperaturelike) vari-
able t and one irrelevant variable u, finite-size scaling
predicts (assuming isotropic scaling)

This numerical technique is based on diagonalization of
the row-to-row transfer matrix for an infinite strip of fin-
ite width. Nightingale, who used this procedure in con-
junction with finite-size scaling, has called the resulting
method "phenomenological renormalization group. "

The technique has since been extensively used and
shown to provide one of the most reliable methods to
dctcrmlnc phase boundar1cs Rnd crltlcal exponents, Rs well

as to establish the existence of massless phases. By itera-
tive diagonalization we determine the largest three eigen-
values Ao &

~

A, i ~

&
~

Az
~

of the transfer matrix T associat-
ed with the lattice of Fig. 4. We chose the value a=0.4
for numerical investigation of model (1). Throughout this
section we denote by H/J the ratio of the field to the large
nearest-neighbor coupling, and by J we denote the inverse
tcIYlpcl Rturc.

For our model (2.1) we chose strips as depicted in Fig.
4, with a periodic boundary condition. In order to accom-
modate both ground states I and II of Fig. 1, we were re-
stricted to work with strips of even width. It is important
to note that when dealing with uniaxial incommensurate
phases, one should choose the direction of incommensura-
tion along the strip, to avoid imposing some (commensu-
rate) wavelength by the boundary condition. For an infin-
ite strip of width N, the correlation length g(J,H/J, N) is
calculated by

1 —q/2

(3.14)

Incorporation of vortices will lead to instability of this
phase with rcspcct to thc high-temperature paraIDagnctlc
phase. This instability is expected' ' near phase I, leav-

ing a narrow strip of stable incommensurate phase near
the boundary of phase II, as indicated in Fig. 2. However,

FIG. 4. Lattice used in numerical studies. For the transfer-

matrix method, periodic boundary conditions (in the x direction)

were used for an infinite strip. Monte Carlo simulations were

done on square systems, with doubly periodic boundary condi-

tions.
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g(t, u,N)=, g t, , u

mensurate-incommensurate transitions ) scaling is aniso-

(42) tropic, and the more general form, as given by the rela-
tions

withy, &0 andy„&0.
Thus near criticality, the correlation length (along the

direction of the strip) as calculated for a strip of width N,
is related to that of a strip of width N'&N. Neglecting
corrections due to the irrelevant operators one obtains at
criticality (t =0),

(g(t, N~~, Nj ) =b"gg(b«t, N~~/b, N~/b"),
(4.9)

gii(t, Nii, Ni) =bg'i(b t,Nii/b, Ni/b"),

holds. Taking the limit N~~, Nq~ oo, t finite, one obtains

g~(t, oo, oo )=t "««gq(1, oo, oo ),
—g(O, N) =, g(O, N') .

1 1
(4.3) g'ii(t, oo, oo )=t '

«gii(1, oo, oo ),

g(J„N)/N
R~(J, )=

g(J„N +2)/(N +2)
=1. (4.4)

That is, for any fixed value of H/J, Eq. (4.4) is solved
for J, . For temperatures T (equal to J ') &J, ' the corre-
lation length is finite, and g( T,N) -const (independent to
leading order of N), for T &&J, . At criticality,
g(T„N)-N. For T & T„ in a phase with long-range or-
der, g(T,N)-exp(aN), and thus we must have for Rz(T)

r

Therefore, the (scale-invariant) critical point is deter-
mined, for the case of our model, by solving (numerically)
the equation

gz( T,N)

gi(T, N —2) N —2
(4.10)

In the asymptotic (N~ oo ) regime, one expects this func-
tion to behave as

therefore identifying v~~= 1/y and vq
——x/y. Thus for an

infinite strip, Nj ~ oo and N~~ finite, one has

/b) .

For isotropic scaling vj/v~~ = 1, and one obtains the form
(4.2).

A most useful function to calculate, in order to check
whether the scaling behavior is isotropic, is ( T =J ')

(N+2)/N, T~ oo

R~(T)-, 1, T =T,
e (1q T(Tc

(4.5)

e ~~, T)Tc
' vg/v( ), T =Tq

T(T, .

(4.1 1)

For a model with a massless phase, one expects Rz(T)-1
over a finite range of temperatures.

Critical exponents are determined from

Therefore, for X—+ oo one expects

0, T&T,

1 B[g(J,N)/N]/BJ
v

=y'='"
a[p J,N+2)/(N+2)]/aJ

In X+2

r~-. ,/ I~, T

QQ
& T(TC

(4.12)

(SpSt ) -( i
A, i i

/Ap)'cos(lg) . (4 &)

Thus the phase of k& determines the wave vector associat-
ed with the dominant fluctuations (in the disordered
phase) and that characteristic of the ordered phase (of the
infinite system).

Equations (4.4) and (4.6) can be used to determine
T, =J, and y, only if the system scales isotropically.
The correlation length measured is gz in the direction
along the strip; one investigates the manner in which gz
scales with the strip width N~~. In some cases (for exam-
ple, directed percolation, Lifshitz point, ' and com-

(4.6)

Again, for all fixed values of H/J one calculates y, .
The spin-spin correlation function, as a function of dis-

tance l along the infinite strip direction, is given, for large
distances, by

(SpSI ) -(Ai/Ap)',

where A,p is the largest and A.
~

the next eigenvalue of the
transfer matrix. However, if the second and third eigen-
values are a complex-conjugate pair, i.e., A,

~
——

~

A, ~ ~

e'~, the
correlation function has the form

If the approach to the asyxnptotic region is not too slow,
i.e., F~(T) does behave in the predicted manner, one may
identify T, by solving numerically the equation

F~(T, ) = Yiv'(T, ) = [v/v] jv, x (4.13)

where [vz/v~~]~~ is the estimate of the ratio vz/v~~ as
based on strips of width 1V,X'.

We turn now to describe our results for the ATNNI
model. The quantity R~(T) was calculated for N =4, 6,
and 8 (the widest strip we used had N =10 independent
sites—which necessitates finding the largest eigenvalue of
a 2"&&2" matrix). This was done for a sequence of fixed
values of H/J. For 0&H/J&2. 3, we found Rz(T) to
vary monotonously with T (see Fig. 5), crossing the value
Rz(T, )=1 at a set of points T, (H/J). The resulting
values as obtained from the widest strips are shown in Fig.
2. It is important to note the monotonous variation, even
close to the degeneracy point. However, for H/J ~2.4,
this situation changes. For H/J =2.6 and 2.8, we found
that Rz(T) is markedly nonmonotonic; it has loops that
persist for the largest sizes studied. As H/J increases,
these loops become much smaller and disappear. We in-
terpret these loops as the manner in which the finite sys-
tem approaches the behavior expected when the infinite
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FIG. S. Ratio R(J '), Eq. (4.4) for strips of widths 8,10.
For H/J & 2.3 monotonics behavior was found.

system has a massless phase over a finite range of tem-
peratures, i.e., R~(T)=1 for a range of temperatures.
These loops are pronounced in the regime 2.4
&H/J&3. 0; thus this is the range of H/J values in
which we suspect to find the intermediate floating phase
discussed in Secs. II and III. For higher H/J values our
results indicate a direct transition from the disordered to
the commensurate phase. A sequence of R(T) curves is
shown 111 Flg. 6(b). T111s flgulc Rlso S11ows tlM vartatlon of
the wave vector, as determined from the phase of the
second-largest eigenvalue. For H/J &2.4, we find /=0
for temperatures near the transition line. As T increases,
thc I'cal second eigenvalue splits into a complex-con)ugatc
pair at some Tg (H/J). For N =10, and fixed T =1.6, we

found the value of H/J at which this occurs to be within
0.5% of the value ( —1.90) obtained by Verhagen. '

For H/J &2.4, we find g&0; in Fig. 6(c) we plot
q =p/(2Ir/3) as a function of T for various fixed H/J.
Again, the situation is markedly different for 2.4
&H/J&3. 0 and H/J ~3.0. In the former regime, q
shows relatively fast variation in the region where loops of
R~( T) are found, and at T, [determined from
RN(T, ) = I) we find q & 1 (q =1 characterizes the com-
mensurate phase). For H/J p 3.0, q varies slowly, slightly
overshooting and approaching the commensurate value
from above as T +T, (H— /J). These results indicate that
the massless phase is characterized by an incommensurate
wave vector, whereas in the regime of a single direct tran-
sition to the commensurate phase„q =1 at T, (and stays
locked for T &T, ).

The difference between the regime 2.4 &H/J & 3.0 and
other H/J values is dramatically seen in the behavior of
the functions Yz(T). In Figs. 7 and 8 we show this func-
tion evaluated for sizes 1%=4, 6, and 8. In the regions
where no massless phase is expected, Y~ behaves precisely
as expected from Eq. (4.11) and the discussion that fol-
lows them. That is, for H/J =3.9, 3.4, 2.1, and 0.2, the
function has very small values at high temperatures; it in-
creases dramatically as T decreases. The values of vI/vII
(as determined from crossing of pairs of I'~/F~ 2 curves)
are close to 1, indicating isotropic scaling, although it is
clcRI'ly sccI1 that tllc Rppl'oaclI to vI/vlI = 1 wltlI slzc ls not
monotonous. The function F~ behaves very differently
for H/J =2.6 (Fig. 7). Here we see a large loop, which
we interpret in the following manner. If the model exhib-
its a massless phase for TFT & T & TKT, one should find,
for X~oo,

TKT&T

TPT & T & TET
(4.14)

00—
I. P

~ 3,0----

0

l . l I l I l I l l I I I I I

0,5 l. O I, 5

FIG. 6. (a) Specific-heat data from Monte Carlo (X=18) for
various H /J values. Note the sharpness of peaks for
0/J &3.0. (b) Ratio R(J ') of Eq. (4.4), using strips of 8,10.
Note the nonrnonotonic behavior for H/J =2.6 and 2.8. (c)
Variation of the phase q (see text), from the transfer matrix (O )

and from Monte Carlo (4). The Monte Carlo data are for
18' 18 systems; still significant size dependence is found.

The ~alue vI/v~I= —, at the Pokrovsky-Talapov's (PT)
transition was found by Schulz. Clearly, the function
I'z(T) as shown in Fig. 7 is consistent ' with the manner
in which F~ (for X finite) would approximate I'„ that
has the form (4.14).

All these findings are consistent with the phase diagram
of Fig. 2. For H/J &2.4, we find a single transition, to
the 2X I phase. For 2.4&H/J &3.0, the disordered and
commensurate phases are separated by an intermediate
floating (massless) phase. This phase is bounded at high
temperatures by a Kosterlitz-Thouless (KT) transition,
whereas at low tern peratur'es by a commensurate-
incommensurate transition. At H/J =3.0 we find a
I.ifshitz point; for 3.0 &H/J & 4.8 the system undergoes a
single, direct transition to the commensurate phase.

In order to determine the universality class of the single
transitions we calculated yT as a function of H/J using
Eq. (4.6). The results, for various strip widths are shown
on Fig. 9. For H/J & 2.4 the transition is Ising type; one
should, however, note the relatively slow convergence with
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FIG. 8. Th. The function F~, E =10 (solid lines), 8 (dashed), and
6 (dotted-dashed). For H/J =0.2 and 2.1, the value of v

(4.11).
y owards 1; the function behaves d' do; '

aves as pre icted by

0.2

0.0

-0.2—

]
gQ/ /

/

and methods such as recently proposed b 8 bse y ar er are
ere we tried to extract better estimates of the

exponents by noting that corrections to scalin
relevant o eroperators, should decrease when one scales at or

0.5
1.2—

FIG. 7. Thhe function F&, Eq. (4.10), for a set of H/J
so i ine), 8 (dashed), and 6 (dotted-dashed). %'hil h

curves for H/J=3. 9 an
s e . iethe

that of H/J =2.6
and 3.4 behave according to E . (4.11)q.

/J =2.6 seems to approximate (4.14). For 3.
ection point yields T, in accord with (4.4) an

isotropic scaling.
r wi . , and with

1.0—

0.

H/J

size and large variation with H/J. Both th
d"..'...h. ..
that the t m

ue o e in uence of irrelevant operato d h frs, an t e act

tion of both J
e temperaturelike (nonlinear) scalin f' ld

' fing ie is a unc-
o oth J and H. Clearly, in order to reliably deter-

mine the critical exponents, calculations with wider stripswi er strips,

H J, usin E
FIG. 9. Thermal ex onentp yT, calculated for fixed values of
J, using Eq. (4.6) with strips of widths 4,6, 6,8, and 8, 10

(respectively, dotted-dashed dashed d l'e, an so i ines). Arrows in-
dicate the fixed point [Eq. (4.15)]. F Hor /J ~2.4, yT ——1 (Isin )

is expected. For 3 &H/J we find a single, CP transition
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near the fixed-point Hamiltonian, characterized by J' and
H'. In order to identify the fixed point, we solved the
equations (requiring scaling for both J and H)

g—(J',H', N) = g( J—',H*,N +2)
N ' ' N+2

g( J*-,H', N +4)%+4 (4.15)

numerically, for J' and H*, with N =6.
For H/J &4.4, we run into severe convergence prob-

leins; for 0 &H/J & 4.4, Eqs. (4.15) have two solutions, at
(J ',H/J)=(1. 14, 1.86) and (J ',H/J)=(0. 70, 3.58).
The first of these solutions we interpret as the Ising fixed
point, at which we obtained yP) = 1.043 and yz~' ) ——1.019.
The second fixed point characterizes the single direct tran-
sition from the disordered to the commensurate phase,
and we find yP=1. 159 and yz~' ) ——1.146. These latter
values are about 4% below the three-state Potts value of
1.2; nevertheless, we do not feel this to be sufficient evi-
dence to claim that this transition is characterized by ex-
ponents that are not three-state Potts type.

In summary, we have presented evidence, based on
phenomenological renormalization-group techniques, that
the phase diagram of the ATNNI model (2.1) is that of
Fig. 2. However, we do feel that some aspects of this
phase diagram need further substantiation. In particular,
firmer checks on the existence and extent of the incom-
mensurate phase, as well as for the distinctly different
critical behavior for 2.4&H/J &3.0 vs H/J) 3.0, are
needed. For this purpose we have performed Monte Carlo
simulations of the ATNNI model.

V. MONTE CARLO SIMULATIONS

In order to present further evidence for the phase dia-
gram of Fig. 2, we calculated several thermodynamic
functions. The specific heat should exhibit a sharp peak
in the regimes where single (Ising or CP) transitions are
expected. In the incommensurate phase the situation is
more involved; even though a divergence is expected as
the commensurate phase is approached from above, the
specific heat should have a broader, asymmetric peak.
More significant is the scaling behavior of the (wave-
vector-dependent) susceptibility. In the incommensurate
phase the susceptibility, or Fourier transform of the spin-
spin correlation function X(q) should diverge for some in-
commensurate (q&1) value of the wave vector. That is,
for a sequence of finite systems, X(q,„)should scale with
size for q,„&1. In order to check these points, standard
(Metropolis) Monte Carlo simulation was performed for
X)&N lattices schematically depicted in Fig. 4. When
X =6n, this lattice allows for both ground states sirnul-

taneously, with doubly periodic boundary conditions. In
the 2X 1 phase [Fig. 1(c)] calculations were performed for
8)&8, 10)&10, 14)&14, 16&16, 18&(18, and 20)&20 lat-
tices, whereas in the V3&&v 3 phase [Fig. 1(d)) we con-
sidered 6&(6, 12X12, 18&(18, and 24)&24 lattices. For
H/J &(H/J)", in the region of the 2X1 phase, the max-
imum of the specific heat C scales with size; C,„-lnN,
indicating that the transition belongs to the Ising univer-

sality class. For 2.4 &H/J & 3.0, q (T) has a broader peak

H/J =2.9

1.0—

———l2 x l2
——-18x(8

24x2

0.4—

0.2 —'

1.0 06 1.0

FIG. 10. Specific heat per spin for H/J =2.9 and 3.2. Note
sharpness and increase of C,„with size for H/J =3.2. For
H/J &2.9 broader and more asymmetric peaks were found,
with little apparent scaling with size.

for all lattice sizes. We observe, that for 2.4&H/J &2.8,
the specific-heat peaks are asymmetric with respect to the
temperature around the maxima, which may reflect the
absence of critical divergences on the commensurate side
of the commensurate-incommensurate transition, as
predicted by Schulz. But even carefully performed
(-0.5X10 flips per spin) long simulations, annealing
from high temperature, show only slight increase of C,„
with size. For H/J=2. 6, 2.7, 2.8, and 2.9, such runs
have been performed and C,„-vs-in% as well as lnC, „-
vs-in% plots seem to indicate saturation. In Fig. 10 we
show the specific-heat peaks for H/J =2.9 for all lattice
sizes. For H/J p3.0, the specific heat shows a sharp
peak which scales with increasing lattice size [see Figs.
2(a) and 10]; lnC, „-w lnN with a slope w =2a/(2 —u)
which varies with H/J. This variation corresponds to
values of the specific-heat exponent 0.45 & a & 0.55. Such
values are consistent with those found from simulations of
small three-state Potts systems. The locations of the
specific-heat maxima are shown in the phase diagram of
Fig. 2.

In the 2X 1 phase the order parameter Mz„& fluctuates
above T, and increases rapidly below T, to its maximum
value. In the W3&&v 3 phase, for H/J &3.0, the ap-
propriate order parameter M~& ~& fluctuates strongly
above T, and tends to its ground-state value for tempera-
tures To & T, . The susceptibilities, X(q =O, T)=Xi&&i(T)
and X(q =1,T)=X~& ~~(T), associated with the corre-

sponding order parameter were also calculated. Whereas
for H/J )3.0, X~& ~&(T) always diverges, as the tem-

perature approaches (from above) the value at which the
specific heat is maximum, showing a clear scaling
behavior, we find no such divergence for H/J & 3.0. Here

X~3 ~&(T) is of the order of Xq&&i(T) We also c. alculated

X(q), the susceptibility associated with wave vector
k=(2ir/a, 2mq/3b) at fixed T=J ' and H/J, mostly
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FIG. 11. %ave-vector-dependent susceptibility per spin,

X(q)=g„&S(0)S(R)&exp(iq R). In parentheses, next to

the lattice sizes, the maximum value (all curves are normalized
to have the same maximal values). q =1 corresponds to the
commensurate phase. For all three temperatures q,„&1.

FIG. 12. %ave-vector-dependent susceptibility per spin,

X(q)= g &S(0)S(&)&exp(iq.K). In parentheses, next to
the lattice sizes, the maximum value (all curves are normalized
to have some maximal values). q =1 corresponds to the com-
mensurate phase Note that as T~Tg p /may ~ 1

in the disordered regime T & T, (H/J). Values of
q,„(T,H/J) at which X(q) is maximum were identified
[see Figs 2(c) and .11—13j. We find that for sufficiently
large values of H/J, near the transition q,„=1.0, i.e., the
transition is to a commensurate phase.

In order to get further information about the region of
the massless phase we studied the scaling behavior of

X(qm, „) for H/J =2.8, 3.2, and 3.6 as a function of size.
We performed long runs ( —10s flips per spin) annealing
&orn hig4 temperatures in the temperature region close to
the specific-heat maxima for all lattice sizes. For
H/J =2.8 we observe scaling behavior; lnX(q, „)
-N 1nÃ, for temperature T(0.78. This is shown in Fig.
14. It 1s important to note that for a11 1att1cc s1zcs thc
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behavior of lnX(q, „) for T & 0.78, but here the wave vec-
tor is already lacked at q~,„=1.0 for the largest lattice
size (Fig. 13). The scaling behavior of X(q,„) at incom-
mensurate wave vectors q~,„&1 is added evidence for a
narrow strip of incommensurate massless phase in the re-

gion 2.4&H/J &3.0. The fact that far H/J & 3.0 scaling
behavior is observed only for q =1 indicates that in this
regime the transition is directly to the commensurate
phase. Thus our simulations are completely consistent
with the phase diagram of Fig. 2.

FIG. 13. Wave-vector-dependent susceptibility per spin,

X(q)= g„&S(0)S(R)&exp{iq R). In parentheses, next to

the lattice sizes, the maximum value (all curves are normalized
to have some maximal values). q =1 corresponds to the com-
mensurate phase. Note that as T~T+, q,„~1.

values q» (T,H/J =2.8) are smaller than the commens-
urate value q,„=1.0 (see Fig. 11). This has to be com-
pared to the behavior at H/J =3.2. Here we also find
scaling behavior of lnX(q, „) for T &0.78, but for values
of q,„very close to the commensurate value; see Figs. 12
and 15. Finally, for H/J=3. 6 we see (Fig. 16) scaling

I

2.0
I

2.5
In N

I

5.0

FIG. 15. 1ng(q, „) vs in%, H/J =3.2. Scaling is seen for
T & 0.78. For T =0.78, q,„&1 (but rather close); for T =0.76
and 0.74, q,„=1 (see Fig. 12).
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ing phase diagram, with two competing commensurate
phases, an incommensurate phase with algebraic decay of
correlations, a uniaxial commensurate-incommensurate
transition, a Lifshitz point, and a single continuous transi-
tion (in the CP class) from the disordered to a commensu-
rate state, for which the Lifshitz condition is not satisfied.
The existence of such a transition is not allowed by
mean-field theory, and it provides a further example to
the central role played by fluctuations ln critical behavior
in two dimensions. The thermal exponent of this transi-
tion is very close to that of the three-state Potts model.

Our results are consistent with existing theories of the
commensurate-incommensurate transition; however, fur-
ther studies, based on wider strips, seem to be necessary in
order to compare results quantitatively. Also, properties
of the Lifshitz point should be investigated in more detail.

We believe that the ATNNI model can serve as a most
convenient testing ground for both our theoretical under-
standing of many interesting phenomena in two dimen-
sions as well as for various novel calculation techniques.

FIG. 16. 1ng(q, „) vs lnÃ, H/J =3.6. In the region where

scaling is clearly observed, q,„=1,indicating direct transition
to the commensurate phase.

VI. SUMMARY AND DISCUSSION

We have studied the ATNNI model; an Ising model in
an external field with nearest-neighbor antiferromagnetic
interactions on an anisotropic triangular lattice. Physical
realizations may include noble gases physisorbed on the
(110) face of a bcc crystal, where the adsorption sites form
a centered rectangular array.

The ATNNI model has simple interactions and local
variables. Nevertheless, we found a complex and interest-
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