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The Monte Carlo renormalization group is applied to the three-dimensional Ising model on sim-

ple cubic lattices with 8, 16', 32, and 64 sites. The comparison of block-spin correlation functions

from the largest lattices yields the nearest-neighbor critical coupling El ——0.221654(6). After al-

lowing for (i) interpolation to this best estimate for Kl, (ii) an apparent finite-size effect in the
renormalization-group transformation due to the measurement of correlation functions of too few

(seven) operators, and (iii) the extrapolation for the effect of a slow transient towards the fixed

point, the values v=0. 629(4) and q=0.031(5) are obtained for the thermal and magnetic ex-

ponents. The correction-to-scaling exponent ~ is estimated to be around I; to obtain an accuracy
competitive with other methods requires measurements with more than seven operators. %e briefly
review the problem of redundant operators and indicate the future prospects for this kind of calcu-
lation.

I. INTRODUCTION

The Monte Carlo (MC) approach, simulating directly a
physical problem of interest, can be implemented to pro-
duce excellent results for finite systems. Near a continu-
ous phase transition, or critical point, however, where the
correlation length g diverges in an ideal infinite system,
the behavior is dominated by finite-size effects whenever
the ideal g would be greater than the linear dimension of
the system. Therefore, in the finite systems which we
simulate by MC methods the various singularities of in-
terest at a critical point are always rounded off. This
prevents us, in this direct approach, from taking much
useful data very close to the critical point, and leaves us
with the problem of extrapolating from results at various
finite sample sizes to the infinite system.

A number of approaches can be adopted to tackle this

problem; the one which we apply here is the MC renor-
malization group (MCRG). ' This has been apphed suc-
cessfully to a nuDlbcr of problcIQs, mainly 1n two dill1cn-
sions. In this paper wc report results for the critical
behavior in the three-dimensional (3D) Ising model. This
model is of interest in this context for several reasons.
The Ising model is the prototype spin system whose ran-
dom variables take the value +1 on each site of a regular
(in our case, simple cubic) lattice. It is the simplest repre-
sentation of thc 11111vclsallty clRss whlcll 1ncludcs lllllaxlal
nlagIlcts, fluids, b1nary Rlloys, ctc. Altllollgh Rll exact
solution 1s not known, long scrics expansions can bc

developed which yield extremely accurate values for the
critical coupling E, or temperature T„and for critical
exponents. When the effects of corrections to the leading
singular behavior are included in the analysis, the results
from series expansions seem to be in good agreement with
independent field-theory calculations and with experi-
ment. Thcsc I'csults sct a vcI'y dcIDand1ng benchmark
against which to test the MCRG in this model. Of partic-
ular significance in this connection is the existence of a
"slow transient" correction to the leading scaling behavior
in this model, which must be identified and isolated from
the leading critical behavior; this aspect provides a severe
challenge to the MCRG method.

The MCRG method has been recently reviewed (see,
e.g., Swendsen ). Our starting point is the Hamiltonian
w1th a nearest-ne1ghbor couphng L&,

c$ —NISI p SI —g crttTj
&~j&

whcrc 0;=+1 1s thc sp1n variable on s1tc i and thc sum 1s

over nearest-neighbor pairs (ij ) on the simple cubic lat-
tice. Correlation functions involving any operator 8(o)
are defined in the usual way by the trace over the equili-
brium distribution

(8)=Tr[8(o)exp% (o.) j/Tr[exp@ (o)] .

For any given configuration [o I ( = Icr' 'I ) of these spins
generated by a MC method, we define a sequence of

Qc1984 The American Physical Society



MONTE CARL() RENORMALIZATION-GROUP CALCUI. ATIONS OF. . .

black-spin configurations Icr(")j on lattices whose spacing
is scaled by successive factors, in our case of 2, 2, etc.
(corresponding to n =1, 2, etc.). For the calculations re-
ported here we have adopted the majority rule: The block
spin o takes the values +1 according to the sign of the
total spin of the 2' 0' 's which are being blocked; if this
total spin is 0, a value of +1 is assigned to (7(" by using a
pseudorandom logical variable. Thus, from an ensemble
of configurations of the original spins I(T' 'j on a lattice
of X sites, we generate, by n successive applications of this
rule to blocks of 2 spins, an ensemble of configurations of
the block spins Io'"'j for each II =1, 2, etc. on lattices of
N/2, I(I/2, etc. sites. Estimates for any correlation
function of the Io'"'j (n =0, 1, 2, . . . ) can be made from
this ensemble.

If the ensemble of original configurations of Io' 'j fol-
lows the equilibrium distribution of (1), the block-spin
configurations of I(T(")j for a given blocking level n will
be distributed. according to a renormalized Hamiltonian

where I. and S denote the large and small lattices, respec-
tively; since the effective lattice sizes on the left- and
right-hand sides of Eq. (4) are the same, unknown finite-
size effects should be systematically canceled. The most
scnsltIvc determination Is obtained by choosing Pg as lalgc
as possible to amplify any contribution from the relevant
perturbation E( —E( and to deamplify irrelevant pertur-
bation from the fixed-point Hamiltonian as indicated in
Fig. 1. Noting that

g(n)
(g(n)g(0) ) (~(n) ) (S (o) )a 1 a )

we can solve the set of linear equations

S (n)

(S (n) ) (S (n —m) )a I. a 5

where the sum is over nearest-neighbor, second-neighbor,
etc. interactions (labeled by a) for the block spins I(T(")j.
The renormalization-group (RG) transformation implicit-
ly specifies E'"+" as functions of Ep"', with fixed points
of this transformation determining the critical surface,
critical exponents, etc. by the standard theory. Charac-
teristic RG trajectories are shown schematimlly in Fig. 1.
In the approach we follow here, only E( (:E'I ') is re--

quired explicitly; the critical value E1 and critical ex-
ponents are determined as follows.

To determine E(, we perform independent MC simula-
tions at some fixed E( value on lattices of size I)I and
X/2, m =1,2, . . .. The coupling E, is estimated to
have its critical value when

Criticol surface

to estimate the deviation from criticality, 5E)-EI—E(,
using the appropriate correlation functions measured from
the MC ensembles for the large and small lattices.

The stability matrix T & of the RG transformation is
defined by

gE(n+))
T

P

Critical exponents y, are obtained from the eigenvalues A,,
of the stability matrix T II (evaluated at the fixed-point
Hamiltonian) according to

An 2 (&)

By performing simulations at E1, we obtain estimates for
T~p by solving the linear equations

~~~(n+I) ) ~E(n+I) ~I~(n+)) )
(9)

gg (n) ~ gg {n) gg (n +1)
P a P a

using estimates as in Eq. (5) from the MC ensemble. In
principle, the best estimate for Ta~ is obtained by using
Eq. (9) for the largest value of RG blocking n on the larg-
est available lattice, to eliminate as much as possible of
the transient effect towards the fixed point; a detailed dis-
cussion of various systematic effects is given in Sec. IV.

This paper is organized as follows. Section II summa-
rizes the computational aspects of the calculation. In
Secs. III and IV we give the data and the analysis thereof
for the critical coupling and exponents, respectively. We
conclude in Sec. V with a discussion, making particular
reference to various ways of improving upon our results
with presently available computing resources.

A(i Other )(nnS

FIG. 1. Schematic diagram for RG flows in the many-
dimensional space of coupling constants, indicating the transient
into the fixed point starting from the critical value K~, and the
instability of the fixed point to perturbations out of ihe critical
surface.

%C have implemented the above equations in three in-
dependent progI'aIIls: (1) fol' a scrtal 111ac11111c,(11) vcctoI'-
ized optimally for the array processor model no. AP190-I.
from Floating Point Systems Inc. (FPS), and (iii) in distri-
buted array processor- (DAP-) FoRTRAN for the Interna-
tional Computers Limited (ICL) distributed array proces-



4032 PAWLEY, SWENDSEN, WALLACE, AND WILSON

sor. Where the parameters are the same we obtain entirely
compatible results. We have taken data on 8, 16, and
32, and on the DAP alone, 64 lattices; the data presented
here are those obtained from the DAP computer. The
64&&64 array size and the logical software facility on the
DAP are advantageous for this particular problem; com-
pact and efficient routines can be written in DAP-
FDRTRAN both for the MC updating and the RG block-
ing.

In the updating, spin flips which do not increase the en-

ergy are always accepted, and spin flips which cost energy
b,A ( &0) are accepted with probability exp( —b,A ). In
order to ensure convergence to equilibrium one should not
attempt to update simultaneously and independently spins
which interact with one another in A . A sweep of the
lattice is achieved with complete efficiency by updating all
the spins on even sites, taking pairs of adjacent 64X 64 bit
planes at a time, and then all the spins on the odd sites for
the planes. For the lattices smaller than 64, multiple in-
dependent simulations are run simultaneously to increase
statistics.

All data were taken using a tested Numerical Algo-
rithms Group (NAG) pseudo-random-number generating
routine, with an additional random shuffle amongst the
4096 parallel processors in the DAP array. With this ex-
tra precaution, the machine makes approximately
2.7)&10 update attempts per second. We further checked
this random-number generator in a two-dimensional pro-
grarn, which revealed no discrepancies with the exact re-
sults. [We have subsequently run the 3D problem at
6&&10 update attempts per second using a shift-register
generator assembler routine written by K. Smith (DAP
Support Unit, Queen Mary College). A special Ising-
model assembler routine written by D. M. Scott (Universi-
ty of Edinburgh), operates at 9.5&&10 update attempts
per second and further improvements are expected. ]

In the RG blocking the choice of origin at each block-
ing level is systematically permuted among the eight pos-
sibilities. This is important particularly at the higher
blocking levels, where it substantially improves the quality
of the statistics. We chose to block one configuration in
four, thereby reducing the speed to approximately
1.2& 10 update attempts per second. Even with the per-
mutation of the origin for the block spins, one might ex-
pect that this is too frequent because of the long-time
correlation in large lattices at criticality. However, there
is preliminary indication that the correlation functions
which are used for calculating critical exponents do not
suffer the same critical slowing down because of large
cancellations of statistical errors. The data we present
comes from 32, 16, 4, and 2X 10 sweeps on lattices of 8,
16, 32, and 64 spins, respectively, at each of
three values of the nearest-neighbor coupling
K~(0.22161, 0.22166, 0.22169; on the 64' lattice at the
last value, in fact, only 1)C 10 sweeps were done). The er-
ror bars given in parentheses in all "raw" data tables in
Sec. IV are the standard deviations in the mean obtained
from eight bins of successive configurations, each bin in-
volving one-eighth of the total relevant data. Thus, for
the 64 lattice we are presuming that independent configu-
rations are obtained typically at least every 2.5&(10

sweeps; on the basis of our data this is not an overestimate
of the long-time correlations, and indeed in the final esti-
mate for the critical coupling a 50% increase in error bars
on data from the 64 simulation has been made on the
basis of X confidence levels (see Sec. IV A). We note that
this number of sweeps is typical of the total data at a sin-
gle E~ value taken in some previous studies on large lat-
tices.

Approximately 15 h of calculation were done to equili-
brate the 64 lattice at E& ——0.22169. A subsequent 5 h
was used to change this configuration to one at
E& ——0.22161, and 5 h more was needed to equilibrate for
the final value, E~ ——0.221 66.

III. CRITICAL COUPLING E i

The first set of runs was made at E~ ——0.221 69, favored
from previous series expansions (see, e.g., D. S. Gaunt,
Ref. 2 and references therein), and the second at
E~ ——0.221 61. From these runs we estimated a new criti-
cal value K~ ——0.22166, and a third set of data was taken
at this value. In Table I we show the estimate for the de-
viations 6E~ ——E~ —E& obtained from the various lattice
sizes at various blocking levels using Eqs. (5) and (6) for
the nearest-neighbor spin operator S, (the mean energy).
Error bars in parentheses are the standard deviation in the
mean from eight successive data bins as discussed in Sec.
II. In the final column we show the corresponding best
estimates for lC, by averaging the (statistically indepen-
dent) results from the three different K& values.

In interpreting the results in Table I, we must recall
that Eq. (6) estimates the deviation from criticality on the
assumption that E~ —K', is the only difference between
the effective Hamiltonians for the two systems which are
being compared. This is true only after a number of RG
blockings sufficiently large that the transient within the
critical surface towards the fixed point is negligible com-
pared with the statistical error (see Fig. 1). The discrepan-
cies among the various numbers in the final column of
Table I reflect the transient behavior towards the fixed
point. Note that these discrepancies are not even mono-
tonic; estimates for E& can decrease and then increase as
the RG blocking level is increased. In principle, the best
estimates for K& come from the comparisons among the
largest lattices at the highest blocking levels; we record the
values 0.221652(7), 0.221656(4), and 0.221651(7) ob-
tained from comparisons between 64, 32, and 16 lat-
tices. While data involving the 8 lattice confirm underly-
ing trends, it does not appear possible to use it to enhance
the quality and consistency of data from the larger lat-
tices, at least in a simple extrapolation with a single slow
transient.

The three results quoted above are from a comparison
of block correlation functions on lattices of effectively 2
spins. Within the MCRG formalism, one may also query
the validity of blocking to this level since the effective
Hamiltonian, although expected to be technically short
ranged, may have significant couplings (e.g., (200) ),
which cannot be incorporated on a 2 lattice. To check
this point we note the value 0.221650(6) from comparing
the 64 and 32 data each blocked to 4 lattice sites; in
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TABLE I. Estimates for (E& —E& ) )(10 using Eqs. (5) and {6)at three E& values, comparing various
large (L) and small (S) lattices at various RG blocking levels. For this and all subsequent tables, statist-
ical errors on the least significant figures are shown in parentheses. The final column gives the corre-
sponding estimates (with errors) for E& from the weighted average of the three runs.

64
64
64

64

32
32
32
32
32

IC& =0.221 61
Change

—S28(11)
2(8)

—32(9)
—50(12)
—58(13)

0.221 66
Change

—423(10)
s7(7)
28(8)
16(10)
17(10}

0.221 69
Change

—365(9)
81(7)
54(8}
42{11)
38(15)

0.222 086(5)
0.221 606(4)
0.221 636(4)
0.221 650(6)
0;221 652(7)

64
64
64
64

16
16
16
16

—144(5)
—12(4)
—38(6)
—52(6)

—79(6)
43(7)
21(8)
14(9)

—43(6)
70(7)
49(9)
39(12)

0.221 744(3)
0.221 621(3)
0.221 644(4)
0.221 656(4)

64
64
64

—s3(4)
—20(5)
—40(6)

6(6)
40(7)
28(8)

35(6)
66(8)
52(11)

0.221 659(2)
0.221 626(3)
0.221 643(4)

32
32
32
32

16
16
16
16

—556(11)
45(12)

—5(1s)
—34(21)

—492(6)
87(6)
36(7)
s(1o)

—447(6)
120(7)
69(9)
44(14)

0.222 147(3)
O.221 571(4)
0.221 622(5)
0.221 651(7)

32
32
32

—97(8)
43(10)

1(14)

—42(4)
92(4)
51(6)

—11(3)
122(4)
84(6)

0.221 702(2)
0.221 568(2)
0.221 607(4)

16
16
16

—519(7)
185(8}
103(11)

—435(5)
263{7)
191(9)

—420(11)
282(16)
204(21)

0.222 107(3)
0.221 409(5)
0.221 484(6)

practice, therefore, this appears not to be a problem given
the range of the statistical errors.

On the basis of the consistency of all of these results
within statistical errors we believe now that there is no
compelling evidence for attempting to extrapolate them to
an infinite system. ' The weighted mean of the three
values quoted together above is 0.221 654. If all three re-
sults were statistically independent, the standard deviation
in this mean would be 3 in the last significant figure.
They are not independent, however, since each lattice size
appears twice in the three comparisons. Furthermore, one
may also ask about the X confidence levels of the averag-
ing of the three data runs to obtain the numbers we use
from the fourth column in Table I; they are 0.3, 0.8, and
0.3, respectively. The small confidence levels involve the
64 data. If we increase the error bars on the 64'/32' and
64 /16 comparisons by 50% to obtain confidence levels
of 0.6, the weighted mean is unchanged at 0.221654 and
the standard deviation would drift up to 4. In order to ac-
commodate both the nonindependence of the three com-
parisons used, and to enhance confidence levels, we give as
our present best estimate

Ki ——0.221 654(6),

where the error is intended to represent one standard devi-
ation in this mean. It must be stressed that this estimate

is based on the presumption, supported by the data from
the larger lattices, that no extrapolation to the infinite sys-
tem is required which is significant in comparison with
the statistical error bars.

The result (10) is in excellent agreement with recent
series-expansion estimates which allow for the existence of
corrections to scaling from the slow transient:
0.221 655(10) (Ref. 11), 0.221 66(1) (Ref. 12), and
0.221 655(5) (Ref. 13).

As in Ref. 10, preliminary results from the MC Proces-
sor (MCP) at Santa Barbara have already been presented
at the Les Houches workshop. ' That study differs from
the present in several features: (i) much higher statistics
are obtained, including preliminary results using a 128
lattice, (ii) screw periodic boundary conditions result from
the mapping of the lattice on to a cyclic linear data chain,
and (iii) a full block-spin MCRG analysis is not carried
out; instead finite-size-scaling techniques are used to esti-
mate E&. The resulting estimate K& ——0.221650(5) is also
in excellent agreement with the result (10). We note that
the implementation of the block-spin analysis [Eqs. (5)
and (6)] appears, at least for this problem, to offset consid-
erably the advantage in statistics and lattice size generated
by the MCP. In particular we note that the "crossing" es-
timate for E

&
in Ref. 14 derived from the 32 lattice is al-

most an order of magnitude further from the final best es-

timate than is the value 0.221651(7) obtained from com-
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TABLE II. Estimates for 1/v from thv rom the run at E& ——0.22166
e sets of seven values in a

1

2 bl kltti ) th 1 targest exponents obtained by diagonaliz-
&7 subblocks of the

The successive setse s in a column are for
'

e stab&lity matrix TrzP e

n in Eq. (9).
e for mcreasing blocking levels

16

1.3663(7)
1.4264(7)
1.4271(6)
1.4269(6)
1.4263(6)
1.4260(7)
1.4252(V)

1.3648(5)
1.4288(7)
1.4293(8)
1.4290(8)
1.4279(7)
1,4272{8)
1.4258(8)

1.3655(3)
1.4371(2)
1.4376(3)
1.4368(3)
1.4342(4)
1.4330(4)
1.4303(4)

1.3758(3)
1.4S98(3)
1.4610(3)
1.4552(2)
1.4455(3)
1.4432(3)
1.4372{4)

1.4937(9)
1.5244(7)
1.5246(8)
1.S240(8)
1.5225(8)
1.S220(8)
1.5189(9)

1.4941(7)
1.5327{8)
1.5326(9)
1.S308(9)
1.5269(9)
1.5261(9)
1.S218(9)

1.5137(4)
1.5656(6)
1.5662(6)
1.5556(6)
1.S420(8}
1.S399(8)
1.5338(8)

1.S922(3)
1.6867(3)
1.6956(3)
1.6695(3)
1.6548(3)
1.6525(3)

paring the 32 and 16 l tattices in Table I.
IV. CRITICAL EXPONENTS

In this section we present the results f
ponents obtained from th e stability 'ma-rom t e eigenvalues of th

ss E . — . ince the fixed-t '
sse in Eqs. (7)—(9). S'

ian is even in the s ins o.ian is
' p' o, the thermal and

correlation function f
en s are obtained separatelc y by considering

1ons o operator's S wi 1ch aic cvcn and
c y, 1n thc sp1ns O'. Thc lcac h . c cadlng exponents

poncnt in Sec. IV C.
ccs. and 8 andd the subleading ex-

A. Exponent v

From the standard th
even operators sh ld h

eory (see, e. . Re
ou ave a single relevant (greater than

1) eigenvalue, with yi =1 vy i
= v (correlation length

e allow foi' up o seven coupling
asuring t c appI'0 Iiatasu p p ate correlation func-

'n q. for the following seven o

a 'g or coupling as in Eq. (1).a i, 100) neighbor co
2, 110) neighbor couplin suing [summed over the lat-

(e) S, 111
(d) S four-

neighbor coupling.
our-spin product, in (100) 1p ancS.
our-spin product, in (110) 1p ancs.

S6, four-spin product tec, etrahedral vertices in each

g S7, (200) neighbor coupling.

We can foliofollow systematically the effect offolio
'

y e e ect of these couplings

matrix T p. The results obtained for the 1 d gth l

Table II with stati
om e run at K =0..22166 are shown in

s a istical errors (estimate
bins as described in 8

ated from eight data
e in ous lattice sizes at

0

'
e in ec. II) for the vari

a

g cvcs n=0, . . ., 4inE .
last blocking level, the (200 ise 00 operator S isc 00 ~ is d1scardcd as

Reading down th l
mo ate onthe2 bloc ked lat t1ce.

n e co umns of Table II '

there are strong tran
' t ff

it is clear that

creases. In general o
ransient e ects as the bl oc ing level n in-

p a t e wera, one must also ex ect th
in c G transformation itself, and thi1S

table. As a b
ea s horizontally across the

s a enchm ark one ma ns a may note the value
o tained from the 64

i.e., comparing 8 and 4an '; this correspondsan block lattices

0 ~

neighboring lat tieice sizes and blockin level
na results see

e, i is very encouraging that the totality of

1.5449(13)
1.5768(10)
1.5765(10)
1.5745(9)
1.5705(8)
1.5699(8)
1.5651(8)

1.5643(12)
1.6099(11)
1.6103(12)
1.5987(12)
1.5848(11)
1.5825(12)
1.5760(14)

1.6585(7)
1.7460{5)
1.7545(5)
1.7249(7)
1.7079(8)
1.7051(8)

1.5851(31)
1.6285(29)
1.6285(30)
1.6163(28)
1.6OO7(25)
1.S983(24)
1.5922(20)

1.6866(30)
1.7728(30)
1.7810(31)
1.7505(28)
1.7322(27)
1.7293(27)

1.6965(92)
1.7803(87)
1.7881(87)
1.7565(80)
1.7386(80)
1.73S9(79}

FIG. 2. Linear
tAO-

interpolation from them he estimates of 1/v at
, and 0.22169. The v

a oc ing levels n =0
p. e vertical line is the best
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TABLE III. Interpolated estimates for 1/v at E]——0.221 654, from diagonalizing the maximum size
T p, for various lattice sizes at various blocking levels n. The final three lower columns are the result of
differencing adjacent columns of this table. Reading diagonally down yields the estimates [column (c)]
for the corrections to the 64 data, and the accumulated corrections [column (b)]. Column (a) shows the

resulting best estimates for 1/v at blocking levels n =0, . . ., 4.

n (a) 44 3%% 64 323 83

1.42S1(5)
1.5156(12)
1.5576(19)
1.5739{31)
1.5785(93)

1.4251(5)
1.5173(6)
1.5633(7)
1.5916{16)
1.7342(40)

1.4268(4)
1.5218(4)
1.5748(7)
1.7252(13)

1.4299(3)
1.5323(4)
1.7025(4)

1.4371(2)
1.6520(2)

(b)

0.0
0.0017(10)
0.0057(18}
O.O177{27}
0.1557(84)

{c)

0.0017(10)
o.oo4o(15)
0.O 120(20)
0.1380(80)

0.0017(6)
0.0035(7)
0.0114(9)
0.1336(20)

16 —32

0.0031(5)
0.0105(6)
0.1277(8)

0.0072(3)
0, 1197(4)

TABLE IV. Finite-size and or truncation effect, for estimates
of 1/v, obtained by subtracting the 64 data from the other
columns in TaMe II.

32 —64

—0.0015
0.0024
0.0022
0.0021
0.0016
0.0013
0.0006

16'-64'

—0.0008
0.0107
0.0106
0.0098
0.0079
0.0070
0.0051

0.0095
0.0334
0.0339
0.0283
0.0192
0.0172
0.0120

0.0004
0.0083
0.0080
0.0068
0.0044
0,0041
0.0029

0,0200
0.0412
0.0417
0.0316
0.0195
0.0179
0.0150

0.0985
0.1623
0.1710
0.1455
0.1323
0.1305

0.0194
0.0332
0.0338
0.0242
0.0143
0.0126
0.0108

0.1137
0.1692
0.1780
0.1505
0.1374
0.1352

0.1015
0.1444
0.1525
0.1342
0.1315
0.1309

MCRG results itself provides sufficient data to estimate
and allow for the various systematic effects, as we now
describe.

(i) The data in Table II does not correspond to our best
estimate for E'i in Eq. (10); therefore, if possible, one
should interpolate using the exponent estimates at the

three EI values. In Fig. 2 we show the Ei dependence of
the estimate for I/v froin the 64 data at various blocking
levels. Linear interpolation appears to be entirely ade-
quate and has been used to provide a complete set of inter-
polations with error bars for ten Ki values between
0.221650 and 0.221659. The expected analyticity in the
couplings K~ of RG functions, such as the stability ma-
trix T p, underpins the use of linear interpolation (for
small coupling changes); in practice, some 75% of the raw
data (Table II) at Ki ——0.221 66 differ by one standard de-
viation or less from the best-fit interpolations and there
are no obvious systematic discrepancies. In Table III we
show the resulting interpolation at 0.221 654 for the 7X7
(6)& 6 for 2 block lattices) matrix T p.

(ii) Let us turn now to the estimation and elimination of
finite-size effects. It is worth stressing again that here we
are dealing with the short-range finite-size effects in the
RG transformation itself. Table IV shows the result of
subtracting the left-hand (64 ) column from successive
columns across Table II, since we are then comparing re-
sults at the same blocking level [n in Eq. (9)] on different
lattice sizes. One significant feature of Table IV is that
the finite-size discrepancies decrease as the number of
operators is increased to the maximum of seven. This sys-
tematic trend suggests strongly that the apparent finite-
size effect is in large part due to the truncation of the
space of operators. Of course this truncation is imposed
anyway at the highest blocking level since the 2 block lat-
tice cannot support, e.g. , the (200) neighbor interaction.
To estimate this finite-size and or truncation effect we
show in Table III, in the last three columns below the in-

terpolated values for 1/v, the result of differencing adj'a-

cent columns across the table. Reading diagonally down
these results reveals an apparently smooth and systematic
trend. In column (c) of Table III we give our estimates for
the "neighboring column" corrections, and in column (b)
these are accumulated to provide the full corrections to
the 64 data of blocking levels n =1, . . ., 4. These num-
bers in column (b) must be subtracted from the 64 data
above them; the corrected values are given in column (a)
of Table III. In assessing the corrections in column (c),
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1/v

).56-

1.52-

1.48-

1.44-

I I I I I

n=4 3 2 't 0
FIG. 3. Estimates for 1/v at E& ——0.221654 from Table III,

column (a), plotted vs 2 " for blocking levels n =0, 1, . . . , 4.
The dashed line indicates the linear fit to the data points for
n =2, 3,4.

we believe that we have assigned sufficiently generous er-
rors to allow for the subjectivity which is necessarily in-
volved. The same pattern of corrections also holds for the
"raw" 1/v estimates at the three K& values (see Table II)
and we have applied the same finite-size and truncation
corrections in column (b) of Table III to all the interpolat-
ed 1/v tables. This correction procedure could probably
be embellished with further refinements, but for our data
we would not expect these to be significant in comparison
with subsequent error estimates.

(iii) In Fig. 3 we plot the resulting corrected estimates
for 1/v at the interpolated value K& ——0.221654 [from
column (a), Table III] as a function of 1/2", where n =0,
. . . , 4 is the RG blocking level in Eq. (6). Since these

numbers have been corrected for apparent finite-size ef-
fects, we can consider them as estimates for the exponent
obtained in the first five blockings of an ideal infinite sys-
tem; therefore, it remains to extrapolate these results to
n —+ oo, where A will have converged to the fixed point
A ". The choice of the extrapolation procedure should be
governed by the subleading exponent co, which ultimately
controls the approach to A *. As we will discuss in detail
in Sec. IVC, the subleading exponent is effectively co=1
on the basis of our limited data. Since the data in Fig. 3
should behave as C&+Cz2 " for n sufficiently large, if
co=1 then the data points should extrapolate linearly. It
is clear from Fig. 3 that the effective co is of order 1 for
our values of n. On the other hand, field theory and series
expansions suggest ~=0.8. Therefore, we are left with the
choice between using statistically accurate data points for
small n with large uncontrolled systematic effects, or con-
centrating on the data points of larger n where the statisti-
cal errors are significant but systematic effects will be

I l I

0.22165 02 2166
FIG. 4. Estimates for v and q as functions of K~. The verti-

cal line is the best estimate K& ——0.221 654.

much less significant. What we have done in practice is to
take the last three data points (n =2,3,4) and extrapolate
linearly (in 1/2" ); this yields the estimate 1/v
=1.5892(58). A fit to (C&+C&2 ") for any co in the
range 0.8—1.2 changes this value by less than a standard
deviation; allowing an approriate increase in error bars
yields v=0. 629(3) for E~ ——0.221 654.

(iv) In order to test the sensitivity to the value of &~ we
have repeated this analysis for the range of E& values be-
tween 0.221650 and 0.221659. The results are shown in
Fig. 4. Taking into account the uncertainty in IC, [Eq.
(10)] we quote as our best estimate

v=0. 629(4) .

The net effect therefore of all the corrections discussed in
this section is to leave the value of v, which one might
guess naively from Table II, substantially unaltered, but
with error estimates increased by a factor of order 5.

The result (11) is in excellent agreement with the recent
estimates of 0.628—0.633 from series expansions on the
simple cubic lattice, ' 0.631(3) (Ref. 15) and 0.629(2) (Ref.
16) from the body-centered-cubic lattice, 0.630(2) from
field-theory calculations, ' and 0.635(5) from finite-
size —scaling calculations. ' The preliminary result from
the Monte Carlo processor (Ref. 14) is v=0.629(20).

B. Exponent q

The leading exponent y& for a series of six operators
(single spin, three spin, seven spin, and nine spin) is shown
in Table V, in the same format as Table II. The values
appear much more stable with regard to n dependence and
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TABI-E V. Estimates for E .or yH [ q. (12)] from the run at K =0.221 6 in

64

n a =0.221 6, in similar format to Table II.
323 16 83

2.457 15(3)
2.457 82(3)
2.457 65(10)
2.458 23(12)
2.458 22(12)
2.458 22(12)

2.457 60(3)
2.457 89(3)
2.457 48(3)
2.45805(4)
2.45805(4)
2.458 05(4)

2.459 63(4)
2.458 32(4)
2.457 89(7)
2.458 31(7)
2,458 31(7)
2.458 31(7)

2.46649(6)
2.459 09(5)
2.458 53(7)
2.458 21(7)
2.458 22(7)
2.458 22(7)

2.463 57(8)
2.461 26(6)
2.461 01(7)
2.461 02(7)
2.46102(7)
2.46102(7)

2.46649(16)
2.46171(1S)
2.461 22(14)
2.46114(14)
2.46113(14)
2.461 13(14)

2.477 21(12)
2.462 91(14}
2.461 88(13)
2.461 17(13)
2.46116(13)
2.461 17(13)

2.506 78(14)
2.470 63(19)
2.468 98(19)

2.478 69(33)
2.473 71(25)
2.473 35(25)
2.473 17(25)
2.473 15(25)
2.473 15(25)

2.490 54(32)
2.47476(32)
2 473 71(34)
2.472 89(33)
2.472 89(33)
2.472 89(33)

2.525 42(39)
2.484 37(52)
2.482 36(54)

2.497 52(110)
2.481 64(92)
2.480 60(97)
2.47977(99)
2.47975(100)
2.479 74(100)

2.S33 45(92)
2.489 72(67)
2.487 35(66)

2.53915(463)
2.496 97(531)
2.494 99(547)

inite-size and truncation effects than d han o t ose for I/v in

; t is is just as well as it is the deviation of
rom 2.5 which determines the st de s an ard critical exponent

~[6 (~, r=T, )-~& ~-~'-~~~g(&) according to

yH ——(d+2 —iI)/2 (d =3) .

2.50

0

We have applied the same threeW
'
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v. i e quality of the linear inte olation

are s own in Table VI. (ii) War h
ponding interpolations at 0.221 654

ndii e estimate finite-siz
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Finally, the dependenc E, f is

'
n, we o tain i)=0.031(4) for E'=0.221

en enc E& f is estimate of il iseil eilce on Ei of this
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6, and 0.22169. The
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i t T p. vertical 1Ine is the best

q =0.031(5) . (13)

This result is again in excellent a reemenTh
' ' '

e en agreement with recent esti-
rom field-theory calculatIons.
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TABLE VI. Interpolation for yH at E~ ——0.221654. Column (a) contains the estimates for q after
finite-size and truncation corrections.

(a) ~ cc 3%9

0.0837(2)
0.0782(1)
0.0550(3)
0.0432(12)
0.0369(70)

2.458 14(7)
2.460 8S(4)
2.472 53(10)
2.478 23(57)
2,489 04(286)

323

2.458 10(3)
2.460 86(5)
2.47224(16)
2.486 35(59)

16

2.458 26(5)
2.46070(8)
2.481 77(39)

2.458 04(3)
2.468 76(9}

The second-largest eigenvalue of T & in the space of
even operators gives the correction-to-scaling exponent co

according to A,2
——2 . In Table VII we show the raw data

for co in the usual format; the successive diagonalization
of submatrices of T~p has a maximum of six entries, since
one eigenvalue 1s alI eady abstracted 1n the leading ex-
ponent 1/v. In addition to the features also present in
Tables II and IV, we note the very strong dependence of co

on the truncation (a factor of 2). It is clear that the (200)
neighbor interaction is extremely important; this suggests
that longer-range interactions play a more important role
in determing the correction-to-scaHng exponent m, and
that our approximation of including only seven even
operators might preclude any reliable estimate for co.

Nevertheless, we have followed the same procedure as
described in detail in Sec. IV A; the result obtained is

(14)

This value is to be compared with 0.78(13) (Ref. 13) and
0.83(8) (Ref. 19) from series expansions on the body-
centered-cubic lattice (for a review and further references,
see Nickel, Ref. 2), and 0.79(3) from field-theory calcula-
tions. ' The discrepancy with (14) (which is only two
standard deviations) surely derives from the truncation ap-
proximation; if the (200) neighbor is responsible for a

t I

n=4 3

FIG. 6. Estimates for g at K~ ——0.221654 from TaMe VI,
column (a), plotted vs 2 ", for blocking levels n =0, 1, ,4. The
dashed line indicates the linear fit to the data points for
n =2,3,4.

reduction of roughly 0.4 in co, all the other correlation
functions which are omitted may very well account for a
further reduction of 0.2.

V. DISCUSSION

In this paper we have described the result for (3D) Ising
critical behavior which can be obtained using the MCRG
method with fairly high statistics on lattices with up to
64 states. An important aspect of the work shows how
the totality of all data obtained near the best estimate for
the critical point can be used to improve the statisti. cal
quality and to eliminate systematic effects in the final re-
sult. By measuring the block-spin correlations as in Eqs.
(5) and (6), a run at a single Ki value can be used to esti-
mate E&, thus all of our three runs can be used to obtain a
statistically improved estimate for K, . The reliability of
the final result can be assessed by looking at the common
trends in all blocking levels on the various lattice sizes.
The expected analytic dependence of the RG transforma-
tion on the coupling E& underpins the linear interpolation
of critical exponents from the three runs, which is essen-
tial for analysis of results at the best estimate for Ei, and
can improve their statistical quality by using the three sets
of data. The full MCRG tables for exponents are essential
to estimate and eHminate the finite-size and truncation ef-
fects on exponents. The data on the subleading exponent
co provides one with the information on how to extrapo-
late from finite to infinite blocking levels to reach the
fixed point. We believe that this is the first time that such
systematic steps have been taken to extract data from the
MCRG method. The internal consistencies of the calcula-
tions strongly support the validity of this approach. For
example we have repeated the entire analysis with a dif-
ferent ordering for the even operators, the (200) neighbor
being promoted to the fourth order. This implies that at
the 2 block lattice, the truncation effect is even more
severe since now only three operators are used for 1/v,
and only two for ro. The resulting finite-size and trunca-
tion corrections are larger (30% for 1/v, 100% for co), but
when they are taken into account, essentially the same fi-
nal estimates for the exponents emerge, with slightly
larger error bars. Finally, one can explicitly incorporate
into the final results the unceltainties due to, e.g., the
method of extrapolation or dependence on K&.

An interesting aspect which should be raised here is
that of redundant operators. In addition to the classifi-
cation of perturbations from a fixed point as relevant or
irrelevant (eigenvalues greater than or less than 1, respec-
tively), eigenoperators should also be classified as physical
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TABLE VII. Estimates for ~ at A ~
——0.221 66, in similar for-

mat to Table II.
zation scheme is involved but the suggestion is clear: The
second 181'gest clgcllvRlllc 111 tllc spRcc of odd opci'Rtol's ls
very likely to be a redundant operator. A direct confirma-
tion of this result would be given by exposing the expected
dependence of the corresponding exponent upon the pre-
cise formulation of the renormalization transformation.
%c have Qot done th1s. Ho%ever, lt 1s 1ntcfcst1ng to note
that the actual value 0.36(4), obtained by following the
same procedure as described above for other exponents, is
sufficiently different from the exponent of the fPld~x

operator as calculated in field theory [—,
' d —1+—,

'
I)

=0.515 (d =3), see Chap. 10 of Amit Ref. 5] that the
identification in terms of a redundant perturbation seems
plausible. It is clear that further work is needed to sub-
stantiate this speculation.

Finally, let us turn to the question of future prospects
for this kind of calculation. It seems perfectly fea»ble,
provided fllrtllcr cxtTRpolRtloll pl'0Mcn1s do llot clnclgc, 'to

increase the accuracy of the calculation reported here by
appl"0Rclllllg RIl 01clci' of 1Ilagllitudc usiilg colllplltlilg
resources presently available for this task, or in the im-
mediate future. First, one can readily perform calcula-
tions on a 128 lattice. We have now increased our effec-
tive running rate on the DAP by close to a factor of 8, al-
though of course many more sweeps would be required for
higll stat1stlcs %'ith thc longer-time cofI"clatlons oIl thc
larger lattice. This is certainly a feasible calculation for
the MPP at the National Aeronautics and Space Adminis-
tfatlon. The dcIIlon Rlgor1thm may also prov1dc Rn

order-of-magmtude increase m speed. Special purpose
pl'occssols wllicll Ric ullablc 'to perform tllc RG Mocklllg
would require access to other rather powerful machines.
Second, one can run with an improved energy function in-

cllldlflg sccoild-Ilclghbol', folll-spill, c'tc. 111tcractlolls to
start as close to the fixed point as possible, and hence to
eliminate substantial transient effects; this could easily be
&orth t%'o extra blocking lcvcls. Third, 1t 1s csscntlal to
measure many more correlation functions to minimize the
strong truncation effect apparent in our data; the uncer-
tainty due to these effects could be very considerably re-
duced. Fourth, one might also explore the optimization of
the calculation by the choice of other rules for forming
the block spins; one may thereby eliminate transient ef-
fects in redundant operators. We note in closing that a
complete calculation would look at two further effects not
discussed in this paper —the variation of Ki estimates ob-
tained from using other than the nearest-neighbor opera-
tor S, in Eqs. (5) and (6), and the "double-blocking" check
that the truncation approximation made is adequate (see
Swendsen, Ref. 1).

83323 1664

1.981(7)
1.446(4)
1.470(4)
1.486(6)
1.570(11)
1.256(12)

1.990(8)
1.428(6)
1.437(7)
1.456(7)
1.473(10)
1.097(5)

1.963(17)
1.433(18)
1.440(18)
1.460(19)
1.482(19)
1.097(7)

2.009(15)
1.427(16)
1.432(16)
1.447(17)
1.457(24)
1.069(13)

2.205{7)
1.726(7)
1.743(8)
1.600(9)
1.478(4)

2.003(17)
1.450(21)
1.458(25)
1.495(39)
1.546(38)
1.068(4)

1.970(16)
1.447(18)
1.441(16)
1.428(33)
1.441(46)
1.061(17)

2.186(11)
1.723(8)
1.740(11)
1.470(8)
1.357(5)

2.008(19)
1.480(20)
1.533(23)
1.443(8)
1.391(12)
1.192(6)

1.960(32)
1.406(28)
1.420(31)
1.571(42)
1.510(36)
1.054(32)

2.193(22)
1.733(15)
1.749(16)
1.440(9)
1.328(9)

1.976(23)
1.437(46)
1.484(48)
1.392(19)
1.340(17)
1.165(16)

2.178(28)
1.684(28)
1.710(35)
1,415(26)
1.3 14(22)
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(~4 ) lp2$ 4/3
5$

Since IV P yields 0, in the field-theory formulation JP
is a redundant perturbation. Of course in the lattice cal-
culations described here, a completely different renormali-

oI' redundant. Thc redundancy af1scs bccausc the total1-

ty of all possible interactions is physically overcomplete;
Hamiltonians which correspond to different points in the
space of all couplings may differ in reality only by a
redefinition of the basic degree of freedom, without physi-
cal content. Th1S 1s pcI'hRps most tfanspa1cnt 1Q contlnU-
um field models: A redefinition of the field P +f(P) in-—
duces A ((t )~A (P)=~f(P)] but is of no physical sig-
lliflcailcc. Tllc cllRIlgc 111 'tllc Hanllltoillall dllc to RI1 1IlflI1-

itesimal field transformation f(P)=/+5(P) is
5A = J5(P)5A /5P. Thus redundant perturbations of
the fixed-point Hamiltonian are characterized by any
function of (() X ("equation-of-motion factor, "5P /5P, for
the fixed-point Hamiltonian). The simplest such pertur-
bation corresponds to 5(P) =const. Furthermore, in field
theory it is possible to formulate the RG (see Amit, Ref.
5) so that
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