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The Monte Carlo renormalization group is applied to the three-dimensional Ising model on sim-
ple cubic lattices with 8%, 16%, 323, and 64° sites. The comparison of block-spin correlation functions

from the largest lattices yields the nearest-neighbor critical coupling K{=0.221654(6).

After al-

lowing for (i) interpolation to this best estimate for K9, (ii) an apparent finite-size effect in the
renormalization-group transformation due to the measurement of correlation functions of too few
(seven) operators, and (iii) the extrapolation for the effect of a slow transient towards the fixed
point, the values v=0.629(4) and =0.031(5) are obtained for the thermal and magnetic ex-
ponents. The correction-to-scaling exponent  is estimated to be around 1; to obtain an accuracy
competitive with other methods requires measurements with more than seven operators. We briefly
review the problem of redundant operators and indicate the future prospects for this kind of calcu-

lation.

I. INTRODUCTION

The Monte Carlo (MC) approach, simulating directly a
physical problem of interest, can be implemented to pro-
duce excellent results for finite systems. Near a continu-
ous phase transition, or critical point, however, where the
correlation length £ diverges in an ideal infinite system,
the behavior is dominated by finite-size effects whenever
the ideal £ would be greater than the linear dimension of
the system. Therefore, in the finite systems which we
simulate by MC methods the various singularities of in-
terest at a critical point are always rounded off. This
prevents us, in this direct approach, from taking much
useful data very close to the critical point, and leaves us
with the problem of extrapolating from results at various
finite sample sizes to the infinite system.

A number of approaches can be adopted to tackle this
problem; the one which we apply here is the MC renor-
malization group (MCRG).! This has been applied suc-
cessfully to a number of problems, mainly in two dimen-
sions. In this paper we report results for the critical
behavior in the three-dimensional (3D) Ising model. This
model is of interest in this context for several reasons.
The Ising model is the prototype spin system whose ran-
dom variables take the value 1 on each site of a regular
(in our case, simple cubic) lattice. It is the simplest repre-
sentation of the universality class which includes uniaxial
magnets, fluids, binary alloys, etc. Although an exact
solution is not known, long series expansions can be
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developed which yield extremely accurate values for the
critical coupling K¢, or temperature T,, and for critical
exponents. When the effects of corrections to the leading
singular behavior are included in the analysis, the results
from series expansions® seem to be in good agreement with
independent field-theory calculations® and with experi-
ment.* These results set a very demanding benchmark
against which to test the MCRG in this model. Of partic-
ular significance in this connection is the existence of a
“slow transient” correction to the leading scaling behavior
in this model,” which must be identified and isolated from
the leading critical behavior; this aspect provides a severe
challenge to the MCRG method.

The MCRG method has been recently reviewed (see,
e.g., Swendsen!). Our starting point is the Hamiltonian
with a nearest-neighbor coupling K,

%=K1S1, SIZEUin’ (1)
(ij)

where 0; =*1 is the spin variable on site i and the sum is
over nearest-neighbor pairs (ij) on the simple cubic lat-
tice. Correlation functions involving any operator B(o)
are defined in the usual way by the trace over the equili-
brium distribution

(B)=Tr[B(o)exp#(0o)]/Tr[exp#(c)] . ()

For any given configuration {0} (={0'"}) of these spins
generated by a MC method, we define a sequence of
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block-spin configurations {o} on lattices whose spacing
is scaled by successive factors, in our case of 2, 22, etc.
(corresponding to n =1, 2, etc.). For the calculations re-
ported here we have adopted the majority rule: The block
spin o'! takes the values +1 according to the sign of the
total spin of the 2° o!°”s which are being blocked; if this
total spin is 0, a value of +1 is assigned to o'! by using a
pseudorandom logical variable. Thus, from an ensemble
of configurations of the original spins {0'”’} on a lattice
of N sites, we generate, by n successive applications of this
rule to blocks of 2° spins, an ensemble of configurations of
the block spins {0(”)} for each n =1, 2, etc. on lattices of
N/23, N/2% etc. sites. Estimates for any correlation
function of the {0} (n =0, 1, 2,...) can be made from
this ensemble.

If the ensemble of original configurations of {o'?} fol-
lows the equilibrium distribution of (1), the block-spin
configurations of {o'™] for a given blocking level n will
be distributed according to a renormalized Hamiltonian

FHM=F KPS, (3)

a

where the sum is over nearest-neighbor, second-neighbor,
etc. interactions (labeled by a) for the block spins {o™}.
The renormalization-group (RG) transformation implicit-
ly specifies K" *!) as functions of K ﬁg"), with fixed points
of this transformation determining the critical surface,
critical exponents, etc. by the standard theory.” Charac-
teristic RG trajectories are shown schematically in Fig. 1.
In the approach we follow here, only K; (=K\?) is re-
quired explicitly; the critical value K¢ and critical ex-
ponents are determined as follows.

To determine K9, we perform independent MC simula-
tions at some fixed K; value on lattices of size N and
N/2’™ m=12,.... The coupling K, is estimated to
have its critical value when

Ki

Critical surface /

Ki {

>
All other Kus

FIG. 1. Schematic diagram for RG flows in the many-
dimensional space of coupling constants, indicating the transient
into the fixed point starting from the critical value K§, and the
instability of the fixed point to perturbations out of the critical
surface.
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(SP ), =(8Pr—m)g, @)

where L and S denote the large and small lattices, respec-
tively; since the effective lattice sizes on the left- and
right-hand sides of Eq. (4) are the same, unknown finite-
size effects should be systematically canceled. The most
sensitive determination is obtained by choosing » as large
as possible to amplify any contribution from the relevant
perturbation K; —K{ and to deamplify irrelevant pertur-
bation from the fixed-point Hamiltonian as indicated in
Fig. 1. Noting that

a(S(n)>
—éEal—‘=<Sf1")S(10)>—<S§"))(S(1°)> , (5)
we can solve the set of linear equations
a<S(n)>L a(S(n—m)>S
(S(")) __(S(n—m)> — e _ @ SK
a /L a N aK; aKl 1

(6)

to estimate the deviation from criticality, 8K ;~K; —K§,
using the appropriate correlation functions measured from
the MC ensembles for the large and small lattices.

The stability matrix T,g of the RG transformation is
defined by

K +D

Tap= Ky

(7)

Critical exponents y, are obtained from the eigenvalues A,
of the stability matrix Thg (evaluated at the fixed-point
Hamiltonian) according to

Ag=2". (8)
By performing simulations at K{, we obtain estimates for
T;,; by solving the linear equations
(n+1) (n+1) (n+1)
a(sy ) _ oKJ a(sy )
Ky 2 oKy oKy*V

) ©

using estimates as in Eq. (5) from the MC ensemble. In
principle, the best estimate for Thg is obtained by using
Eq. (9) for the largest value of RG blocking » on the larg-
est available lattice, to eliminate as much as possible of
the transient effect towards the fixed point; a detailed dis-
cussion of various systematic effects is given in Sec. IV.

This paper is organized as follows. Section II summa-
rizes the computational aspects of the calculation. In
Secs. IIT and IV we give the data and the analysis thereof
for the critical coupling and exponents, respectively. We
conclude in Sec. V with a discussion, making particular
reference to various ways of improving upon our results
with presently available computing resources.

II. COMPUTATIONAL ASPECTS

We have implemented the above equations in three in-
dependent programs: (i) for a serial machine, (ii) vector-
ized optimally for the array processor model no. AP190-L
from Floating Point Systems Inc. (FPS), and (iii) in distri-
buted array processor- (DAP-) FORTRAN for the Interna-
tional Computers Limited (ICL) distributed array proces-
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sor. Where the parameters are the same we obtain entirely
compatible results. We have taken data on 83, 16%, and
323, and on the DAP alone, 64° lattices; the data presented
here are those obtained from the DAP computer. The
64X 64 array size and the logical software facility on the
DAP are advantageous for this particular problem;® com-
pact and efficient routines can be written in DAP-
FORTRAN both for the MC updating and the RG block-
ing.

In the updating, spin flips which do not increase the en-
ergy are always accepted, and spin flips which cost energy
A27 (>0) are accepted with probability exp(—AZ). In
order to ensure convergence to equilibrium one should not
attempt to update simultaneously and independently spins
which interact with one another in 7. A sweep of the
lattice is achieved with complete efficiency by updating all
the spins on even sites, taking pairs of adjacent 64 X 64 bit
planes at a time, and then all the spins on the odd sites for
the planes. For the lattices smaller than 64°, multiple in-
dependent simulations are run simultaneously to increase
statistics.

All data were taken using a tested Numerical Algo-
rithms Group (NAG) pseudo-random-number generating
routine,” with an additional random shuffle amongst the
4096 parallel processors in the DAP array. With this ex-
tra precaution, the machine makes approximately
2.7x 10° update attempts per second. We further checked
this random-number generator in a two-dimensional pro-
gram, which revealed no discrepancies with the exact re-
sults.” [We have subsequently run the 3D problem at
6 10° update attempts per second using a shift-register
generator’ assembler routine written by K. Smith (DAP
Support Unit, Queen Mary College). A special Ising-
model assembler routine written by D. M. Scott (Universi-
ty of Edinburgh), operates at 9.5X 10® update attempts
per second and further improvements are expected.]

In the RG blocking the choice of origin at each block-
ing level is systematically permuted among the eight pos-
sibilities. This is important particularly at the higher
blocking levels, where it substantially improves the quality
of the statistics.® We chose to block one configuration in
four, thereby reducing the speed to approximately
1.2X 10® update attempts per second. Even with the per-
mutation of the origin for the block spins, one might ex-
pect that this is too frequent because of the long-time
correlation in large lattices at criticality. However, there
is preliminary indication that the correlation functions
which are used for calculating critical exponents do not
suffer the same critical slowing down because of large
cancellations of statistical errors. The data we present
comes from 32, 16, 4, and 2 X 10° sweeps on lattices of 8,
16%, 323, and 643 spins, respectively, at each of
three values of the nearest-neighbor coupling
K(0.22161, 0.221 66, 0.221 69; on the 64> lattice at the
last value, in fact, only 1 108 sweeps were done). The er-
ror bars given in parentheses in all “raw” data tables in
Sec. IV are the standard deviations in the mean obtained
from eight bins of successive configurations, each bin in-
volving one-eighth of the total relevant data. Thus, for
the 64 lattice we are presuming that independent configu-
rations are obtained typically at least every 2.5X10°
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sweeps; on the basis of our data this is not an overestimate
of the long-time correlations, and indeed in the final esti-
mate for the critical coupling a 50% increase in error bars
on data from the 64 simulation has been made on the
basis of X? confidence levels (see Sec. IV A). We note that
this number of sweeps is typical of the total data at a sin-
gle K9 1 value taken in some previous studies on large lat-
tices.

Approximately 15 h of calculation were done to equili-
brate the 643 lattice at K;=0.22169. A subsequent 5 h
was used to change this configuration to one at
K;=0.22161, and 5 h more was needed to equilibrate for
the final value, K| =0.221 66.

III. CRITICAL COUPLING K

The first set of runs was made at K, =0.221 69, favored
from previous series expansions (see, e.g., D. S. Gaunt,
Ref. 2 and references therein), and the second at
K;=0.22161. From these runs we estimated a new criti-
cal value K{=0.22166, and a third set of data was taken
at this value. In Table I we show the estimate for the de-
viations 6K; =K; —K obtained from the various lattice
sizes at various blocking levels using Egs. (5) and (6) for
the nearest-neighbor spin operator S, (the mean energy).
Error bars in parentheses are the standard deviation in the
mean from eight successive data bins as discussed in Sec.
II. In the final column we show the corresponding best
estimates for K{ by averaging the (statistically indepen-
dent) results from the three different K, values.

In interpreting the results in Table I, we must recall
that Eq. (6) estimates the deviation from criticality on the
assumption that K; —K¢{ is the only difference between
the effective Hamiltonians for the two systems which are
being compared. This is true only after a number of RG
blockings sufficiently large that the transient within the
critical surface towards the fixed point is negligible com-
pared with the statistical error (see Fig. 1). The discrepan-
cies among the various numbers in the final column of
Table I reflect the transient behavior towards the fixed
point. Note that these discrepancies are not even mono-
tonic; estimates for K§ can decrease and then increase as
the RG blocking level is increased. In principle, the best
estimates for K| come from the comparisons among the
largest lattices at the highest blocking levels; we record the
values 0.221652(7), 0.221656(4), and 0.221651(7) ob-
tained from comparisons between 643, 323, and 16° lat-
tices. While data involving the 8* lattice confirm underly-
ing trends, it does not appear possible to use it to enhance
the quality and consistency of data from the larger lat-
tices, at least in a simple extrapolation with a single slow
transient.

The three results quoted above are from a comparison
of block correlation functions on lattices of effectively 2°
spins. Within the MCRG formalism, one may also query
the validity of blocking to this level since the effective
Hamiltonian, although expected to be technically short
ranged, may have significant couplings (e.g., (200)),
which cannot be incorporated on a 23 lattice. To check
this point we note the value 0.221 650(6) from comparing
the 64° and 323 data each blocked to 43 lattice sites; in
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TABLE 1. Estimates for (K; —K$)x 10° using Egs. (5) and (6) at three K, values, comparing various
large (L) and small (S) lattices at various RG blocking levels. For this and all subsequent tables, statist-
ical errors on the least significant figures are shown in parentheses. The final column gives the corre-
sponding estimates (with errors) for K{ from the weighted average of the three runs.

K,=0.22161 0.221 66 0.22169

L S RG Change Change Change Mean

64 32 1 —528(11) —423(10) —365(9) 0.222 086(5)
64 32 2 2(8) 57(7) 81(7) 0.221 606(4)
64 32 3 —32(9) 28(8) 54(8) 0.221636(4)
64 32 4 —50(12) 16(10) 42(11) 0.221 650(6)
64 32 5 —58(13) 17(10) 38(15) 0.221652(7)
64 16 1 —144(5) —79(6) —43(6) 0.221744(3)
64 16 2 —12(4) 43(7) 70(7) 0.221621(3)
64 16 3 —38(6) 21(8) 49(9) 0.221 644(4)
64 16 4 —52(6) 14(9) 39(12) 0.221 656(4)
64 8 1 —53(4) 6(6) 35(6) 0.221659(2)
64 8 2 —20(5) 40(7) 66(8) 0.221 626(3)
64 8 3 —40(6) 28(8) 52(11) 0.221 643(4)
32 16 1 —556(11) —492(6) —447(6) 0.222147(3)
32 16 2 45(12) 87(6) 120(7) 0.221571(4)
32 16 3 —5(15) 36(7) 69(9) 0.221 622(5)
32 16 4 —34(21) 5(10) 44(14) 0.221651(7)
32 8 1 —97(8) —42(4) —11(3) 0.221702(2)
32 8 2 43(10) 92(4) 122(4) 0.221568(2)
32 8 3 1(14) 51(6) 84(6) 0.221607(4)
16 8 1 —519(7) —435(5) —420(11) 0.222107(3)
16 8 2 185(8) 263(7) 282(16) 0.221409(5)
16 8 3 103(11) 191(9) 204(21) 0.221484(6)

practice, therefore, this appears not to be a problem given
the range of the statistical errors.

On the basis of the consistency of all of these results
within statistical errors we believe now that there is no
compelling evidence for attempting to extrapolate them to
an infinite system.!° The weighted mean of the three
values quoted together above is 0.221654. If all three re-
sults were statistically independent, the standard deviation
in this mean would be 3 in the last significant figure.
They are not independent, however, since each lattice size
appears twice in the three comparisons. Furthermore, one
may also ask about the X2 confidence levels of the averag-
ing of the three data runs to obtain the numbers we use
from the fourth column in Table I; they are 0.3, 0.8, and
0.3, respectively. The small confidence levels involve the
64° data. If we increase the error bars on the 64°/32° and
64°/16° comparisons by 50% to obtain confidence levels
of 0.6, the weighted mean is unchanged at 0.221 654 and
the standard deviation would drift up to 4. In order to ac-
commodate both the nonindependence of the three com-
parisons used, and to enhance confidence levels, we give as
our present best estimate

K, =0.221654(6) , (10)

where the error is intended to represent one standard devi-
ation in this mean. It must be stressed that this estimate

is based on the presumption, supported by the data from
the larger lattices, that no extrapolation to the infinite sys-
tem is required which is significant in comparison with
the statistical error bars.

The result (10) is in excellent agreement with recent
series-expansion estimates which allow for the existence of
corrections to scaling from the slow transient:
0.221655(10) (Ref. 11), 0.22166(1) (Ref. 12), and
0.221655(5) (Ref. 13).

As in Ref. 10, preliminary results from the MC Proces-
sor (MCP) at Santa Barbara have already been presented
at the Les Houches workshop.!* That study differs from
the present in several features: (i) much higher statistics
are obtained, including preliminary results using a 128°
lattice, (ii) screw periodic boundary conditions result from
the mapping of the lattice on to a cyclic linear data chain,
and (iii) a full block-spin MCRG analysis is not carried
out; instead finite-size-scaling techniques are used to esti-
mate K. The resulting estimate K§=0.221650(5) is also
in excellent agreement with the result (10). We note that
the implementation of the block-spin analysis [Egs. (5)
and (6)] appears, at least for this problem, to offset consid-
erably the advantage in statistics and lattice size generated
by the MCP. In particular we note that the “crossing” es-
timate for K¢ in Ref. 14 derived from the 32° lattice is al-
most an order of magnitude further from the final best es-
timate than is the value 0.221651(7) obtained from com-
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paring the 323 and 16 lattices in Table L.

IV. CRITICAL EXPONENTS

In this section we present the results for critical ex-
ponents obtained from the eigenvalues of the stability ma-
trix T,p as discussed in Egs. (7)—(9). Since the fixed-
point Hamiltonian is even in the spins o, the thermal and
magnetic exponents are obtained separately by considering
correlation functions of operators S, which are even and
odd, respectively, in the spins o. The leading exponents
are discussed in Secs. IVA and B and the subleading ex-
ponent in Sec. IV C.

A. Exponent v

From the standard theory (see, e.g., Refs. 1 and 5), the
even operators should have a single relevant (greater than

TABLE II. Estimates for 1/v from the run at K;=0.221 66,
using Eq. (9). The sets of seven values in a column (six for the
23 block lattice) are the largest exponents obtained by diagonaliz-
ing 1X1, 2X2, ..., 7X7 subblocks of the stability matrix Tog.
The successive sets in a column are for increasing blocking levels
n in Eq. (9).

64° 323 16° 83
1.3663(7) 1.3648(5) 1.3655(3) 1.3758(3)
1.4264(7) 1.4288(7) 1.4371(2) 1.4598(3)
1.4271(6) 1.4293(8) 1.4376(3) 1.4610(3)
1.4269(6) 1.4290(8) 1.4368(3) 1.4552(2)
1.4263(6) 1.4279(7) 1.4342(4) 1.4455(3)
1.4260(7) 1.4272(8) 1.4330(4) 1.4432(3)
1.4252(7) 1.4258(8) 1.4303(4) 1.4372(4)
1.4937(9) 1.4941(7) 1.5137(4) 1.5922(3)
1.5244(7) 1.5327(8) 1.5656(6) 1.6867(3)
1.5246(8) 1.5326(9) 1.5662(6) 1.6956(3)
1.5240(8) 1.5308(9) 1.5556(6) 1.6695(3)
1.5225(8) 1.5269(9) 1.5420(8) 1.6548(3)
1.5220(8) 1.5261(9) 1.5399(8) 1.6525(3)
1.5189(9) 1.5218(9) 1.5338(8)

1.5449(13) 1.5643(12) 1.6585(7)
1.5768(10) 1.6099(11) 1.7460(5)
1.5765(10) 1.6103(12) 1.7545(5)
1.5745(9) 1.5987(12) 1.7249(7)
1.5705(8) 1.5848(11) 1.7079(8)
1.5699(8) 1.5825(12) 1.7051(8)
1.5651(8) 1.5760(14)

1.5851(31) 1.6866(30)

1.6285(29) 1.7728(30)

1.6285(30) 1.7810(31)

1.6163(28) 1.7505(28)

1.6007(25) 1.7322(27)

1.5983(24) 1.7293(27)

1.5922(20)

1.6965(92)

1.7803(87)

1.7881(87)

1.7565(80)

1.7386(80)

1.7359(79)
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1) eigenvalue, with y;=1/v (correlation length
£ |K;—K{|~"). We allow for up to seven coupling
constants by measuring the appropriate correlation func-
tions required in Eq. (9) for the following seven operators.

(a) Sy, (100) neighbor coupling as in Eq. (1).

(b) S,, (110) neighbor coupling [summed over the lat-
tice as in Eq. (1)].

(c) S5, {111) neighbor coupling.

(d) Sy, four-spin product, in (100) planes.

(e) S5, four-spin product, in (110) planes.

(f) Sg, four-spin product, tetrahedral vertices in each
cube.

(g) S7, (200) neighbor coupling.

We can follow systematically the effect of these couplings
by successively diagonalizing the 1X1, 2X2, ..., 7X7
matrix T,p. The results obtained for the leading thermal
exponent 1/v from the run at K;=0.22166 are shown in
Table II with statistical errors (estimated from eight data
bins as described in Sec. II) for the various lattice sizes at
various blocking levels [n =0, ..., 4 in Eq. (9)]. For the
last blocking level, the {200) operator S is discarded as
it cannot be accommodated on the 2* blocked lattice.
Reading down the columns of Table II it is clear that
there are strong transient effects as the blocking level n in-
creases. In general, one must also expect that there will be
finite-size effects in the RG transformation itself, and this
appears as a variation as one reads horizontally across the
table. As a benchmark one may note the value
1/v=1.5922(20) obtained from the 64> data for n =3
(i.e., comparing 8 and 4° block lattices); this corresponds
to v~0.628 with a statistical error of less than 1 in the
third significant figure. However, it is clear that the raw
data does not support any “plateau” of similar values of
neighboring lattice sizes and blocking levels, in contrast to
the two-dimensional results (see Swendsen in Ref. 1).
Therefore, it is very encouraging that the totality of

180}

170

—"r/’_,_,_,:i_/ﬁ/
160t

1,501

1.40F
FIG. 2. Linear interpolation from the estimates of 1/v at

K,=0.22161, 0.22166, and 0.22169. The values plotted are
from the 64° data at blocking levels n =0,1,...,4 with the
maximum-size stability matrix T,g. The vertical line is the best
estimate K| =0.221654.
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TABLE III. Interpolated estimates for 1/v at K, =0.221 654, from diagonalizing the maximum size
T, for various lattice sizes at various blocking levels n. The final three lower columns are the result of
differencing adjacent columns of this table. Reading diagonally down yields the estimates [column (c)]
for the corrections to the 64° data, and the accumulated corrections [column (b)]. Column (a) shows the
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resulting best estimates for 1/v at blocking levels n =0, ..., 4.
n (a) “o03” 64° 323 16° 83
0 1.4251(5) 1.4251(5) 1.4268(4) 1.4299(3) 1.4371(2)
1 1.5156(12) 1.5173(6) 1.5218(4) 1.5323(4) 1.6520(2)
2 1.5576(19) 1.5633(7) 1.5748(7) 1.7025(4)
3 1.5739(31) 1.5916(16) 1.7252(13)
4 1.5785(93) 1.7342(40)

(b) () 323643 163—32° 83 —163
0 00 0.0017(6) 0.0031(5) 0.0072(3)
1 0.0017(10) 0.0017(10) 0.0035(7) 0.0105(6) 0.1197(4)
2 0.0057(18) 0.0040(15) 0.0114(9) 0.1277(8)
3 0.0177(27) 0.0120(20) 0.1336(20)
4 0.1557(84) 0.1380(80)

MCRG results itself provides sufficient data to estimate
and allow for the various systematic effects, as we now
describe.

(i) The data in Table II does not correspond to our best
estimate for K{ in Eq. (10); therefore, if possible, one
should interpolate using the exponent estimates at the

TABLE IV. Finite-size and or truncation effect, for estimates
of 1/v, obtained by subtracting the 64° data from the other
columns in Table II.

three K values. In Fig. 2 we show the K; dependence of
the estimate for 1/v from the 64° data at various blocking
levels. Linear interpolation appears to be entirely ade-
quate and has been used to provide a complete set of inter-
polations with error bars for ten K; values between
0.221 650 and 0.221659. The expected analyticity in the
couplings K, of RG functions, such as the stability ma-
trix T,g, underpins the use of linear interpolation (for
small coupling changes); in practice, some 75% of the raw
data (Table II) at K;=0.221 66 differ by one standard de-
viation or less from the best-fit interpolations and there

328641 16°—64° 8’—64° . L :
are no obvious systematic discrepancies. In Table III we
—0.0015 —0.0008 0.0095 show the resulting interpolation at 0.221 654 for the 7X7

0.0024 0.0107 00334 (66 for 2° block lattices) matrix Tp.
0.0022 0.0106 0.0339 (i) Let us turn now to the estimation and elimination of
0.0021 0.0098 0.0283 finite-size effects. It is worth stressing again that here we
0.0016 0.0079 0.0192 are dealing with the short-range finite-size effects in the
0.0013 0.0070 0.0172 RG transformation itself. Table IV shows the result of
0.0006 0.0051 0.0120 subtracting the left-hand (64°) column from successive
0.0004 0.0200 0.0985 co}umns across Table I.I, since we are then compaﬁng re-
0.0083 0.0412 0.1623 sults at ?he same blgck}qg level [n in Eq. (9)] on dlfferent
0.0080 0.0417 0.1710 lattlcc? sizes. Ong sxgnlflqant feature of Table IV is that
0.0068 0.0316 0.1455 the finite-size discrepancies decrease as the number of
0.0044 0.0195 0.1323 operat_ors is increased to the maximum of seven. This sys-
0.0041 0.0179 0.1305 tematic trer}d suggests strongly that the apparent finite-
0.0029 0.0150 size effect is in large part due to the truncation of the
space of operators. Of course this truncation is imposed
0.0194 0.1137 anyway at the highest blocking level since the 2° block lat-
0.0332 0.1692 tice cannot support, e.g., the (200) neighbor interaction.
0.0338 0.1780 To estimate this finite-size and or truncation effect we
0.0242 0.1505 show in Tabie III, in the last three columns below the in-
0.0143 0.1374 terpolated values for 1/v, the result of differencing adja-
0.0126 0.1352 cent columns across the table. Reading diagonally down
0.0108 these results reveals an apparently smooth and systematic
trend. In column (c) of Table III we give our estimates for
0.1015 the “neighboring column” corrections, and in column (b)
0.1444 these are accumulated to provide the full corrections to
0.1525 the 64> data of blocking levels n =1, ..., 4. These num-
0.1342 bers in column (b) must be subtracted from the 64° data
gigég above them; the corrected values are given in column (a)

of Table III. In assessing the corrections in column (c),
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FIG. 3. Estimates for 1/v at K;=0.221654 from Table III,
column (a), plotted vs 2~" for blocking levels n =0,1, ..., 4.
The dashed line indicates the linear fit to the data points for
n=2,3,4.

we believe that we have assigned sufficiently generous er-
rors to allow for the subjectivity which is necessarily in-
volved. The same pattern of corrections also holds for the
“raw” 1/v estimates at the three K; values (see Table II)
and we have applied the same finite-size and truncation
corrections in column (b) of Table III to all the interpolat-
ed 1/v tables. This correction procedure could probably
be embellished with further refinements, but for our data
we would not expect these to be significant in comparison
with subsequent error estimates.

(iii) In Fig. 3 we plot the resulting corrected estimates
for 1/v at the interpolated value K;=0.221654 [from
column (a), Table III] as a function of 1/2", where n =0,
..., 4 is the RG blocking level in Eq. (6). Since these
numbers have been corrected for apparent finite-size ef-
fects, we can consider them as estimates for the exponent
obtained in the first five blockings of an ideal infinite sys-
tem; therefore, it remains to extrapolate these results to
n— oo, where 2 will have converged to the fixed point
J°*. The choice of the extrapolation procedure should be
governed by the subleading exponent w, which ultimately
controls the approach to #°*. As we will discuss in detail
in Sec. IV C, the subleading exponent is effectively w~1
on the basis of our limited data. Since the data in Fig. 3
should behave as C;+C,2~°" for n sufficiently large, if
=1 then the data points should extrapolate linearly. It
is clear from Fig. 3 that the effective w is of order 1 for
our values of n. On the other hand, field theory and series
expansions suggest w~0.8. Therefore, we are left with the
choice between using statistically accurate data points for
small n with large uncontrolled systematic effects, or con-
centrating on the data points of larger » where the statisti-
cal errors are significant but systematic effects will be
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FIG. 4. Estimates for v and 7 as functions of K{. The verti-
cal line is the best estimate K| =0.221 654.

much less significant. What we have done in practice is to
take the last three data points (n =2,3,4) and extrapolate
linearly (in 1/2"); this yields the estimate 1/v
=1.5892(58). A fit to (C;+C,27%") for any w in the
range 0.8—1.2 changes this value by less than a standard
deviation; allowing an approriate increase in error bars
yields v=0.629(3) for K{=0.221 654.

(iv) In order to test the sensitivity to the value of K{ we
have repeated this analysis for the range of K; values be-
tween 0.221650 and 0.221659. The results are shown in
Fig. 4. Taking into account the uncertainty in K¢ [Eq.
(10)] we quote as our best estimate

v=0.629(4) . (11

The net effect therefore of all the corrections discussed in
this section is to leave the value of v, which one might
guess naively from Table II, substantially unaltered, but
with error estimates increased by a factor of order 5.

The result (11) is in excellent agreement with the recent
estimates of 0.628—0.633 from series expansions on the
simple cubic lattice,'® 0.631(3) (Ref. 15) and 0.629(2) (Ref.
16) from the body-centered-cubic lattice, 0.630(2) from
field-theory calculations,” and 0.635(5) from finite-
size—scaling calculations.’® The preliminary result from
the Monte Carlo processor (Ref. 14) is v=0.629(20).

B. Exponent 1

The leading exponent yy for a series of six operators
(single spin, three spin, seven spin, and nine spin) is shown
in Table V, in the same format as Table II. The values
appear much more stable with regard to n dependence and
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TABLE V. Estimates for yy [Eq. (12)] from the run at K, =0.221 66, in similar format to Table II.

643 323 16 83
2.45715(3) 2.457 60(3) 2.459 63(4) 2.46649(6)
2.45782(3) 2.457 89(3) 2.45832(4) 2.45909(5)
2.457 65(10) 2.45748(3) 2.457 89(7) 2.458 53(7)
2.45823(12) 2.45805(4) 2.45831(7) 2.45821(7)
2.45822(12) 2.45805(4) 2.45831(7) 2.45822(7)
2.45822(12) 2.45805(4) 2.45831(7) 2.45822(7)
2.46357(8) 2.466 49(16) 2.47721(12) 2.50678(14)
2.46126(6) 2.46171(15) 2.46291(14) 2.47063(19)
2.46101(7) 2.46122(14) 2.46188(13) 2.46898(19)
2.46102(7) 2.46114(14) 2.46117(13)

2.46102(7) 2.46113(14) 2.46116(13)
2.46102(7) 2.46113(14) 2.46117(13)
2.478 69(33) 2.490 54(32) 2.52542(39)
2.47371(25) 2.47476(32) 2.48437(52)
2.47335(25) 2.47371(34) 2.482 36(54)
2.47317(25) 2.47289(33)

2.473 15(25) 2.47289(33)

2.473 15(25) 2.47289(33)

2.497 52(110) 2.53345(92)

2.48164(92) 2.48972(67)

2.480 60(97) 2.487 35(66)

2.47977(99)

2.479 75(100)

2.479 74(100)

2.539 15(463)

2.496 97(531)

2.494 99(547)

finite-size and truncation effects than do those for 1/v in
Table II; this is just as well as it is the deviation of yjy
from 2.5 which determines the standard critical exponent

250}

245}

FIG. 5. Linear interpolations for estimates of yy at
K;=0.22161, 0.22166, and 0.22169. The values plotted are
from the 643 data at blocking levels n=0,1,...,4 with the
maximum-size stability matrix T,5. The vertical line is the best
estimate K{=0.221654.

7[G*®(q, T=T,)~|q | ~*~"] according to
yp=d+2—n)/2 (d=3). (12)

We have applied the same three correction steps as for
1/v. (i) The quality of the linear interpolation for yy for
K between 0.221 650—0.221 659 is indicated in Fig. 5 for
the 6 X6 T, (33 for a 2° blocked lattice) obtained from
the 64° data; the corresponding interpolations at 0.221 654
are shown in Table VI. (ii) We estimate finite-size and
truncation corrections to n as described in Sec. IV A:
(—4£4)X107° (n=1), (5+£10)x107° (n=2), (=17
+15)Xx 107> (n =3), and (750+200) X 10~> (n =4); these
values are subtracted from the last entries in the 64> data
at 0.221654. (iii) The “infinite-system” estimates for 7
obtained in this way are shown in the first column of
Table VI and plotted in Fig. 4. Extrapolating to 1/2"—0,
and allowing again for systematic uncertainties in the ex-
trapolation, we obtain 17=0.031(4) for K{=0.221654.
Finally, the dependence on K; of this estimate of 7 is
shown in Fig. 4. Allowing for the uncertainty in K§ we
quote as a final result

7=0.031(5) . (13)

This result is again in excellent agreement with recent esti-
mates, e.g., 0.031(4) from field-theory calculations.!”
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TABLE VI. Interpolation for yy at K;=0.221654. Column (a) contains the estimates for n after

finite-size and truncation corrections.

n (a): “o’” 64 323 16* 83

0 0.0837(2) 2.458 14(7) 2.45810(3) 2.45826(5) 2.45804(3)
1 0.0782(1) 2.46085(4) 2.460 86(5) 2.46070(8) 2.468 76(9)
2 0.0550(3) 2.472 53(10) 2.47224(16) 2.48177(39)

3 0.0432(12) 2.47823(57) 2.48635(59)

4 0.0369(70) 2.489 04(286)

C. Exponent o

The second-largest eigenvalue of T,g in the space of
even operators gives the correction-to-scaling exponent w
according to A,=27¢. In Table VII we show the raw data
for @ in the usual format; the successive diagonalization
of submatrices of T, has a maximum of six entries, since
one eigenvalue is already abstracted in the leading ex-
ponent 1/v. In addition to the features also present in
Tables II and IV, we note the very strong dependence of w
on the truncation (a factor of 2). It is clear that the (200)
neighbor interaction is extremely important; this suggests
that longer-range interactions play a more important role
in determing the correction-to-scaling exponent «, and
that- our approximation of including only seven even
operators might preclude any reliable estimate for .
Nevertheless, we have followed the same procedure as
described in detail in Sec. IV A; the result obtained is

0=1.0%0.1. (14)

This value is to be compared with 0.78(13) (Ref. 13) and
0.83(8) (Ref. 19) from series expansions on the body-
centered-cubic lattice (for a review and further references,
see Nickel, Ref. 2), and 0.79(3) from field-theory calcula-
tions.!” The discrepancy with (14) (which is only two
standard deviations) surely derives from the truncation ap-
proximation; if the (200) neighbor is responsible for a

0.08

0.07

006

005} )/

Q04F |7

003+

n=4 3 2 1 0

FIG. 6. Estimates for n at K;=0.221654 from Table VI,
column (a), plotted vs 277, for blocking levels n =0,1,..,4. The
dashed line indicates the linear fit to the data points for
n=2,3,4.

reduction of roughly 0.4 in w, all the other correlation
functions which are omitted may very well account for a
further reduction of 0.2.

V. DISCUSSION

In this paper we have described the result for (3D) Ising
critical behavior which can be obtained using the MCRG
method with fairly high statistics on lattices with up to
64> states. An important aspect of the work shows how
the totality of all data obtained near the best estimate for
the critical point can be used to improve the statistical
quality and to eliminate systematic effects in the final re-
sult. By measuring the block-spin correlations as in Egs.
(5) and (6), a run at a single K, value can be used to esti-
mate K§; thus all of our three runs can be used to obtain a
statistically improved estimate for K§. The reliability of
the final result can be assessed by looking at the common
trends in all blocking levels on the various lattice sizes.
The expected analytic dependence of the RG transforma-
tion on the coupling K; underpins the linear interpolation
of critical exponents from the three runs, which is essen-
tial for analysis of results at the best estimate for K, and
can improve their statistical quality by using the three sets
of data. The full MCRG tables for exponents are essential
to estimate and eliminate the finite-size and truncation ef-
fects on exponents. The data on the subleading exponent
o provides one with the information on how to extrapo-
late from finite to infinite blocking levels to reach the
fixed point. We believe that this is the first time that such
systematic steps have been taken to extract data from the
MCRG method. The internal consistencies of the calcula-
tions strongly support the validity of this approach. For
example we have repeated the entire analysis with a dif-
ferent ordering for the even operators, the (200) neighbor
being promoted to the fourth order. This implies that at
the 2° block lattice, the truncation effect is even more
severe since now only three operators are used for 1/v,
and only two for . The resulting finite-size and trunca-
tion corrections are larger (30% for 1/v, 100% for w), but
when they are taken into account, essentially the same fi-
nal estimates for the exponents emerge, with slightly
larger error bars. Finally, one can explicitly incorporate
into the final results the uncertainties due to, e.g., the
method of extrapolation or dependence on K.

An interesting aspect which should be raised here is
that of redundant operators.?’ In addition to the classifi-
cation of perturbations from a fixed point as relevant or
irrelevant (eigenvalues greater than or less than 1, respec-
tively), eigenoperators should also be classified as physical
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TABLE VII. Estimates for o at K;=0.221 66, in similar for-
mat to Table II.

64° 323 16° 8
2.009(15) 1.963(17) 1.990(8) 1.981(7)
1.427(16) 1.433(18) 1.428(6) 1.446(4)
1.432(16) 1.440(18) 1.437(7) 1.470(4)
1.447(17) 1.460(19) 1.456(7) 1.486(6)
1.457(24) 1.482(19) 1.473(10) 1.570(11)
1.069(13) 1.097(7) 1.097(5) 1.256(12)
1.970(16) 2.003(17) 2.006(7) 2.205(7)
1.447(18) 1.450(21) 1.482(10) 1.726(7)
1.441(16) 1.458(25) 1.516(12) 1.743(8)
1.428(33) 1.495(39) 1.503(4) 1.600(9)
1.441(46) 1.546(38) 1.450(4) 1.478(4)
1.061(17) 1.068(4) 1.261(10)

1.960(32) 2.008(19) 2.186(11)
1.406(28) 1.480(20) 1.723(8)
1.420(31) 1.533(23) 1.740(11)
1.571(42) 1.443(8) 1.470(8)
1.510(36) 1.391(12) 1.357(5)
1.054(32) 1.192(6)

1.976(23) 2.193(22)

1.437(46) 1.733(15)

1.484(48) 1.749(16)

1.392(19) 1.440(9)

1.340(17) 1.328(9)

1.165(16)

2.178(28)

1.684(28)

1.710(35)

1.415(26)

1.314(22)

or redundant.?’’ The redundancy arises because the totali-

ty of all possible interactions is physically overcomplete;
Hamiltonians which correspond to different points in the
space of all couplings may differ in reality only by a
redefinition of the basic degree of freedom, without physi-
cal content. This is perhaps most transparent in continu-
um field models: A redefinition of the field $—f(4) in-
duces #(¢)—#(p)=21f(¢)] but is of no physical sig-
nificance. The change in the Hamiltonian due to an infin-
itesimal  field transformation f($)=¢+8(¢) s
8 = f 8(¢) 857 /8¢. Thus redundant perturbations of
the fixed-point Hamiltonian are characterized by any
function of ¢ X (“equation-of-motion factor,” 8% /8¢, for
the fixed-point Hamiltonian). The simplest such pertur-
bation corresponds to 8(¢)=const. Furthermore, in field
theory it is possible to formulate the RG (see Amit, Ref.
5) so that

¢ (%*)__V2¢+g*¢3

Since f V24 yields 0, in the field-theory formulation f ¢°
is a redundant perturbation. Of course in the lattice cal-
culations described here, a completely different renormali-
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zation scheme is involved but the suggestion is clear: The
second largest eigenvalue in the space of odd operators is
very likely to be a redundant operator. A direct confirma-
tion of this result would be given by exposing the expected
dependence of the corresponding exponent upon the pre-
cise formulation of the renormalization transformation.
We have not done this. However, it is interesting to note
that the actual value 0.36(4), obtained by following the
same procedure as described above for other exponents, is
sufficiently different from the exponent of the f #3d’x
operator as calculated in field theory [+d —1+37
~0.515 (d =3), see Chap. 10 of Amit Ref. 5] that the
identification in terms of a redundant perturbation seems
plausible. It is clear that further work is needed to sub-
stantiate this speculation.

Finally, let us turn to the question of future prospects
for this kind of calculation. It seems perfectly feasible,
provided further extrapolation problems do not emerge, to
increase the accuracy of the calculation reported here by
approaching an order of magnitude using computing
resources presently available for this task, or in the im-
mediate future. First, one can readily perform calcula-
tions on a 128° lattice. We have now increased our effec-
tive running rate on the DAP by close to a factor of 8, al-
though of course many more sweeps would be required for
high statistics with the longer-time correlations on the
larger lattice. This is certainly a feasible calculation for
the MPP at the National Aeronautics and Space Adminis-
tration. The “demon” algorithm?' may also provide an
order-of-magnitude increase in speed. Special purpose
processors which are unable to perform the RG blocking
would require access to other rather powerful machines.
Second, one can run with an improved energy function in-
cluding second-neighbor, four-spin, etc. interactions to
start as close to the fixed point as possible, and hence to
eliminate substantial transient effects; this could easily be
worth two extra blocking levels. Third, it is essential to
measure many more correlation functions to minimize the
strong truncation effect apparent in our data; the uncer-
tainty due to these effects could be very considerably re-
duced. Fourth, one might also explore the optimization of
the calculation by the choice of other rules for forming
the block spins;?* one may thereby eliminate transient ef-
fects in redundant operators. We note in closing that a
complete calculation would look at two further effects not
discussed in this paper—the variation of K¢ estimates ob-
tained from using other than the nearest-neighbor opera-
tor S; in Egs. (5) and (6), and the “double-blocking” check
that the truncation approximation made is adequate (see
Swendsen, Ref. 1).
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